首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 792 毫秒
1.
Thermolysin activity as well as its stability is remarkably enhanced by high concentration of neutral salts consisting of Na(+), K(+), Cl(-) and Br(-) in the synthesis and hydrolysis of N-carbobenzoxy-L-aspertyl-L-phenylalanine methyl ester and hydrolysis of N-[3-(2-furyl)acryloyl]-glycyl-L-leucine amide (FAGLA) [Inouye, K. (1992) J. Biochem. 112, 335-340]. However, effect of divalent salts on thermolysin activity has not been investigated systematically. In this study, effect of Co(2+) ion on thermolysin activity in the hydrolysis of FAGLA was examined. Thermolysin activity increased 3-4 times with increasing the Co(2+) concentration to 2 mM, but the enhanced activity was considerably reduced with higher Co(2+) concentration (2-18 mM). The activation-and-inhibition dual effects of Co(2+) ion were analysed kinetically. Release of the catalytic Zn(2+) ion from thermolysin, concomitantly occurred with the Co(2+)-dependent activation, was measured with a Zn(2+)-specific fluorescent probe. This indicates that the activation is caused by substituting Co(2+) ion for the catalytic Zn(2+) ion. Meanwhile, the Co(2+)-dependent activation was inhibited competitively by Zn(2+) ion (0.1-1.0 muM) added, similarly to that it is inhibited by higher concentration of Co(2+) ion. These lines of evidence provide a strategy for regulating thermolysin activity with Co(2+) and Zn(2+) ions.  相似文献   

2.
Kang TM  Park MK  Uhm DY 《Life sciences》2003,72(13):1467-1479
We have investigated the effects of hypoxia and mitochondria inhibitors on the capacitative Ca(2+) entry (CCE) in cultured smooth muscle cells from rabbit small pulmonary arteries. Cyclopiazonic acid (CPA) depleted Ca(2+) from sarcoplasmic reticulum (SR) in Ca(2+)-free medium and subsequent addition of Ca(2+) led to the nifedipine-insensitive, La(3+)-sensitive Ca(2+) influx. The presence of CCE was further verified by the measurement of unidirectional Mn(2+) influx. During the decay phase of the CCE-induced [Ca(2+)]c transients, hypoxia (P(O2) < 50 mmHg) and the mitochondria inhibitor FCCP reversibly increased [Ca(2+)]c, that is La(3+)-sensitive. Once SR is depleted by CPA, subsequent treatment of FCCP slowed the decay of CCE-induced [Ca(2+)]c transients but it did not attenuate Mn(2+) influx. Mitochondrial uptake of incoming Ca(2+) through CCE was demonstrated by additional increase in [Ca(2+)]c with Ca(2+) ionophore after terminating CCE. Together, it is suggested that the augmentation of CCE-induced [Ca(2+)]c transients by hypoxia and FCCP reflects a net gain of [Ca(2+)]c by the inhibition of mitochondrial Ca(2+) uptake.  相似文献   

3.
The ability of membrane voltage to activate high conductance, calcium-activated (BK-type) K(+) channels is enhanced by cytosolic calcium (Ca(2+)). Activation is sensitive to a range of [Ca(2+)] that spans over four orders of magnitude. Here, we examine the activation of BK channels resulting from expression of cloned mouse Slo1 alpha subunits at [Ca(2+)] and [Mg(2+)] up to 100 mM. The half-activation voltage (V(0.5)) is steeply dependent on [Ca(2+)] in the micromolar range, but shows a tendency towards saturation over the range of 60-300 microM Ca(2+). As [Ca(2+)] is increased to millimolar levels, the V(0.5) is strongly shifted again to more negative potentials. When channels are activated by 300 microM Ca(2+), further addition of either mM Ca(2+) or mM Mg(2+) produces similar negative shifts in steady-state activation. Millimolar Mg(2+) also produces shifts of similar magnitude in the complete absence of Ca(2+). The ability of millimolar concentrations of divalent cations to shift activation is primarily correlated with a slowing of BK current deactivation. At voltages where millimolar elevations in [Ca(2+)] increase activation rates, addition of 10 mM Mg(2+) to 0 Ca(2+) produces little effect on activation time course, while markedly slowing deactivation. This suggests that Mg(2+) does not participate in Ca(2+)-dependent steps that influence current activation rate. We conclude that millimolar Mg(2+) and Ca(2+) concentrations interact with low affinity, relatively nonselective divalent cation binding sites that are distinct from higher affinity, Ca(2+)-selective binding sites that increase current activation rates. A symmetrical model with four independent higher affinity Ca(2+) binding steps, four voltage sensors, and four independent lower affinity Ca(2+)/Mg(2+) binding steps describes well the behavior of G-V curves over a range of Ca(2+) and Mg(2+). The ability of a broad range of [Ca(2+)] to produce shifts in activation of Slo1 conductance can, therefore, be accounted for by multiple types of divalent cation binding sites.  相似文献   

4.
The effect of nordihydroguaiaretic acid (NDGA) on Ca(2+) signaling in C6 glioma cells has been investigated. NDGA (5-100 microM) increased [Ca(2+)]i concentration-dependently. The [Ca(2+)]i increase comprised an initial rise and an elevated phase over a time period of 4 min. Removal of extracellular Ca(2+) reduced NDGA-induced [Ca(2+)]i signals by 52+/-2%. After incubation of cells with NDGA in Ca(2+)-free medium for 4 min, addition of 3 mM CaCl2 induced a concentration-dependent increase in [Ca(2+)]i. NDGA (100 microM)-induced [Ca(2+)]i increases in Ca(2+)-containing medium was not changed by pretreatment with 10 microM nifedipine or verapamil. In Ca(2+)-free medium, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (1 microM) abolished 100 microM NDGA-induced [Ca(2+)]i increases. Inhibition of phospholipase C with 2 microM U73122 had little effect on 100 microM NDGA-induced Ca(2+) release. Several other lipoxygenase inhibitors had no effect on basal [Ca(2+)]i. Collectively, the results suggest that NDGA increased [Ca(2+)]i in glioma cells in a lipoxygenase-independent manner, by releasing Ca(2+) from the endoplasmic reticulum in a manner independent of phospholipase C activity and by causing Ca(2+) influx.  相似文献   

5.
We have measured intracellular free calcium ([Ca(2+)]i) using Fura-2 or Ca(2+)-sensitive microelectrodes in voltage-clamped neurones of the snail, Helix aspersa. Caffeine-induced transient increases in [Ca(2+)]i were normally followed by a brief fall of [Ca(2+)]i below its pre-caffeine level. We investigated the cause of this undershoot by raising [Ca(2+)]i; and by inhibiting the plasma membrane or endoplasmic reticulum Ca ATPases (PMCA or SERCA respectively). When the cell membrane potential was decreased from -60 to -25mV, steady-state [Ca(2+)]i increased. The caffeine-induced transients were smaller while the undershoots were larger than in control conditions. When the PMCA was inhibited by high pH the steady-state [Ca(2+)]i increased by 100-400nM. The caffeine-induced [Ca(2+)]i increase and the subsequent undershoot both became larger. Injection of orthovanadate, which inhibits the PMCA and increases [Ca(2+)]i, did not block either effect of caffeine. But when the SERCA was inhibited by cyclopiazonic acid the undershoot disappeared. The phosphodiesterase inhibitor IBMX did not influence the undershoot. These results suggest that the undershoot is generated by the Ca(2+)] ATPase of the stores rather than that of the plasma membrane. Since the undershoot increased as [Ca(2+)]i increased, we conclude that at higher levels of [Ca(2+)]i the stores refill more rapidly.  相似文献   

6.
Thermolysin is remarkably activated in the presence of high concentrations (1-5 M) of neutral salts [Inouye, K. (1992) J. Biochem. 112, 335-340]. The activity is enhanced 13-15 times with 4 M NaCl at pH 7.0 and 25 degrees C. Substitution of the active site zinc with other transition metals alters the activity of thermolysin [Holmquist, B. and Vallee, B.L. (1974) J. Biol. Chem. 249, 4601-4607]. Cobalt is the most effective among the transition metals and doubles the activity toward N-[3-(2-furyl)acryloyl]-glycyl-L-leucine amide. In this study, the effect of NaCl on the activity of cobalt-substituted thermolysin was examined. Cobalt-substituted thermolysin, with 2.8-fold increased activity compared with the native enzyme, is further activated by the addition of NaCl in an exponential fashion, and the activity is enhanced 13-15 times at 4 M NaCl. The effects of cobalt-substitution and the addition of salt are independent of each other. The activity of cobalt-substituted thermolysin, expressed as k(cat)/K(m), is pH-dependent and controlled by at least two ionizing residues with pK(a) values of 6.0 and 7.8, the acidic pK(a) being slightly higher compared to 5.6 of the native enzyme. These pK(a) values remain constant in the presence of 4 M NaCl, indicating that the electrostatic environment of cobalt-substituted thermolysin is more stable than that of the native enzyme, the acidic pK(a) of which shifts remarkably from 5.6 to 6.7 at 4 M NaCl. Zincov, a competitive inhibitor, binds more tightly to the cobalt-substituted than to native thermolysin at pH 4.9-9.0, probably because of its preference for cobalt in the fivefold coordination. The cobalt substitution has been shown to be a favorable tool with which to explore the active-site microenvironment of thermolysin.  相似文献   

7.
We have investigated why fura-2 and Ca(2+)-sensitive microelectrodes report different values for the intracellular free calcium ion concentration ([Ca(2+)]i or its negative log, pCa(i)) of snail neurons voltage-clamped to -50 or -60 mV. Both techniques were initially calibrated in vitro, using calcium calibration solutions that had ionic concentrations similar to those of snail neuron cytoplasm. Pressure injections of the same solutions at resting and elevated [Ca(2+)]i were used to calibrate both methods in vivo. In fura-2-loaded cells these pressure injections generated changes in [Ca(2+)]i that agreed well with those expected from the in vitro calibration. Thus, using fura-2 calibrated in vitro, the average resting [Ca(2+)]i was found to be 38 nM (pCa(i) 7.42 +/- 0.05). With Ca(2+)-sensitive microelectrodes, the first injection of calibration solutions always caused a negative shift in the recorded microelectrode potential, as if the injection lowered [Ca2+]i. No such effects were seen on the fura-2 ratio. When calibrated in vivo the Ca(2+)-sensitive microelectrode gave an average resting [Ca2+]i of approximately 25 nM (pCa(i) 7.6 +/- 0.1), much lower than when calibrated in vitro. We conclude that [Ca(2+)]i in snail neurons is approximately 40 nM and that Ca(2+)-sensitive microelectrodes usually cause a leak at the point of insertion. The effects of the leak were minimized by injection of a mobile calcium buffer.  相似文献   

8.
We investigated the possibility that the Ca(2+) channel agonist FPL-64176 (FPL) might also activate the cardiac sarcoplasmic reticulum (SR) Ca(2+) release channel ryanodine receptor (RyR). The effects of FPL were tested on single channel activity of purified and crude vesicular RyR (RyR2) isolated from human and dog hearts using the planar lipid bilayer technique. FPL (100-200 microM) increased single channel open probability (P(o)) when added to the cytoplasmic side of the channel (P(o) = 0.070 +/- 0.021 in control RyR2; 0.378 +/- 0.086 in 150 microM FPL, n = 9, P < 0.01) by prolonging open times and decreasing closed times without changing current magnitude. FPL had no effect on P(o) when added to the trans (luminal) side of the bilayer (P(o) = 0.079 +/- 0.036 in control and 0.103 +/- 0.066 in FPL, n = 4, no significant difference). The bell-shaped [Ca(2+)] dependence of [(3)H]ryanodine binding and of P(o) was altered by FPL, suggesting that the mechanism by which FPL increases channel activity is by an increase in Ca(2+)-induced activation at low [Ca(2+)] (without a change in threshold) and suppression of Ca(2+)-induced inactivation at high [Ca(2+)]. However, the fact that inactivation was restored at elevated [Ca(2+)] suggests a competitive interaction between Ca(2+) and FPL on inactivation. FPL had no effect on RyR skeletal channels (RyR1), where P(o) was 0.039 +/- 0.005 in control versus 0.030 +/- 0.006 in 150 microM FPL (no significant difference). These results suggest that, in addition to its ability to activate the L-type Ca(2+) channels, FPL activates cardiac RyR2 primarily by reducing the Ca(2+) sensitivity of inactivation.  相似文献   

9.
Increases in contraction amplitude following rest or in elevated extracellular Ca(2+) concentration ([Ca(2+)]) have been attributed to increased sarcoplasmic reticulum (SR) Ca(2+) stores and/or increased trigger Ca(2+). However, either manipulation also may elevate diastolic [Ca(2+)]. The objective of this study was to determine whether elevation of diastolic [Ca(2+)] could contribute to positive inotropy in isolated ventricular myocytes. Voltage-clamp experiments were conducted with high-resistance microelectrodes in isolated myocytes at 37 degrees C. Intracellular free [Ca(2+)] was measured with fura-2, and cell shortening was measured with an edge detector. SR Ca(2+) stores were assessed with 10 mM caffeine (0 mM Na(+), 0 mM Ca(2+)). Following a period of rest, cells were activated with trains of pulses, which generated contractions of increasing amplitude, called positive staircases. Positive staircases were accompanied by increasing diastolic [Ca(2+)] but no change in Ca(2+) transient amplitudes. When extracellular [Ca(2+)] was elevated from 2.0 to 5.0 mM, resting intracellular [Ca(2+)] increased and resting cell length decreased. Amplitudes of contractions and L-type Ca(2+) current increased in elevated extracellular [Ca(2+)], although SR Ca(2+) stores, assessed by rapid application of caffeine, did not increase. Although Ca(2+) transient amplitude did not increase in 5.0 mM extracellular [Ca(2+)], diastolic [Ca(2+)] continued to increase with increasing extracellular [Ca(2+)]. These data suggest that increased diastolic [Ca(2+)] contributes to positive inotropy following rest or with increasing extracellular [Ca(2+)] in guinea pig ventricular myocytes.  相似文献   

10.
We recently proposed that extracellular Ca(2+) ions participate in a novel form of intercellular communication involving the extracellular Ca(2+)-sensing receptor (CaR). Here, using Ca(2+)-selective microelectrodes, we directly measured the profile of agonist-induced [Ca(2+)]ext changes in restricted domains near the basolateral or luminal membranes of polarized gastric acid-secreting cells. The Ca(2+)-mobilizing agonist carbachol elicited a transient, La(3+)-sensitive decrease in basolateral [Ca(2+)] (average approximately 250 microM, but as large as 530 microM). Conversely, carbachol evoked an HgCl2-sensitive increase in [Ca(2+)] (average approximately 400 microM, but as large as 520 microM) in the lumen of single gastric glands. Both responses were significantly reduced by pre-treatment with sarco-endoplasmic reticulum Ca(2+) ATPase (SERCA) pump inhibitors or with the intracellular Ca(2+) chelator BAPTA-AM. Immunofluorescence experiments demonstrated an asymmetric localization of plasma membrane Ca(2+) ATPase (PMCA), which appeared to be partially co-localized with CaR and the gastric H(+)/K(+)-ATPase in the apical membrane of the acid-secreting cells. Our data indicate that agonist stimulation results in local fluctuations in [Ca(2+)]ext that would be sufficient to modulate the activity of the CaR on neighboring cells.  相似文献   

11.
Measurements of sarcoplasmic reticulum (SR) Ca(2+) uptake were made from aliquots of dissociated permeabilized ventricular myocytes using fura 2. Equilibration with 10 mM oxalate ensured a reproducible exponential decline of [Ca(2+)] from 600 nM to a steady state of 100-200 nM after addition of Ca(2+). In the presence of 5 microM ruthenium red, which blocks the ryanodine receptor, the time course of the decline of [Ca(2+)] can be modeled by a Ca(2+)-dependent uptake process and a fixed Ca(2+) leak. Partial inhibition of the Ca(2+) pump with 1 microM cyclopiazonic acid or 50 nM thapsigargin reduced the time constant for Ca(2+) uptake but did not affect the SR Ca(2+) leak. Addition of 10 mM inorganic phosphate (P(i)) decreased the rate of Ca(2+) accumulation by the SR and increased the Ca(2+) leak rate. This effect was reversed on addition of 10 mM phosphocreatine. 10 mM P(i) had no effect on Ca(2+) leak from the SR after complete inhibition of the Ca(2+) pump. In conclusion, P(i) decreases the Ca(2+) uptake capacity of cardiac SR via a decrease in pump rate and an increase in Ca(2+) pump-dependent Ca(2+) leak.  相似文献   

12.
Thermolysin is remarkably activated and stabilized by neutral salts, and surface charges are suggested important in its activity and stability. The effects of introducing negative charge into the molecular surface on its activity and stability are described. Seven serine residues were selected, and each of them was changed for aspartate by site-directed mutagenesis in a thermolysin mutant. In the hydrolysis of N-[3-(2-furyl)acryloyl]-glycyl-l-leucine amide, the k(cat)/K(m) values of all mutants were almost similar to that of the wild-type enzyme (WT). However, those of six out of seven mutants were enhanced 17-19 times with 4 M NaCl, being slightly higher than WT. The remaining casein-hydrolyzing activities of the S53D and S65D mutants (Ser53 and Ser65 are replaced with Asp, respectively) after 30-min incubation with 10 mM CaCl(2) at 85 degrees C were 78 and 63%, being higher than those of WT (51%) and the other mutants (35-53%). S53D was stabilized with increase in the enthalpy change of activation for thermal inactivation while S65D was with decrease in the entropy change of activation. The stability of WT was enhanced by CaCl(2) and reached the level of S53D and S65D at 100 mM, suggesting that S53D and S65D might be stabilized by reinforcement of the Ca(2+)-binding structures.  相似文献   

13.
Single-channel models of intracellular Ca(2+) channels such as the inositol 1,4,5-trisphosphate receptor and ryanodine receptor often assume that Ca(2+)-dependent transitions are mediated by a constant background [Ca(2+)] as opposed to a dynamic [Ca(2+)] representing the formation and collapse of a localized Ca(2+) domain. This assumption neglects the fact that Ca(2+) released by open intracellular Ca(2+) channels may influence subsequent gating through the processes of Ca(2+)-activation or -inactivation. We study the effect of such "residual Ca(2+)" from previous channel opening on the stochastic gating of minimal and realistic single-channel models coupled to a restricted cytoplasmic compartment. Using Monte Carlo simulation as well as analytical and numerical solution of a system of advection-reaction equations for the probability density of the domain [Ca(2+)] conditioned on the state of the channel, we determine how the steady-state open probability (p(open)) of single-channel models of Ca(2+)-regulated Ca(2+) channels depends on the time constant for Ca(2+) domain formation and collapse. As expected, p(open) for a minimal model including Ca(2+) activation increases as the domain time constant becomes large compared to the open and closed dwell times of the channel, that is, on average the channel is activated by residual Ca(2+) from previous openings. Interestingly, p(open) for a channel model that is inactivated by Ca(2+) also increases as a function of the domain time constant when the maximum domain [Ca(2+)] is fixed, because slow formation of the Ca(2+) domain attenuates Ca(2+)-mediated inactivation. Conversely, when the source amplitude of the channel is fixed, increasing the domain time constant leads to elevated domain [Ca(2+)] and decreased open probability. Consistent with these observations, a realistic De Young-Keizer-like IP(3)R model responds to residual Ca(2+) with a steady-state open probability that is a monotonic function of the domain time constant, though minimal models that include both Ca(2+)-activation and -inactivation show more complex behavior. We show how the probability density approach described here can be generalized for arbitrarily complex channel models and for any value of the domain time constant. In addition, we present a comparatively simple numerical procedure for estimating p(open) for models of Ca(2+)-regulated Ca(2+) channels in the limit of a very fast or very slow Ca(2+) domain. When the ordinary differential equation for the [Ca(2+)] in a restricted cytoplasmic compartment is replaced by a partial differential equation for the buffered diffusion of intracellular Ca(2+) in a homogeneous isotropic cytosol, we find the dependence of p(open) on the buffer time constant is qualitatively similar to the above-mentioned results.  相似文献   

14.
Bronchial glands, which consist of mucous and serous cells, are abundant in human airways, playing a major role in the airway secretion. Cl(-) secretion is accompanied by water transport to the lumen in the acinar cells of bronchial glands. Agonists that increase [Ca(2+)]i induce the Cl(-) secretion in bronchial glands. Ca(2+) release from a IP(3)-sensitive Ca(2+) pool at the apical portion stimulates and opens Ca(2+)-sensitive Cl(-) channels at the apical membrane, producing Cl(-) secretion in bronchial glands. K(+) channels at the basolateral membranes are Ca(2+)-sensitive and activated by Ca(2+) release from a cADPribose-sensitive Ca(2+) pool, maintaining the Cl(-) secretion in bronchial glands. Further, cADP ribose in concert with IP(3) induce [Ca(2+)]i oscillation, inducing Cl(-) secretion in bronchial glands. Some tyrosine kinases are involved in the Cl(-) secretion in bronchial glands. Mucous and serous cells in bronchial glands take part in mucin secretion and the secretion of defensive substances (glycoconjugates), respectively. [Ca(2+)]i oscillations are shown to play a central role in the exocytosis of secretory granules in serous cells of bronchial glands. Other signal transductions of mucin and glycoconjugates in airway gland cells remain to be studied, although agonists which increase [cAMP]i are also well known to induce mucin and glycoconjugate secretion from airway glands.  相似文献   

15.
During increases in cardiac work there are net increases in cytosolic [Ca(2+)] and ATP hydrolysis by myofiliments and ion transport ATPases. However, it is still unclear what role Ca(2+)or the ATP hydrolysis products, ADP and Pi, have on the regulation of mitochondrial ATP production. In this study, work jumps were simulated by simultaneous additions of Ca(2+) and ATPase to porcine heart mitochondria. The net effects on the mitochondrial ATP production were monitored by simultaneously monitoring respiration (mVo2), [NADH], [ADP] and membrane potential (deltapsi) at 37 degrees C. Addition of exogenous ATPase (300 mlU.ml(-1))]ATP (3.4 mM) was used to generate a 'resting' background production of ADP. This resting metabolic rate was 200% higher than the quiescent rate while [NADH] and deltapsi were reduced. Subsequent ATPase additions (1.3IU.ml(-)) were made with varying amounts of Ca(2+)(0 to 535 nM) to simulate step increases in cardiac work. Ca(2+) additions increased mVo2 and depolarized deltapsi, and were consistent with an activation of Fo/F1)ATPase. In contrast, Ca(2+) reduced the [NADH] response to the ATPase addition, consistent with Ca(2+)-sensitive dehydrogenase activity (CaDH). The calculated free ADP response to ATPase decreased \2-fold in the presence of Ca(2+). The addition of 172nM free Ca(2+)] ATPase increased mVo2 by 300% (P<0.05, n=8) while deltapsi decreased by 14.9+/-0.1 mV without changes in [NADH] (P > or =0.05, n=8), consistent with working heart preparations. The addition of Ca(2+) and ATPase combined increased the mitochondrial ATP production rate with changes in deltapsi, NADH and [ADP], consistent with an activation of CaDH and F o /F(1)ATPase activity. These balancing effects of ATPase activity and [Ca(2+)] may explain several aspects of metabolic regulation in the heart during work transitions in vivo.  相似文献   

16.
Single channel models of intracellular calcium (Ca(2+)) channels such as the 1,4,5-trisphosphate receptor and ryanodine receptor often assume that Ca(2+)-dependent transitions are mediated by constant background cytosolic [Ca(2+)]. This assumption neglects the fact that Ca(2+) released by open channels may influence subsequent gating through the processes of Ca(2+)-activation or inactivation. Similarly, the influence of the dynamics of luminal depletion on the stochastic gating of intracellular Ca(2+) channels is often neglected, in spite of the fact that the sarco/endoplasmic reticulum [Ca(2+)] near the luminal face of intracellular Ca(2+) channels influences the driving force for Ca(2+), the rate of Ca(2+) release, and the magnitude and time course of the consequent increase in cytosolic domain [Ca(2+)]. Here we analyze how the steady-state open probability of several minimal Ca(2+)-regulated Ca(2+) channel models depends on the conductance of the channel and the time constants for the relaxation of elevated cytosolic [Ca(2+)] and depleted luminal [Ca(2+)] to the bulk [Ca(2+)] of both compartments. Our approach includes Monte Carlo simulation as well as numerical solution of a system of advection-reaction equations for the multivariate probability density of elevated cytosolic [Ca(2+)] and depleted luminal [Ca(2+)] conditioned on each state of the stochastically gating channel. Both methods are subsequently used to study the role of luminal depletion in the dynamics of Ca(2+) puff/spark termination in release sites composed of Ca(2+) channels that are activated, but not inactivated, by cytosolic Ca(2+). The probability density approach shows that such minimal Ca(2+) release site models may exhibit puff/spark-like dynamics in either of two distinct parameter regimes. In one case, puffs/spark termination is due to the process of stochastic attrition and facilitated by rapid Ca(2+) domain collapse [cf. DeRemigio, H., Smith, G., 2005. The dynamics of stochastic attrition viewed as an absorption time on a terminating Markov chain. Cell Calcium 38, 73-86]. In the second case, puff/spark termination is promoted by the local depletion of luminal Ca(2+).  相似文献   

17.
EKODE, an epoxy-keto derivative of linoleic acid, was previously shown to stimulate aldosterone secretion in rat adrenal glomerulosa cells. In the present study, we investigated the effect of exogenous EKODE on cytosolic [Ca(2+)] increase and aimed to elucidate the mechanism involved in this process. Through the use of the fluorescent Ca(2+)-sensitive dye Fluo-4, EKODE was shown to rapidly increase intracellular [Ca(2+)] ([Ca(2+)](i)) along a bell-shaped dose-response relationship with a maximum peak at 5 microM. Experiments performed in the presence or absence of Ca(2+) revealed that this increase in [Ca(2+)](i) originated exclusively from intracellular pools. EKODE-induced [Ca(2+)](i) increase was blunted by prior application of angiotensin II, Xestospongin C, and cyclopiazonic acid, indicating that inositol trisphosphate (InsP(3))-sensitive Ca(2+) stores can be mobilized by EKODE despite the absence of InsP(3) production. Accordingly, EKODE response was not sensitive to the phospholipase C inhibitor U-73122. EKODE mobilized a Ca(2+) store included in the thapsigargin (TG)-sensitive stores, although the interaction between EKODE and TG appears complex, since EKODE added at the plateau response of TG induced a rapid drop in [Ca(2+)](i). 9-oxo-octadecadienoic acid, another oxidized derivative of linoleic acid, also increases [Ca(2+)](i), with a dose-response curve similar to EKODE. However, arachidonic and linoleic acids at 10 microM failed to increase [Ca(2+)](i) but did reduce the amplitude of the response to EKODE. It is concluded that EKODE mobilizes Ca(2+) from an InsP(3)-sensitive store and that this [Ca(2+)](i) increase is responsible for aldosterone secretion by glomerulosa cells. Similar bell-shaped dose-response curves for aldosterone and [Ca(2+)](i) increases reinforce this hypothesis.  相似文献   

18.
Cobalt(III) Schiff base complexes have been shown to inhibit the replication of the ocular herpes virus. It is well known that these complexes have a high affinity for nitrogenous donors such as histidine residues, and it is possible that they bind to (and inhibit) an enzyme that is crucial to viral replication. In model studies, we have found that [Co(acacen)(NH3)2]+ is an effective irreversible inhibitor of thermolysin at millimolar concentrations; it also inhibits human alpha-thrombin. Axial ligand exchange with an active-site histidine is the proposed mechanism of inhibition. The activity of thermolysin and thrombin can be protected by binding a reversible inhibitor to the active site before addition of the cobalt(III) complex.  相似文献   

19.
Previous data from this laboratory demonstrate that increased intracellular Ca(2+) ([Ca(2+)]i) coordinately regulates human and murine adipocyte lipid metabolism by stimulating lipogenesis and inhibiting lipolysis. However, recent data demonstrate metabolic uncoupling increases [Ca(2+)]i but inhibits lipogenesis by suppressing fatty acid synthase (FAS) activity. Accordingly, we have evaluated the interaction between mitochondrial uncoupling, adipocyte [Ca(2+)]i, and adipocyte lipid metabolism. Pretreatment of 3T3-L1 cells with mitochondrial uncouplers (DNP or FCCP) amplified the [Ca(2+)]i response to depolarization with KCl by 2-4 fold (p <0.001), while this increase was prevented by [Ca(2+)]i channel antagonism with lanthanum. Mitochondrial uncouplers caused rapid (within 4hr) dose-dependent inhibition of FAS activity (p <0.001), while lanthanum caused a further additive inhibition. The suppression of FAS activity induced by uncoupling was reversed by addition of ATP. Mitochondrial uncouplers increased FAS expression significantly while [Ca(2+)]i antagonism with lanthanum decreased FAS expression (P <0.001). In contrast, mitochondrial uncouplers independently inhibited basal and isoproterenol-stimulated lipolysis (20-40%, p <0.001), while this inhibition was fully reversed by lanthanum. Thus, mitochondrial uncoupling exerted short-term regulatory effects on adipocyte [Ca(2+)]i and lipogenic and lipolytic systems, serving to suppress lipolysis via a Ca(2+) -dependent mechanism and FAS activity via a Ca(2+)-independent mechanism.  相似文献   

20.
Fast Ca(2+) release kinetics were measured in cardiac sarcoplasmic reticulum vesicles actively loaded with Ca(2+). Release was induced in solutions containing 1.2 mM free ATP and variable free [Ca(2+)] and [Mg(2+)]. Release rate constants (k) were 10-fold higher at pCa 6 than at pCa 5 whereas Ryanodine binding was highest at pCa < or =5. These results suggest that channels respond differently when exposed to sudden [Ca(2+)] changes than when exposed to Ca(2+) for longer periods. Vesicles with severalfold different luminal calcium contents exhibited double exponential release kinetics at pCa 6, suggesting that channels undergo time-dependent activity changes. Addition of Mg(2+) produced a marked inhibition of release kinetics at pCa 6 (K(0.5) = 63 microM) but not at pCa 5. Coexistence of calcium activation and inhibition sites with equally fast binding kinetics is proposed to explain this behavior. Thimerosal activated release kinetics at pCa 5 at all [Mg(2+)] tested and increased at pCa 6 the K(0.5) for Mg(2+) inhibition, from 63 microM to 136 microM. We discuss the possible relevance of these results, which suggest release through RyR2 channels is subject to fast regulation by Ca(2+) and Mg(2+) followed by time-dependent regulation, to the physiological mechanisms of cardiac channel opening and closing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号