首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the Mediterranean fruit fly (Ceratitis capitata Weidemann, ‘medfly’), a lekking tephritid, evidence from laboratory studies of flies from laboratory strains suggests that copulation is shorter, and sperm storage more abundant, if males are large or protein‐fed, and that copulation is longer when females are large. In addition, sperm tend to be stored asymmetrically between the female’s two spermathecae and this asymmetry declines with abundance of stored sperm. The primary objective of this study was to investigate whether these trends persist in other experimental contexts that bear closer resemblance to nature. Accordingly, we carried out experiments in a field‐cage using males derived as adults from a wild population and virgin females reared from naturally infested fruit. The results of this study were consistent with laboratory studies in that copula duration increased with female size, that sperm were stored asymmetrically between the females’ spermathecae, and that this asymmetry declined with number of sperm stored. However, we also found some previously unreported effects of female size; large females stored more sperm and stored sperm more asymmetrically between their two spermathecae than did small females. Unlike the laboratory studies, copula duration and sperm storage patterns were unaffected by male size and diet. This may be due to overwhelming variation from other sources in the wild‐collected males used, as well as environmental variability in the semi‐natural setting.  相似文献   

2.
Sperm competition has been a major selective force acting on male and female behaviour. Theory predicts that when sperm compete numerically, selection will favour males that vary the number of sperm they transfer with sperm competition risk. This often leads to increased copula duration when sperm competition risk is high, the selective advantage of which is increased paternity. We investigated the copulatory behaviour of the common dung fly Sepsis cynipsea in relation to male and female size, female mating status, age, and presence or absence of dung. This fly is unusual in that males mate-guard before copula while females use the sperm of previous males for their current clutch. Body size had no effect on copula duration, but duration of first copulations depended on female age, with older females having longer copulations. For females that copulated twice, there was an interaction between female age and mating status influencing copula duration: old females had longer copulations than young females, but second copulas were longer for young females. Residual testis size of nonvirgin males was smaller than for virgins, and testis shrinkage was significantly associated with copula duration, which indicates that males transfer more ejaculate with longer copulations. We therefore conclude that copulation duration and ejaculate transfer vary in accordance with sperm competition theory.  相似文献   

3.
The massive numbers of sperm males transfer during a single mating are physiologically costly and the amount of sperm that can be stored is limited. Therefore, males can perform only a finite number of successive copulations without loss of fertility, and males should allocate sperm prudently. We investigated sperm availability and depletion in male black scavenger flies, Sepsis cynipsea (Diptera: Sepsidae), asking whether males adjust copula duration according to nutrition, their sperm stores, their own and their partner’s body size, as predicted by theory. We created a gradient of sperm limitation by restricting dung (their protein resource as adults) and subjecting males to a varying number of copulations. While male fertility did not depend on access to fresh dung (contrary to females), it did decline after three copulations, and more so when males were small. Larger females tended to lay more unfertilized eggs after copulating with previously mated males. However, copula duration was not influenced by a male’s number of previous copulations, and therefore apparently not by his current sperm stores. Nevertheless, copula duration varied with male size, with small males copulating longer, and with female size, as copulations lasted longer with larger females, suggesting that males are investing more sperm in larger, more fecund females. While male copula adjustments to their own nutrition and body size may be simple (proximate) physiological responses, responses to female size indicate more strategic and sophisticated sperm‐allocation strategies than previously thought.  相似文献   

4.
Areawide sterile insect technique (SIT) programs against Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), are increasingly implemented worldwide. A key issue in SIT is to assess mating success of released sterile males, which could be currently estimated by egg hatchability and by stored sperm head measurements. We report here on a novel molecular approach that would allow detecting the presence of Mediterranean fruit fly sterile male sperm in the female spermathecae under field conditions, as a precise marker to assess mating performance. The simplicity (only two polymerase chain reactions) and reliability of this method, jointly with the capability to detect Vienna sperm in wild Mediterranean fruit fly maintained in monitoring traps for 7 d under field conditions, suggest that it could be an efficient tool when coupled with areawide SIT programs.  相似文献   

5.
Sterile insect technique (SIT) is used, among other biological control tools, as a sustainable measure for the management of Ceratitis capitata Wiedemann (Diptera: Tephritidae) in many agricultural regions where this pest can trigger severe economic impacts. The tendency of wild females to remate multiple times has been deeply studied; it has been a common point of controversy when evaluating SIT programmes. Nevertheless, the remating potential of the released sterile males remains unknown. Here, under laboratory conditions, the remating capability of mass-reared sterile males was determined. Wild-type virgin females were offered to sterile males (Vienna-8 strain), which had the opportunity to mate up to four consecutive times. The remating assays were carried out at 24 hr, 48 hr, 4 days and 7 days after the first mating. At the end of each tested time period, males were divided according to their mating response, mated or unmated, and subsequently reused for the next round of mating assays. The frequency of successful remating in each tested time period was obtained. Insemination was confirmed by determining the sperm transfer in mated female spermathecae by quantitative real-time PCR. Our results demonstrate that 73% of the mass-reared sterile males were able to remate 24 hr after the first mating, 55% of which remated again the day after. Close to 25% of the V8 sterile males tended to copulate in all of the four mating opportunities. The qPCR analysis of the spermathecae contents verified an effective transfer of V8 sperm to wild females with every mating; 99% of copulations resulted in sperm transfer. These findings shed light on the remating potential of V8 sterile males, an aspect until now underestimated in many SIT programmes.  相似文献   

6.
In Sterile Insect Technique (SIT) programs, massive numbers of insects are reared, sterilized, and released in the field to impede reproduction of pest populations. The domestication and rearing processes used to produce insects for SIT programs may have significant evolutionary impacts on life history and reproductive biology. We assessed the effects of domestication on sexual performance of laboratory reared Queensland fruit fly, Bactrocera tryoni, by comparing an old (49 generations) and a young colony (5 generations). We evaluated mating propensity, mating latency, copula duration, sperm transfer, and ability to induce sexual inhibition in mates. Overall, both males and females from the old colony had greater mating propensity than those from the young colony. Copula duration was longer when females were from the old colony. There was no evidence of sexual isolation between the colonies as males and females from the two colonies had similar propensity to mate with flies from either colony. Males from the old colony transferred more sperm regardless of which colony their mate was from. Finally, males from both colonies were similarly able to induce sexual inhibition in their mates and were also similarly able to secure copulations with already-mated females. Positive effects of domestication on sperm transfer, coupled with maintained ability to induce sexual inhibition in mates and to secure copulations with previously mated females, highlights that domestication may have little effect, or even positive effects, on some aspects of sexual performance that may advantage mass-reared B. tryoni in SIT programs.  相似文献   

7.
Abstract.  Female animals that use sperm from a single mating to fertilize eggs over an extended period require efficient mechanisms for sperm storage and use. There have been few studies of these mechanisms in tephritid flies. Mating, copula duration, sperm storage and sperm usage patterns are assessed in an Australian tephritid, the Queensland fruit fly ( Bactrocera tryoni ; a.k.a. 'Q-fly'). In particular, the present study investigates whether each of these aspects of mating varies in relation to female size or male size, whether sperm storage patterns change over time after mating (1, 5, 10 and 15 days), and the relative roles of the ventral receptacle and the two spermathecae as sperm storage organs. Large females are more likely to mate than are small females, and are also more fecund in the first 5 days after mating. Females are more likely to store some sperm and, among those that store some sperm, store more sperm if their mate is large. Most sperm are stored in the spermathecae (median = 97%), often with high levels of asymmetry between the two spermathecae. Asymmetry of sperm storage is related to number of sperm stored, but not to male or female size. Total number of stored sperm declines over the 15 days after mating, but this decrease in sperm numbers only reflects changes in the spermathecae; numbers of sperm in the ventral receptacle remain unchanged over this period. As a consequence, the proportion of total sperm stored in the spermathecae declines relative to the ventral receptacle. These results are consistent with a system in which small numbers of sperm are maintained in the ventral receptacle for fertilizations, and are replenished by sperm from the spermathecae as required. Sperm distribution and usage patterns in Q-flies are comparable with recent findings in medflies, Ceratitis capitata , but differ markedly from patterns found in several Anastrepha species.  相似文献   

8.
Copula duration and sperm storage patterns can directly or indirectly affect fitness of male and female insects. Although both sexes have an interest in the outcome, research has tended to focus on males. To investigate female influences, we compared copula duration and sperm storage of Queensland fruit fly females that were intact, or had been incapacitated through decapitation or abdomen isolation. We found that copulations were far longer when females had been incapacitated, indicating that constraints imposed on copula duration by intact females had been relaxed. Repeatability of copula duration for males was very low regardless of female treatment, and this is also consistent with strong female influence. Number of sperm in the spermathecae was not influenced by female treatment, suggesting that female abdominal ganglia control the transport of sperm to these long-term storage organs. However, more sperm were found in the ventral receptacles of incapacitated females compared to intact females. Overall, results implicate cephalic ganglia in regulation of copula duration and short-term sperm storage in the ventral receptacle and abdominal ganglia in regulation of long-term sperm storage in the spermathecae.  相似文献   

9.
The sterile insect technique (SIT), used for the control of many tephritid fly pests, is based on the rearing and release of large numbers of sexually competitive sterile insects into a wild population. In the interest of reducing expenses and increasing SIT effectiveness, genetic sexing strains (GSS) have been developed. These strains allow the production and release of only males. The objective of our study was to assess the effects of pre-release adult exposure to methoprene and to females on the mating propensity and mating competitiveness of GSS sterile males of Anastrepha ludens (Loew) (Diptera: Tephritidae). GSS sterile males were kept on a protein-sugar (protein-fed) or a protein-sugar-methoprene diet and were exposed to different proportions of females for the normal pre-release period of 5 days. Using laboratory and field-cage bioassays, we examined the influence of methoprene and female presence on the mating success of sterile males of 3–9 days old, in competition for wild females with untreated males and with wild males. Methoprene and female exposure had no significant effects on male mating success in the laboratory, whereas age had a positive relationship with the number of copulations observed. However, in field-cage bioassays, males exposed to females obtained a higher number of copulations than unexposed control males. Possible implications of these findings for programs that use GSS and especially for the campaign against Mexican fruit flies are discussed.  相似文献   

10.
The objective of this study was to examine the relative contributions of copula duration and sperm transfer to the inhibition of sexual receptivity of female Mediterranean fruit flies (Ceratitis capitata, Diptera: Tephritidae). Females choosing to remate had significantly fewer sperm in their spermathecae than females who chose not to remate. Duration of a female's first copulation did not affect her subsequent receptivity. Furthermore, on the first day following copulation significantly more females whose first mate was sterile and from a laboratory strain (sterile males transfer fewer sperm than wild males) chose to copulate than did females whose mate was fertile and recently derived from wild stock. Finally, we offer a synthesis of the available information on remating in this species, and suggest that while females are facultatively polyandrous, copula duration, sperm transfer and male accessory gland secretions act in succession to inhibit female receptivity.  相似文献   

11.
Male insects are expected to optimize their reproductive strategy according to the availability of sperm or other ejaculatory materials, and to the availability and reproductive status of females. Here, we investigated the reproductive strategy and sperm management of male and virgin female Aedes albopictus, a mosquito vector of chikungunya and dengue viruses. The dynamics of semen transfer to the female bursa inseminalis and spermathecae were observed. Double-mating experiments were conducted to study the effect of time lapsed or an oviposition event between two copulations on the likelihood of a female double-insemination and the use of sperm for egg fertilization; untreated fertile males and radio-sterilised males were used for this purpose. Multiple inseminations and therefore the possibility of sperm competition were limited to matings closely spaced in time. When two males consecutively mated the same female within a 40 min interval, in ca. 15% of the cases did both males sire progeny. When the intervals between the copulations were longer, all progeny over several gonotrophic cycles were offspring of the first male. The mating behavior of males was examined during a rapid sequence of copulations. Male Ae. albopictus were parceling sperm allocation over several matings; however they would also attempt to copulate with females irrespective of the available sperm supply or accessory gland secretion material. During each mating, they transferred large quantities of sperm that was not stored for egg fertilization, and they attempted to copulate with mated females with a low probability of transferring their genes to the next generation. The outcomes of this study provided in addition some essential insights with respect to the sterile insect technique (SIT) as a vector control method.  相似文献   

12.
A consequence of multiple mating by females can be that the sperm of two or more males directly compete for the fertilisation of ova inside the female reproductive tract. Selection through sperm-competition favours males that protect their sperm against that of rivals and strategically allocate their sperm, e.g., according to the mating status of the female and the morphology of the spermatheca. In the majority of spiders, we encounter the otherwise unusual situation that females possess two independent insemination ducts, both ending in their own sperm storage organ, the spermatheca. Males have paired mating organs, but generally can only fill one spermatheca at a time. We investigated whether males of the African golden orb-web spider Nephila madagascariensis can prevent rival males from mating into the same spermatheca and whether the mating status of the female and/or the spermatheca causes differences in male mating behaviour. There was no significant difference in the duration of copulations into unused spermathecae of virgin and mated females. We found that copulations into previously inseminated spermathecae were generally possible, but shorter than copulations into the unused side of mated females or with virgins. Thus, male N. madagascariensis may have an advantage when they mate with virgins, but cannot prevent future males from mating. However, in rare instances, parts of the male genitals can completely obstruct a female genital opening.  相似文献   

13.
Although age-based effects on the reproductive success of males have been reported in several animal taxa the cost of aging on male mating success in lekking species has not been fully explored. We used the Mediterranean fruit fly, a lekking species, to investigate possible cost of aging on male reproductive success. We performed no choice and choice mating tests to test the hypothesis that aging does not affect the mating performance (mating success in conditions lacking competition) or the mating competitiveness (mating success against younger rivals) of males. The mating probability of older males decreased significantly when competing with younger males. Aging gradually reduced the mating performance of males but older males were still accepted as mating partners in conditions lacking competition. Therefore, older males are capable of performing the complete repertoire of sexual performance but fail to be chosen by females in the presence of young rivals. Older males achieved shorter copulations than younger ones, and female readiness to mate was negatively affected by male age. Older and younger males transferred similar amount of spermatozoids to female spermathecae. Females stored spermatozoids asymmetrically in the two spermathecae regardless the age of their mating partner. Aging positively affected the amount of spermatozoids in testes of both mated and nonmated males. No significant differences were observed on the amount of spermatozoids between mated and nonmated males.  相似文献   

14.
Reproductive success of male insects commonly hinges both on their ability to secure copulations with many mates and also on their ability to inseminate and inhibit subsequent sexual receptivity of their mates to rival males. We here present the first investigation of sperm storage in Queensland fruit flies (Tephritidae: Bactrocera tryoni; a.k.a. 'Q-flies') and address the question of whether remating inhibition in females is directly influenced by or correlated with number of sperm stored from their first mates. We used irradiation to disrupt spermatogenesis and thereby experimentally reduce the number of sperm stored by some male's mates while leaving other aspects of male sexual performance (mating probability, latency until copulating, copula duration) unaffected. Females that mated with irradiated rather than normal males were less likely to store any sperm at all (50% vs. 89%) and, if some sperm were stored, the number was greatly reduced (median 11 vs. 120). Despite the considerable differences in sperm storage, females mated by normal males and irradiated males were similarly likely to remate at the next opportunity, indicating (1) number of sperm stored does not directly drive female remating inhibition and (2) factors actually responsible for remating inhibition are similarly expressed in normal and irradiated males. While overall levels of remating were similar for mates of normal and irradiated males, factors responsible for female remating inhibition were positively associated with presence and number of sperm stored by mates of normal but not irradiated males. We suggest seminal fluids as the most likely factor responsible for remating inhibition in female Q-flies, as these are likely to be transported in proportion to number of sperm in normal males, be uninfluenced by irradiation, and be transported without systematic relation to sperm number in irradiated males.  相似文献   

15.
The sterile insect technique (SIT) is currently used to control Mexican fruit fly Anastrepha ludens Loew (Diptera: Tephritidae). However, mass‐rearing can alter the quality of released males. If males that are mass‐reared have behaviours different from those of their wild counterparts, then this may diminish the effectiveness of SIT. Questions remain as to whether wild females may be able to detect the male condition before, during and/or after copulation with a mass‐reared male. In the present study, copula duration, female remating, female fecundity and fertility of both mass‐reared and wild A. ludens are evaluated. Marked differences are found between mass‐reared and wild females. Specifically, mating latency is longer and copula duration is shorter for wild females compared with mass‐reared females. Importantly, there are no significant differences in mating latency, copula duration or remating probability between wild females paired with either mass‐reared or wild males. All mass‐reared females remate, whereas only approximately half of the wild females remate after first mating with either a wild or mass‐reared male. Fecundity of wild females mated to either wild or mass‐reared males is approximately one‐third lower than that of mass‐reared females, confirming that mass‐reared females may have been selected for high fecundity and are adapted to laboratory conditions. Fertility of females that mate with a wild male for only 10 min is not significantly different from that achieved via a full‐length copulation. By contrast, females mating with mass‐reared males need copulation durations of at least 40 min to achieve fertility comparable with that achieved via a full‐length copulation. The findings of the present study have important implications for A. ludens controlled through SIT and broaden our understanding on the copulatory and post‐copulatory behaviours between wild females and mass‐reared males.  相似文献   

16.
1 Recent studies have shown that continuous access to a protein source (yeast hydrolysate) can greatly enhance the sexual performance of male Queensland fruit flies ( Bactrocera tryoni ; 'Q-flies'). However, in Sterile Insect Technique programmes used to eradicate or suppress wild populations, mass-reared Q-flies are typically fed only sucrose and water for up to 2 days before release.
2 We investigated whether adding a protein source to the diet of male Q-flies for a 24- or 48-h window after emergence and then removing it is sufficient to enhance mating probability, latency to mate, copula duration, probability of sperm storage, number of sperm stored, female remating tendency and longevity of male Q-flies.
3 Protein-fed males were more likely to mate than males fed only sucrose, especially when young. Protein-fed males also had shorter mating latencies and longer copulations than protein-deprived males.
4 Females mated by protein-fed males were more likely to store sperm, stored more sperm and were less likely to remate than were females mated by protein-deprived males. Females were also less likely to remate if their first mate had been large.
5 Overall, providing male Q-flies access to a protein source for a 24- or 48-h window early on in their adult life was sufficient to greatly enhance all assessed measures of performance. Although 24-h access was sufficient for a notable enhancement, further benefits were evident in males provided 48-h access.
6 The results are discussed in terms of the practical implications for Sterile Insect Technique programs used to eradicate or suppress wild Q-fly populations.  相似文献   

17.
Recent studies suggest that sperm production and transfer may have significant costs to males. Male sperm investment into a current copulation may therefore influence resources available for future matings, which selects for male strategic mating investment. In addition, females may also benefit from actively or passively altering the number of sperm transferred by males. In the scorpionfly Panorpa cognata, the number of sperm transferred during copulation depended on copulation duration and males in good condition (residual weight) copulated longer and also transferred more sperm. Moreover, sperm transferred and stored per unit time was higher in copulations with females in good condition than in copulations with females in poor condition. Males varied greatly and consistently in their sperm transfer rate, indicative of costs associated with this trait. The duration of the pairing prelude also varied between males and correlated negatively with the male's sperm transfer rate, but no other male character correlated significantly with male sperm transfer rate. The results are consistent with strategic mating effort but sperm transfer could also be facilitated by the physical size of females and/or females in good condition may be more cooperative during sperm transfer.  相似文献   

18.
After copulation, male grasshoppers of Sphenarium purpurascens (Orthoptera: Pyrgomorphidae) remain in a postinsemination association with their mate. A male can spend as many as 17 days mounted on a female. Guarding duration is related to both male and female body size and the female's mating history. Longest guarding durations were recorded at the middle of the reproductive season, when the probability of encounter between the sexes (sex ratio and population density) was decreasing, at the beginning of the associated dry season. These guardings were associated with large individuals of both sexes and with females that had more previous partners. Moreover, a positive association was found among guarding duration, female and male body size and age, and number of copulations performed by the males. Maybe males invest time and sperm in females as a function of the probability of sperm competition. Nevertheless, guarding may provide benefits to both sexes. Males may reduce the possibility of sperm competition, and females may obtain nutritional benefit for themselves or their offspring as a result of multiple copulations. Changes in male investment in guarding duration and number of copulations may be the result of physiological constraints related to seminal and/or sperm production. Moreover, guarding duration could be constrained by ecological factors such as a reduction of food availability associated with the beginning of the dry season.  相似文献   

19.
Time in copula in the swarming caddis fly Mystacides azurea L. (Trichoptera: Leptoceridae) ranged from 0.33 to 44.5 min. It increased with male age (wing wear) and male dry weight, but was independent of male and female size (forewing length), female wing wear and number of eggs in the females. Older males failed to transfer sperm during copulation more frequently than did younger ones. It is suggested that females benefit by interrupting prolonged copulations if sperm is not transferred rapidly, since being in copula might increase the risk of predation. Alternatively, young and old males follow different mating tactics; old males have a lower chance to acquire new mates and they do better by monopolizing a female, once they get one, by prolonging the copulation.  相似文献   

20.
Intraspecific variation in the proportion of offspring sired by the second male to mate with a female (P2) is an aspect of sperm competition that has received little attention. We examined variation in the sperm competition success of individual male dung flies, Scatophaga stercoraria. In unmanipulated matings, copula duration was dependent on male size with smaller males copulating for longer. A principal component analysis was used to generate uncorrelated scores based on a male's size and copula duration. Using these scores demonstrated that P2 values were dependent both on the relative size and copula durations of competing males. When copula duration was held constant, the success of an individual male increased as his body size, relative to the first male, increased. We interrupted copulations of “large” and “small” second males and fitted the resultant P2 values to a linear model of sperm competition with unequal ejaculates. The data fit well to a model of sperm displacement in which sperm mix quickly on introduction to the sperm stores. Furthermore, they show that “large” males have a greater rate of sperm displacement than “small” males. The levels of prey availability during testis maturation may influence a male's success in sperm competition although his immediate mating history does not. We show why an understanding of variation in sperm competition success is important for understanding the mechanisms and evolutionary significance of sperm competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号