首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A mosquitocidal toxin gene, cloned from Bacillus thuringiensis subsp. israelensis, was introduced into mutant crystal-negative B. thuringiensis subsp. israelensis cells. Partial toxicity to mosquitos was restored. The 58-kilodalton cloned gene product is a minor protein component of B. thuringiensis subsp. israelensis crystals and is structurally related to a major, 135-kilodalton crystal toxin.  相似文献   

2.
A mosquitocidal toxin gene, cloned from Bacillus thuringiensis subsp. israelensis, was introduced into mutant crystal-negative B. thuringiensis subsp. israelensis cells. Partial toxicity to mosquitos was restored. The 58-kilodalton cloned gene product is a minor protein component of B. thuringiensis subsp. israelensis crystals and is structurally related to a major, 135-kilodalton crystal toxin.  相似文献   

3.
Bacillus thuringiensis subsp. israelensis produces, during sporulation, protein inclusion bodies of wide ranging sizes, all of which are toxic to mosquitoes. Two proteins are present in the smallest protein bodies (less than 0.2 micron dia.), but the number of proteins increases with increasing size of protein bodies. The largest bodies (greater than 1.5 micron dia.) contain seven proteins. All of the proteins are synthesized at different times during sporulation and are added to developing protein bodies in a stepwise manner. The protein component responsible for mosquitocidal activity is a 65,000-dalton protein, that is present in all of the protein bodies.  相似文献   

4.
Two recombinant plasmid pFZ1 and pFZ2 containing Bti 130kDa mosquitocidal protein gene in opposite insertion orientation were constructed. The expression of 130kDa mosquitocidal protein of Bti in Bacillus subtilis was confirmed by western blotting. The mosquito-larvicidal activity against the larvae of Aedes albopictus was shown by the bioassay.  相似文献   

5.
We examined disulfide bonds in mosquito larvicidal crystals produced by Bacillus thuringiensis subsp. israelensis. Intact crystals contained 2.01 X 10(-8) mol of free sulfhydryls and 3.24 X 10(-8) mol of disulfides per mg of protein. Reduced samples of alkali-solubilized crystals resolved into several proteins, the most prominent having apparent molecular sizes of 28, 70, 135, and 140 kilodaltons (kDa). Nonreduced samples contained two new proteins of 52 and 26 kDa. When reduced, both the 52- and 26-kDa proteins were converted to 28-kDa proteins. Furthermore, both bands reacted with antiserum prepared against reduced 28-kDa protein. Approximately 50% of the crystal proteins could be solubilized without disulfide cleavage. These proteins were 70 kDa or smaller. Solubilization of the 135- and 140-kDa proteins required disulfide cleavage. Incubation of crystals at pH 12.0 for 2 h cleaved 40% of the disulfide bonds and solubilized 83% of the crystal protein. Alkali-stable disulfides were present in both the soluble and insoluble portions. The insoluble pellet contained 12 to 14 disulfides per 100 kDa of protein and was devoid of sulfhydryl groups. Alkali-solubilized proteins contained both intrachain and interchain disulfide bonds. Despite their structural significance, it is unlikely that disulfide bonds are involved in the formation or release of the larvicidal toxin.  相似文献   

6.
The cytolytic and mosquitocidal proteins of Bacillus thuringiensis subsp. israelensis were isolated from parasporal crystals and subsequently separated from each other. The proteins were separated by gel filtration chromatography and their molecular weights were estimated by both gel filtration chromatography and SDS-polyacrylamide gel electrophoresis. The apparent molecular weights of the mosquitocidal protein and the cytolytic protein were estimated to be 65,000 daltons and 28,000 daltons, respectively.  相似文献   

7.
A 25,000-dalton cytolytic protein was isolated from the parasporal crystal ofBacillus thuringiensis subsp.israelensis. Hemolytic activity of this protein decreased with increasing pHs and was totally inhibited at pH 10.0. No mosquito larvacidal activity was observed with this protein either in the solubilized form or when the protein was adsorbed to latex beads.  相似文献   

8.
9.
Two proteins from parasporal crystals of Bacillus thuringiensis subsp. israelensis were purified to electrophoretic homogeneity by gel filtration and anion-exchange chromatography. The larger of the two proteins (molecular weight, 68,000) was not cytolytic, whereas the smaller protein (molecular weight, 28,000) was highly cytolytic when assayed against rat erythrocytes. When these proteins were assayed against larvae of the yellow fever mosquito, Aedes aegypti, the larger protein was at least 100-fold more toxic than the smaller protein. Although proteolytic activity was not detected in solubilized crystals nor in purified protein preparations, the toxin (molecular weight, 68,000) was readily degraded to smaller, nontoxic molecules, even when maintained at 4 degrees C. Mixtures of the two purified proteins were significantly more toxic to mosquito larvae than was either protein alone. Thus, it is likely that both the mosquitocidal and the cytolytic protein play roles in the overall insecticidal action of the parasporal crystal produced by this bacterium.  相似文献   

10.
J M Hurley  L A Bulla  Jr    R E Andrews  Jr 《Applied microbiology》1987,53(6):1316-1321
Two proteins from parasporal crystals of Bacillus thuringiensis subsp. israelensis were purified to electrophoretic homogeneity by gel filtration and anion-exchange chromatography. The larger of the two proteins (molecular weight, 68,000) was not cytolytic, whereas the smaller protein (molecular weight, 28,000) was highly cytolytic when assayed against rat erythrocytes. When these proteins were assayed against larvae of the yellow fever mosquito, Aedes aegypti, the larger protein was at least 100-fold more toxic than the smaller protein. Although proteolytic activity was not detected in solubilized crystals nor in purified protein preparations, the toxin (molecular weight, 68,000) was readily degraded to smaller, nontoxic molecules, even when maintained at 4 degrees C. Mixtures of the two purified proteins were significantly more toxic to mosquito larvae than was either protein alone. Thus, it is likely that both the mosquitocidal and the cytolytic protein play roles in the overall insecticidal action of the parasporal crystal produced by this bacterium.  相似文献   

11.
We present evidence that Anabaena PCC7120 (A.7120) strains expressing mosquitocidal toxin genes from Bacillus thuringiensis subsp. israelensis (Bti) have a strong potential for biotechnological application. Characterization of two 4-year-old recombinant A.7120 clones constructed previously in our laboratory [clone 7 and clone 11, each carrying three Bti genes (cry4Aa, cry11Aa, and p20)] revealed three facts. First, the Bti genes were stable in A.7120 even in the absence of antibiotic selection when the genes were integrated in the chromosome (in clone 11); and the genes were also stable as plasmid-borne constructs (in clone 7), provided the cultures were maintained under continued selection. Second, clone 7 (kept under selection) and clone 11 (either kept or not kept under selection) continued to be mosquitocidal through 4 years of culture. Third, growth of the recombinant clones was comparable to the wild type under optimal growth conditions, indicating that growth was not compromised by the expression of toxin genes. These results clear the way for the development of mass production techniques for A.7120 strains expressing Bti toxin genes.  相似文献   

12.
The mosquitocidal crystals of Bacillus thuringiensis subsp. fukuokaensis were isolated and bioassayed against fourth-instar larvae of two mosquito species. The 50% lethal concentration values of the crystals to Aedes aegypti and Culex quinquefasciatus were 4.1 and 2.9 micrograms/ml, respectively. In addition, the solubilized crystals had hemolytic activity; 50 micrograms/ml was the lowest detectable level. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that the crystals consisted of polypeptides of 90, 86, 82, 72, 50, 48, 37, and 27 kDa. When the solubilized inclusion was treated with C. quinquefasciatus midgut brush border membrane vesicles or Manduca sexta gut juice, only one major protein was detected. This protein retained mosquitocidal activity but had no detectable hemolytic activity. Immunological analysis of this subspecies and the subspecies israelensis, kyushuensis and darmstadiensis by using polyclonal antisera raised against the whole-crystal protein of B. thuringiensis subsp. fukuokaensis revealed that the proteins in subsp. fukuokaensis are distinct from proteins in the other subspecies because little cross-reaction was observed. Analysis of the plasmid pattern showed that the crystal protein genes are located on a plasmid of 130 MDa. Analysis of plasmid and chromosomal DNA from subsp. fukuokaensis showed little homology to the 72-kDa toxin gene (PG-14) of B. thuringiensis subsp. morrisoni. However, some of the proteins of B. thuringiensis subsp. fukuokaensis are homologous to other B. thuringiensis toxins because N-terminal amino acid analysis revealed that the 90-kDa protein is encoded by a cryIV gene type.  相似文献   

13.
14.
15.
Y M Yu  M Ohba    S S Gill 《Applied microbiology》1991,57(4):1075-1081
The mosquitocidal crystals of Bacillus thuringiensis subsp. fukuokaensis were isolated and bioassayed against fourth-instar larvae of two mosquito species. The 50% lethal concentration values of the crystals to Aedes aegypti and Culex quinquefasciatus were 4.1 and 2.9 micrograms/ml, respectively. In addition, the solubilized crystals had hemolytic activity; 50 micrograms/ml was the lowest detectable level. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that the crystals consisted of polypeptides of 90, 86, 82, 72, 50, 48, 37, and 27 kDa. When the solubilized inclusion was treated with C. quinquefasciatus midgut brush border membrane vesicles or Manduca sexta gut juice, only one major protein was detected. This protein retained mosquitocidal activity but had no detectable hemolytic activity. Immunological analysis of this subspecies and the subspecies israelensis, kyushuensis and darmstadiensis by using polyclonal antisera raised against the whole-crystal protein of B. thuringiensis subsp. fukuokaensis revealed that the proteins in subsp. fukuokaensis are distinct from proteins in the other subspecies because little cross-reaction was observed. Analysis of the plasmid pattern showed that the crystal protein genes are located on a plasmid of 130 MDa. Analysis of plasmid and chromosomal DNA from subsp. fukuokaensis showed little homology to the 72-kDa toxin gene (PG-14) of B. thuringiensis subsp. morrisoni. However, some of the proteins of B. thuringiensis subsp. fukuokaensis are homologous to other B. thuringiensis toxins because N-terminal amino acid analysis revealed that the 90-kDa protein is encoded by a cryIV gene type.  相似文献   

16.
Three crystalliferous (Cry+) strains of Bacillus thuringiensis subsp. israelensis (serotype 14) that produce parasporal protein crystals toxic to dipteran larvae and several acrystalliferous (Cry?) mutants, either induced or spontaneously derived from a single Cry+ parent, were examined for the presence of covalently closed circular (CCC) DNA in attempts to correlate toxin production with the presence of a specific plasmid. The plasmid profiles of both Cry+ and Cry? variants were analyzed by both a cleared lysate- and a modified Eckhardt lysateelectrophoresis technique. All of the Cry? mutants derived from the Cry+ parental strain had lost a 4.0- to 4.4-megadalton (Mdal) plasmid. Bioassay data confirmed loss of toxin production by the Cry? variants. All three Cry+ strains, including the parent of the Cry? strains, contained CCC plasmids DNAs of the following approximate molecular weights: 4.0 to 4.4, 5.2 to 6.0, and 11.4 to 13.0 Mdal. One Cry+ strain contained an additional CCC plasmid of 6.7 to 7.2 Mdal. The plasmid patterns for several Cry? derivatives differed in other respects from the pattern for their parent strain. The various Cry+ and Cry? strains could be distinguished either by phenotypical differences in antibiotic sensitivity, crystal production, and toxicity, or by differences in their plasmid profiles.  相似文献   

17.
A 3.7-kilobase (kb) XbaI fragment harboring the cryIVB gene (L. Thorne, F. Garduno, T. Thompson, D. Decker, M. A. Zounes, M. Wild, A. M. Walfield, and T. J. Pollock, J. Bacteriol. 166:801-811, 1986) which encoded a 130-kilodalton (kDa) mosquitocidal toxin from a 110-kb plasmid of Bacillus thuringiensis subsp. israelensis 4Q2-72 was cloned into pUC12 and transformed into Escherichia coli. The clone with a recombinant plasmid (designated pBT8) was toxic to Aedes aegypti larvae. The fragment (3.7 kb) was ligated into pBC16 (tetracycline resistant [Tcr]) and transformed by the method of protoplast transformation into Bacillus sphaericus 1593 and 2362, which were highly toxic to Anopheles and Culex mosquito larvae but less toxic to Aedes larvae. After cell regeneration on regeneration medium, the Tcr plasmids from transformants (pBTC1) of both strains of B. sphaericus were prepared and analyzed. The 3.7-kb XbaI fragment from the B. thuringiensis subsp. israelensis plasmid was shown to be present by agarose gel electrophoresis and Southern blot hybridization. In addition, B. sphaericus transformants produced a 130-kDa mosquitocidal toxin which was detected by Western (immuno-) blot analysis with antibody prepared against B. thuringiensis subsp. israelensis 130-kDa mosquitocidal toxin. The 50% lethal concentrations of the transformants of strains 1593 and 2362 against A. aegypti larvae were 2.7 X 10(2) and 5.7 X 10(2) cells per ml, respectively. This level of toxicity was comparable to the 50% lethal concentration of B. thuringiensis subsp. israelensis but much higher than that of B. sphaericus 1593 and 2362 (4.7 X 10(4) cells per ml) against A. aegypti larvae.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A 3.7-kilobase (kb) XbaI fragment harboring the cryIVB gene (L. Thorne, F. Garduno, T. Thompson, D. Decker, M. A. Zounes, M. Wild, A. M. Walfield, and T. J. Pollock, J. Bacteriol. 166:801-811, 1986) which encoded a 130-kilodalton (kDa) mosquitocidal toxin from a 110-kb plasmid of Bacillus thuringiensis subsp. israelensis 4Q2-72 was cloned into pUC12 and transformed into Escherichia coli. The clone with a recombinant plasmid (designated pBT8) was toxic to Aedes aegypti larvae. The fragment (3.7 kb) was ligated into pBC16 (tetracycline resistant [Tcr]) and transformed by the method of protoplast transformation into Bacillus sphaericus 1593 and 2362, which were highly toxic to Anopheles and Culex mosquito larvae but less toxic to Aedes larvae. After cell regeneration on regeneration medium, the Tcr plasmids from transformants (pBTC1) of both strains of B. sphaericus were prepared and analyzed. The 3.7-kb XbaI fragment from the B. thuringiensis subsp. israelensis plasmid was shown to be present by agarose gel electrophoresis and Southern blot hybridization. In addition, B. sphaericus transformants produced a 130-kDa mosquitocidal toxin which was detected by Western (immuno-) blot analysis with antibody prepared against B. thuringiensis subsp. israelensis 130-kDa mosquitocidal toxin. The 50% lethal concentrations of the transformants of strains 1593 and 2362 against A. aegypti larvae were 2.7 X 10(2) and 5.7 X 10(2) cells per ml, respectively. This level of toxicity was comparable to the 50% lethal concentration of B. thuringiensis subsp. israelensis but much higher than that of B. sphaericus 1593 and 2362 (4.7 X 10(4) cells per ml) against A. aegypti larvae.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Both Bacillus sphaericus and Bacillus thuringiensis subsp. israelensis produce mosquitocidal toxins during sporulation and are extensively used in the field for control of mosquito populations. All the known toxins of the latter organism are known to be encoded on a large plasmid, pBtoxis. In an attempt to combine the best properties of the two bacteria, an erythromycin resistance-marked pBtoxis plasmid was transferred to B. sphaericus by a mating technique. The resulting transconjugant bacteria were significantly more toxic to Aedes aegypti mosquitoes and were able to overcome resistance to B. sphaericus in a resistant colony of Culex quinquefasciatus, apparently due to the production of Cry11A but not Cry4A or Cry4B. The stability of the plasmid in the B. sphaericus host was moderate during vegetative growth, but segregational instability was observed, which led to substantial rates of plasmid loss during sporulation.  相似文献   

20.
Optimization of chicken feather (CF) based culture medium for the production of Bacillus thuringiensis subsp. israelensis (Bti) biomass in combination with the agro industrial by-product (coconut cake, CC) and manganese chloride (MnCl2) has been evaluated. The biomass yield of Bti spore/crystal toxin was highest (12.06 g/L) from the test medium (CF+CC+MnCl2) compared to the reference medium (Luria Bertani, LB). Toxicity assay with Bti produced from the test medium against mosquito vectors (Culex quinquefasciatus, Anopheles stephensi and Aedes aegypti) was also satisfactory and results were comparable with bacteria produced from LB. The results suggest that Bti can be produced to the maximum extent possible as a potential mosquitocidal activity as suggested by the test medium (CF+CC+MnCl2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号