首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Radiation-induced nondisjunction in Drosophila melanogaster females usually-possibly invariably-involves the participation of chromosomes other than the pair in which the numerical aberration is noted, with one of the two acrocentric pairs frequently being involved in the assortative error of the other. Nearly one-half of all diplo-X eggs produced following the irradiation of immature oocytes of females having free X's are found to be nullo-4, and, in agreement with earlier reports9,11, about one-fourth of all nullo-X eggs are diplo-4. The incidence of structural alterations is markedly higher in chromosomes involved in nondisjunctions than in those recovered from normal segregations, with the structural changes being those expected from interchange between X and fourth chromosomes where only one of the two interchange products (a “half-translocation”) is recovered. X chromosomes may acquire an arm of chromosome 4, and fourth chromosomes may lose the marker from the left arm, as if the short, heterochromatic right arm of the X had been substituted. Homozygosis of markers near the centromere of the X chromosome shows that nearly all failures of segregation must occur at division I. While the data do not require that there be some division II nondisjunction, neither do they categorically deny the possiblility of its occurring at a very low level. The findings are as expected on the model of heterologous conjunction via chromatid interchange as the major and perhaps exclusive cause of radiation-induced nondisjunction.  相似文献   

2.
Chromosome malsegregation in binucleated lymphocytes is a useful endpoint to evaluate age effect on genetic stability. However, the investigations on chromosome malsegregation in binucleated lymphocytes from Chinese are scarce. In this study, peripheral blood lym- phocytes were collected from 14 old (60-70 years) and 10 young (22-26 years) healthy Chinese men. To detect malsegregation of the sex chromosomes, multi-color fluorescence in situ hybridization (FISH) was performed on binucleated lymphocytes, cytokinesis-blocked by cytochalasin B at the first mitosis after phytohaemagglutinin stimulation. Compared with that in young men, a significant increase in frequencies of loss of chromosome X (9.2± 3.2‰ vs. 1.1 ± 0.9‰, P 〈 0.001) and Y (2.5 ± 1.9‰ vs. 0.2± 0.3‰, P 〈 0.001) was found in old men. Similarly, nondisjunction of chromosome X (16.5± 3.4‰ vs. 3.5 ± 1.1‰, P 〈 0.001) and Y (7.2 ± 2.6‰ vs. 2.4 ± 1.3‰, P 〈 0.001) occurred more frequently in old men than in young men. Regardless of donor's age, nondisjunction is more prevalent than loss for both chromosome X and Y. The frequencies of observed simultaneous malsegregation were relatively higher than the expected, suggest- ing an association between malsegregation. These results indicated that in Chinese men, malsegregation of the sex chromosomes increases with age in an associated fashion, and nondisjunction accounts for the majority of spontaneous chromosome malsegregation.  相似文献   

3.
A. E. Zitron  R. S. Hawley 《Genetics》1989,122(4):801-821
We describe the isolation and characterization of Aberrant X segregation (Axs), a dominant female-specific meiotic mutation. Although Axs has little or no effect on the frequency or distribution of exchange, or on the disjunction of exchange bivalents, nonexchange X chromosomes undergo nondisjunction at high frequencies in Axs/+ and Axs/Axs females. This increased X chromosome nondisjunction is shown to be a consequence of an Axs-induced defect in distributive segregation. In Axs-bearing females, fourth chromosome nondisjunction is observed only in the presence of nonexchange X chromosomes and is argued to be the result of improper X and fourth chromosome associations within the distributive system. In XX females bearing a compound fourth chromosome, the frequency of nonhomologous disjunction of the X chromosomes from the compound fourth chromosome is shown to account for at least 80% of the total X nondisjunction observed. In addition, Axs diminishes or ablates the capacity of nonexchange X chromosomes to form trivalents in females bearing either a Y chromosome or a small free duplication for the X. Axs also impairs compound X from Y segregation. The effect of Axs on these segregations parallels the defects observed for homologous nonexchange X chromosome disjunction in Axs females. In addition to its dramatic effects on the X chromosome, Axs exerts a similar effect on the segregation of a major autosome. We conclude that Axs defines a locus required for proper homolog disjunction within the distributive system.  相似文献   

4.
Xiang Y  Hawley RS 《Genetics》2006,174(1):67-78
Bridges (1916) observed that X chromosome nondisjunction was much more frequent in XXY females than it was in genetically normal XX females. In addition, virtually all cases of X nondisjunction in XXY females were due to XX <--> Y segregational events in oocytes in which the two X chromosomes had failed to undergo crossing over. He referred to these XX <--> Y segregation events as "secondary nondisjunction." Cooper (1948) proposed that secondary nondisjunction results from the formation of an X-Y-X trivalent, such that the Y chromosome directs the segregation of two achiasmate X chromosomes to opposite poles on the first meiotic spindle. Using in situ hybridization to X and YL chromosomal satellite sequences, we demonstrate that XX <--> Y segregations are indeed presaged by physical associations of the X and Y chromosomal heterochromatin. The physical colocalization of the three sex chromosomes is observed in virtually all oocytes in early prophase and maintained at high frequency until midprophase in all genotypes examined. Although these XXY associations are usually dissolved by late prophase in oocytes that undergo X chromosomal crossing over, they are maintained throughout prophase in oocytes with nonexchange X chromosomes. The persistence of such XXY associations in the absence of exchange presumably facilitates the segregation of the two X chromosomes and the Y chromosome to opposite poles on the developing meiotic spindle. Moreover, the observation that XXY pairings are dissolved at the end of pachytene in oocytes that do undergo X chromosomal crossing over demonstrates that exchanges can alter heterochromatic (and thus presumably centromeric) associations during meiotic prophase.  相似文献   

5.
M D Krawchuk  W P Wahls 《Genetics》1999,153(1):49-55
Recent evidence suggests that the position of reciprocal recombination events (crossovers) is important for the segregation of homologous chromosomes during meiosis I and sister chromatids during meiosis II. We developed genetic mapping functions that permit the simultaneous analysis of centromere-proximal crossover recombination and the type of segregation error leading to aneuploidy. The mapping functions were tested in a study of the rec8, rec10, and rec11 mutants of fission yeast. In each mutant we monitored each of the three chromosome pairs. Between 38 and 100% of the chromosome segregation errors in the rec8 mutants were due to meiosis I nondisjunction of homologous chromosomes. The remaining segregation errors were likely the result of precocious separation of sister chromatids, a previously described defect in the rec8 mutants. Between 47 and 100% of segregation errors in the rec10 and rec11 mutants were due to nondisjunction of sister chromatids during meiosis II. In addition, centromere-proximal recombination was reduced as much as 14-fold or more on chromosomes that had experienced nondisjunction. These results demonstrate the utility of the new mapping functions and support models in which sister chromatid cohesion and crossover position are important determinants for proper chromosome segregation in each meiotic division.  相似文献   

6.
A model system for increased meiotic nondisjunction in older oocytes   总被引:2,自引:0,他引:2  
For at least 5% of all clinically recognized human pregnancies, meiotic segregation errors give rise to zygotes with the wrong number of chromosomes. Although most aneuploid fetuses perish in utero, trisomy in liveborns is the leading cause of mental retardation. A large percentage of human trisomies originate from segregation errors during female meiosis I; such errors increase in frequency with maternal age. Despite the clinical importance of age-dependent nondisjunction in humans, the underlying mechanisms remain largely unexplained. Efforts to recapitulate age-dependent nondisjunction in a mammalian experimental system have so far been unsuccessful. Here we provide evidence that Drosophila is an excellent model organism for investigating how oocyte aging contributes to meiotic nondisjunction. As in human oocytes, nonexchange homologs and bivalents with a single distal crossover in Drosophila oocytes are most susceptible to spontaneous nondisjunction during meiosis I. We show that in a sensitized genetic background in which sister chromatid cohesion is compromised, nonrecombinant X chromosomes become vulnerable to meiotic nondisjunction as Drosophila oocytes age. Our data indicate that the backup pathway that normally ensures proper segregation of achiasmate chromosomes deteriorates as Drosophila oocytes age and provide an intriguing paradigm for certain classes of age-dependent meiotic nondisjunction in humans.  相似文献   

7.
Chromosomal lagging and non-disjunction are the main mechanisms of chromosomal malsegregation at mitosis. To date, the relative importance of these two events in the genesis of spontaneous or induced aneuploidy has not been fully elucidated. A methodology based on in situ hybridization with centromeric probes in binucleated lymphocytes was previously developed to provide some insight into this matter. With this method, both chromosomal loss and non-disjunction can be simultaneously detected by following the distribution of specific chromosomes in the nuclei and micronuclei of binucleated cells. In this study, this approach was used for studying the role of chromosomal loss and non-disjunction in the age-related malsegregation of sex chromosomes in females. For this purpose, cultures of cytokinesis-blocked lymphocytes were established from 12 healthy women ranging in age from 25 to 56. The occurrence of malsegregation of X chromosomes in vitro was estimated in binucleated cells that contained four signals, which orginates from the division of normal disomic cells. In this cell population, the frequencies of X chromosome loss and non-disjunction ranged from 0% to 1.69% (mean 0.75%), and from 0.20% to 1.33% (mean 0.57%), respectively. This indicates that both events contribute to malsegregation of X chromosomes in vitro. Moreover, a small but not negligible fraction of binucleated cells with two or six copies of the X chromosome was noticed in all donors. These cells, which are thought to arise from parental monosomic and trisomic types, may indicate the malsegregation of X chromosomes in vivo. The frequency of X chromosome aneuploidy both in vivo and in vitro significantly correlated with the age of donors. Analysis of chromosomal distribution in unbalanced cells demonstrated that both X homologues were frequently involved. The frequency of such multiple events (0.17%) was far greater than that expected by mere chance, indicating a tendency to multiple malsegregation events in the cell population investigated. Finally, parallel analysis of the segregation of chromosomex X and 1 in five of the donors confirmed the greater (about tenfold) susceptibility of X chromosomes to malsegregate compared with autosomes.  相似文献   

8.
In experiments involving different germ-cell stages, we had previously found meiotic prophase of the male mouse to be vulnerable to the induction of several types of genetic damage by the topoisomerase-II inhibitor etoposide. The present study of etoposide effects involved two end points of meiotic events known to occur in primary spermatocytes--chromosomal crossing-over and segregation. By following assortment of 13 microsatellite markers in two chromosomes (Ch 7 and Ch 15) it was shown that etoposide significantly affected crossing-over, but did not do so in a uniform fashion. Treatment generally changed the pattern for each chromosome, leading to local decreases in recombination, a distal shift in locations of crossing-over, and an overall decrease in double crossovers; at least some of these results might be interpreted as evidence for increased interference. Two methods were used to explore etoposide effects on chromosome segregation: a genetic experiment capable of detecting sex-chromosome nondisjunction in living progeny; and the use of FISH (fluorescence in situ hybridization) technology to score numbers of Chromosomes X, Y, and 8 in spermatozoa. Taken together these two approaches indicated that etoposide exposure of pachytene spermatocytes induces malsegregation, and that the findings of the genetic experiment probably yielded a marked underestimate of nondisjunction. As indicated by certain segregants, at least part of the etoposide effect could be due to disrupted pairing of achiasmatic homologs, followed by precocious sister-centromere separation. It has been shown for several organisms that absent or reduced levels of recombination, as well as suboptimally positioned recombination events, may be associated with abnormal segregation. Etoposide is the only chemical tested to date for which living progeny indicates an effect on both male meiotic crossing-over and chromosome segregation. Whether, however, etoposide-induced changes in recombination patterns are direct causes of the observed malsegregation requires additional investigation.  相似文献   

9.
Epidemiological studies suggest radiation exposure as a cause of meiotic non-disjunction in humans, but experimental evidence with cytological proof has been lacking. Our results indicate that mitotic nondisjunction of lymphocyte chromosomes can also be induced by exposure to a low dose of radiation. Abnormal segregation can be induced not only when the cells are irradiated but also when nonirradiated cells are incubated with irradiated cell-free plasma or serum. The X and no. 21 chromosomes appear particularly susceptible to nondisjunction.  相似文献   

10.
Hirai K  Toyohira S  Ohsako T  Yamamoto MT 《Genetics》2004,166(4):1795-1806
Proper segregation of homologous chromosomes in meiosis I is ensured by pairing of homologs and maintenance of sister chromatid cohesion. In male Drosophila melanogaster, meiosis is achiasmatic and homologs pair at limited chromosome regions called pairing sites. We screened for male meiotic mutants to identify genes required for normal pairing and disjunction of homologs. Nondisjunction of the sex and the fourth chromosomes in male meiosis was scored as a mutant phenotype. We screened 2306 mutagenized and 226 natural population-derived second and third chromosomes and obtained seven mutants representing different loci on the second chromosome and one on the third. Five mutants showed relatively mild effects (<10% nondisjunction). mei(2)yh149 and mei(2)yoh7134 affected both the sex and the fourth chromosomes, mei(2)yh217 produced possible sex chromosome-specific nondisjunction, and mei(2)yh15 and mei(2)yh137 produced fourth chromosome-specific nondisjunction. mei(2)yh137 was allelic to the teflon gene required for autosomal pairing. Three mutants exhibited severe defects, producing >10% nondisjunction of the sex and/or the fourth chromosomes. mei(2)ys91 (a new allele of the orientation disruptor gene) and mei(3)M20 induced precocious separation of sister chromatids as early as prometa-phase I. mei(2)yh92 predominantly induced nondisjunction at meiosis I that appeared to be the consequence of failure of the separation of paired homologous chromosomes.  相似文献   

11.
Summary The origin of meiotic nondisjunction of the extra chromosomes X and 21 was studied in a patient with the karyotype 48,XXY,+21 using DNA polymorphisms. The extra chromosome X was the result of paternal first meiotic nondisjunction of X and Y. The extra chromosome 21 was derived from the mother. The meiotic error in the mother most probably occurred in meiosis II. Thus, this is a combination caused by the chance occurrence of two independent events.  相似文献   

12.
A collection of chl mutants characterized by decreased fidelity of chromosome transmission and by minichromosome nondisjunction in mitosis was examined for the ability to maintain nonessential dicentric plasmids. In one of the seven mutants analyzed, chl4, dicentric plasmids did not depress cell division. Moreover, nonessential dicentric plasmids were maintained stably without any rearrangements during many generations in the chl4 mutant. The rate of mitotic heteroallelic recombination in the chl4 mutant was not increased compared to that in an isogenic wild-type strain. Analysis of the segregation of a marked chromosome indicated that sister chromatid nondisjunction and sister chromatid loss contributed equally to chromosome malsegregation in the chl4 mutant. A genomic clone of CHL4 was isolated by complementation of the chl4-1 mutation and was physically mapped to the right arm of chromosome IV near the SUP2 gene. Nucleotide sequence analysis of CHL4 clone revealed a 1.4-kb open reading frame coding for a 53-kD predicted protein which does not have homology to published proteins. A strain containing a null allele of CHL4 is viable under standard growth conditions but has a temperature-sensitive phenotype (conditional lethality at 36°). We suggest that the CHL4 gene is required for kinetochore function in the yeast Saccharomyces cerevisiae.  相似文献   

13.
Chromosome segregation ensures the equal partitioning of chromosomes at mitosis. However, long chromosome arms may pose a problem for complete sister chromatid separation. In this paper we report on the analysis of cell division in primary cells from field vole Microtus agrestis, a species with 52 chromosomes including two giant sex chromosomes. Dual chromosome painting with probes specific for the X and the Y chromosomes showed that these long chromosomes are prone to mis-segregate, producing DNA bridges between daughter nuclei and micronuclei. Analysis of mitotic cells with incomplete chromatid separation showed that reassembly of the nuclear membrane, deposition of INner CENtromere Protein (INCENP)/Aurora B to the spindle midzone and furrow formation occur while the two groups of daughter chromosomes are still connected by sex chromosome arms. Late cytokinetic processes are not efficiently inhibited by the incomplete segregation as in a significant number of cell divisions cytoplasmic abscission proceeds while Aurora B is at the midbody. Live-cell imaging during late mitotic stages also revealed abnormal cell division with persistent sister chromatid connections. We conclude that late mitotic regulatory events do not monitor incomplete sister chromatid separation of the large X and Y chromosomes of Microtus agrestis, leading to defective segregation of these chromosomes. These findings suggest a limit in chromosome arm length for efficient chromosome transmission through mitosis.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

14.
Summary A family in which the proband showed phenotypic signs of both the Turner and Down syndromes was studied cytogenetically and with restriction fragment length polymorphisms. The proband's karyotype was 46,X,+21, showing double aneuploidy without any signs of mosaicism. The single X and one chromosome 21 were of paternal origin while two chromosomes 21 were of maternal origin. The nondisjunction of chromosome 21 took place in maternal meiosis II. If it is assumed that the absence of mosaicism renders postzygotic mitotic loss of the X chromosome unlikely, then the X chromosome would have been lost in maternal meiosis I or II. Recombination had occurred between the nondisjoined chromosomes 21. We conclude that double nondisjunction took place in one parent and that asynapsis was not a prerequisite for the autosomal nondisjunction.  相似文献   

15.
The relationship between chromosomal nondisjunction and semen quality was studied in two groups of males who differ highly in their semen quality: 12 individuals with low-quality semen caused by varicocele, and 8 subjects with high-quality semen, selected from sperm donors for in vitro fertilization. Chromosomal nondisjunction was inferred from the rate of disomy found in mature sperm cells. To determine the rate of disomy, we applied fluorescence in situ hybridization using satellite-specific probes for chromosomes 1, 15, 18, X and Y. In sperm cells of males with low-quality semen, the mean rate of disomy for each of the autosomes and of hetero-disomy for the sex chromosomes (XY) was significantly higher than that observed in the high-quality semen samples: more than 15-fold higher for chromosomes 1 and 15, and 7-fold higher for chromosomes 18 and XY. Yet, the homo-disomy rate for each of the sex chromosomes (XX and YY) was almost the same in both types of semen. The large discrepancy between the low- and high-quality semen in the rate of sex chromosome hetero-disomy versus the similar rate of homo-disomy strongly suggests that the abnormal chromosomal segregation in meiocytes of males with low-quality semen resulted from chromosomal nondisjunction at the first meiotic division. The results indicate that men showing poor semen quality are at an increased risk for meiotic nondisjunction, similar to women at the end of their reproductive years. Received: 30 June 1997 / Accepted: 17 September 1997  相似文献   

16.
A checkpoint mechanism operates at the metaphase/anaphase transition to ensure that a bipolar spindle is formed and that all the chromosomes are aligned at the spindle equator before anaphase is initiated. Since mistakes in the segregation of chromosomes during meiosis have particularly disastrous consequences, it seems likely that the meiotic cell division would be characterized by a stringent metaphase/ anaphase checkpoint. To determine if the presence of an unaligned chromosome activates the checkpoint and delays anaphase onset during mammalian female meiosis, we investigated meiotic cell cycle progression in murine oocytes from XO females and control siblings. Despite the fact that the X chromosome failed to align at metaphase in a significant proportion of cells, we were unable to detect a delay in anaphase onset. Based on studies of cell cycle kinetics, the behavior and segregation of the X chromosome, and the aberrant behavior and segregation of autosomal chromosomes in oocytes from XO females, we conclude that mammalian female meiosis lacks chromosome-mediated checkpoint control. The lack of this control mechanism provides a biological explanation for the high incidence of meiotic nondisjunction in the human female. Furthermore, since available evidence suggests that a stringent checkpoint mechanism operates during male meiosis, the lack of a comparable checkpoint in females provides a reason for the difference in the error rate between oogenesis and spermatogenesis.  相似文献   

17.
Robertsonian (Rb) translocation heterozygosity may cause pairing problems during prophase and segregation irregularities at anaphase of meiosis I. These stages of meiosis I were studied in male mice doubly heterozygous for the two Rb chromosomes Rb(9.19)163H and Rb(16.17)8Lub. At pachytene both Rb chromosomes similarly showed pairing irregularities like unpaired segments. However, highly different nondisjunction frequencies of chromosomes forming the respective trivalents were found. The nondisjunction frequency of the Rb8Lub trivalent chromosomes was about 40%, whereas a very low frequency of nondisjunction was found in combination with the Rb163H trivalent. Since both trivalents were together in the same cell, differences in kinetochore function are assumed to be responsible for the diverse frequency of nondisjunction.  相似文献   

18.
In Drosophila oocytes, euchromatic homolog-homolog associations are released at the end of pachytene, while heterochromatic pairings persist until metaphase I. A screen of 123 autosomal deficiencies for dominant effects on achiasmate chromosome segregation has identified a single gene that is haplo-insufficient for homologous achiasmate segregation and whose product may be required for the maintenance of such heterochromatic pairings. Of the deficiencies tested, only one exhibited a strong dominant effect on achiasmate segregation, inducing both X and fourth chromosome nondisjunction in FM7/X females. Five overlapping deficiencies showed a similar dominant effect on achiasmate chromosome disjunction and mapped the haplo-insufficient meiotic gene to a small interval within 66C7-12. A P-element insertion mutation in this interval exhibits a similar dominant effect on achiasmate segregation, inducing both high levels of X and fourth chromosome nondisjunction in FM7/X females and high levels of fourth chromosome nondisjunction in X/X females. The insertion site for this P element lies immediately upstream of CG18543, and germline expression of a UAS-CG18543 cDNA construct driven by nanos-GAL4 fully rescues the dominant meiotic defect. We conclude that CG18543 is the haplo-insufficient gene and have renamed this gene matrimony (mtrm). Cytological studies of prometaphase and metaphase I in mtrm hemizygotes demonstrate that achiasmate chromosomes are not properly positioned with respect to their homolog on the meiotic spindle. One possible, albeit speculative, interpretation of these data is that the presence of only a single copy of mtrm disrupts the function of whatever "glue" holds heterochromatically paired homologs together from the end of pachytene until metaphase I.  相似文献   

19.
The effect of maternal age on the incidence of chromosomal abnormalities was investigated on a large sample of 3,042 in vitro unfertilized human oocytes II obtained from 792 women aged 19-46 years and participating in an in vitro fertilization program for various indications. The chromosomal analysis combined a gradual fixation of oocytes and an adapted R-banding technique. A total of 1,397 interpretable karyotypes were obtained. Various types of numerical aberration were observed, involving conventional chromosome nondisjunction (3.5%), single-chromatid nondisjunction (5.9%), complex (0.8%) or extreme aneuploidy (0.5%), diploidy (5.4%), and set of single chromatids (3.8%). No significant difference was found in the mean age of women according to the various types of chromosomal abnormalities. A positive relationship was found between maternal age and the global rate of aneuploidy, in agreement with the findings of epidemiological studies. The incidence of both whole-chromosome nondisjunction and precocious chromatid separation were correlated to maternal aging but the most significant correlation was found between maternal aging and single-chromatid nondisjunction. The rate of diploidy was also correlated to a slight extent to maternal aging, whereas no correlation was found between maternal age and the rate of single-chromatid sets. These data reveal that single-chromatid malsegregation is an essential factor in the age-dependent occurrence of nondisjunction in human oocytes. Disturbance in sister-chromatid cohesion might be a causal mechanism predisposing to premature chromatid separation and subsequently to nondisjunction in female meiosis.  相似文献   

20.
We have investigated the origin and nature of chromosome spatial order in human cells by analyzing and comparing chromosome distribution patterns of normal cells with cells showing specific chromosome numerical anomalies known to arise early in development. Results show that all chromosomes in normal diploid cells, triploid cells and in cells exhibiting nondisjunction trisomy 21 are incorporated into a single, radial array (rosette) throughout mitosis. Analysis of cells using fluorescence in situ hybridization, digital imaging and computer-assisted image analysis suggests that chromosomes within rosettes are segregated into tandemly linked “haploid sets” containing 23 chromosomes each. In cells exhibiting nondisjunction trisomy 21, the distribution of chromosome 21 homologs in rosettes was such that two of the three homologs were closely juxtaposed, a pattern consistent with our current understanding of the mechanism of chromosomal nondisjunction. Rosettes of cells derived from triploid individuals contained chromosomes segregated into three, tandemly linked haploid sets in which chromosome spatial order was preserved, but with chromosome positional order in one haploid set inverted with respect to the other two sets. The spatial separation of homologs in triploid cells was chromosome specific, providing evidence that chromosomes occupy preferred positions within the haploid sets. Since both triploidy and nondisjunction trisomy 21 are chromosome numerical anomalies that arise extremely early in development (e.g., during meiosis or during the first few mitoses), our results support the idea that normal and abnormal chromosome distribution patterns in mitotic human cells are established early in development, and are propagated faithfully by mitosis throughout development and into adult life. Furthermore, our observations suggest that segregation of chromosome homologs into two haploid sets in normal diploid cells is a remnant of fertilization and, in normal diploid cells, reflects segregation of maternal and paternal chromosomes. Received: 19 January 1998; in revised form: 28 May 1998 / Accepted: 30 June 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号