首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuropeptide Y (NPY) participates in the regulation of reproduction and food intake. The adipose-secreted hormone, leptin, has also been involved in these processes, and has been shown to exert its effects in part by controlling NPY synthesis and release at the hypothalamic level. In the present study, we utilized the SH-SY5Y human neuroblastoma cell line, to study the leptin-NPY interrelationships. SH-SY5Y cells were found to express leptin receptors (RT-PCR and Western blot analyses). A 24-h treatment with leptin at different concentrations did not affect NPY gene expression, but resulted in a stimulation of NPY release. This stimulated secretion was blocked by the combined treatment with leptin and the muscarinic agonist carbachol or the phorbol ester TPA. Leptin and carbachol also caused an increased intracellular content of NPY. In conclusion, the SH-SY5Y human neuroblastoma cell line appears to be a suitable in vitro model for studying the pharmacological effects of leptin on the biosynthesis and secretion of NPY.  相似文献   

2.
3.
The adrenal chromaffin cells synthesize and release catecholamine (mostly epinephrine and norepinephrine) and different peptides, such as the neuropeptide Y (NPY). NPY stimulates catecholamine release through NPY Y1 receptor in mouse chromaffin cells. The aim of our study was to determine the intracellular signaling events coupled to NPY Y1 receptor activation that lead to stimulation of catecholamine release from mouse chromaffin cells. The stimulatory effect of NPY mediated by NPY Y1 receptor activation was lost in the absence of extracellular Ca2+. On the other hand, inhibition of nitric oxide synthase and guanylyl cyclase also decreased the stimulatory effect of NPY. Moreover, catecholamine release stimulated by NPY or by the nitric oxide donor (NOC-18) was inhibited by mitogen-activated protein kinase (MAPK) and protein kinase C inhibitors. In summary, in mouse chromaffin cells, NPY evokes catecholamine release by the activation the NPY Y1 receptor, in a Ca2+-dependent manner, by activating mitogen-activated protein kinase and promoting nitric oxide production, which in turn regulates protein kinase C and guanylyl cyclase activation.  相似文献   

4.
In SH-SY5Y cells, activation of delta-opioid receptors with [D-Pen(2,5)]-enkephalin (DPDPE; 1 microM) did not alter the intracellular free Ca(2+) concentration [Ca(2+)](i). However, when DPDPE was applied during concomitant Gq-coupled m3 muscarinic receptor stimulation by carbachol or oxotremorine-M, it produced an elevation of [Ca(2+)](i). The DPDPE-evoked increase in [Ca(2+)](i) was abolished when the carbachol-sensitive intracellular Ca(2+) store was emptied. There was a marked difference between the concentration-response relationship for the elevation of [Ca(2+)](i) by carbachol (EC(50) 13 microM, Hill slope 1) and the concentration-response relationship for carbachol's permissive action in revealing the delta-opioid receptor-mediated elevation of [Ca(2+)] (EC(50) 0.7 mM; Hill slope 1.8). Sequestration of free G protein beta gamma dimers by transient transfection of cells with a beta gamma binding protein (residues 495-689 of the C terminal tail of G protein-coupled receptor kinase 2) reduced the ability of delta opioid receptor activation to elevate [Ca(2+)](i). However, DPDPE did not elevate either basal or oxotremorine-M-evoked inositol phosphate production indicating that delta-opioid receptor activation did not stimulate phospholipase C. Furthermore, delta-opioid receptor activation did not result in the reversal of muscarinic receptor desensitization, membrane hyperpolarization or stimulation of sphingosine kinase. There was no coincident signalling between the delta-opioid receptor and the lysophosphatidic acid receptor which couples to elevation of [Ca(2+)](i) in SH-SY5Y cells by a PLC-independent mechanism. In SH-SY5Y cells the coincident signalling between the endogenously expressed delta-opioid and m3 muscarinic receptors appears to occur in the receptor activation-Ca(2+) release signalling pathway at a step after the activation of phospholipase C.  相似文献   

5.
We observed that AP-3, an antagonist of metabotropic glutamate receptors, reduced carbachol-induced hydrolysis of phospholipids in hippocampal slices. This inhibition could be explained in different ways, e.g.: 1) AP-3 acts also as antagonist of muscarinic receptors mediating the hydrolysis of phospholipids induced by carbachol, 2) Carbachol induces the release of glutamate which, by activating metabotropic glutamate receptors, leads to additional hydrolysis of phospholipids. The aim of this work was to test these possibilities. It is shown that AP-3 reduces carbachol-induced hydrolysis of phospholipids in hippocampal slices but not in cerebellar neurons at 10–14 days of culture, when these cells are not able to induce hydrolysis of phospholipids following activation of metabotropic glutamate receptors. It is also shown that carbachol induces a release of [3H]aspartate in hippocampal slices. The results reported suggest that the hydrolysis of phospholipids induced by carbachol in hippocampal slices would have two components. One part would be due to direct activation by carbachol of muscarinic receptors associated to activation of phospholipase C. This part would not be inhibited by AP-3. The second part would be due to subsequent release of glutamate and activation of metabotropic glutamate receptors. This part would be inhibited by AP-3.  相似文献   

6.
Given the modulatory role of neuropeptide Y (NPY) in the immune system, we investigated the effect of NPY on the production of NO and IL-1β in microglia. Upon LPS stimulation, NPY treatment inhibited NO production as well as the expression of inducible nitric-oxide synthase (iNOS). Pharmacological studies with a selective Y(1) receptor agonist and selective antagonists for Y(1), Y(2), and Y(5) receptors demonstrated that inhibition of NO production and iNOS expression was mediated exclusively through Y(1) receptor activation. Microglial cells stimulated with LPS and ATP responded with a massive release of IL-1β, as measured by ELISA. NPY inhibited this effect, suggesting that it can strongly impair the release of IL-1β. Furthermore, we observed that IL-1β stimulation induced NO production and that the use of a selective IL-1 receptor antagonist prevented NO production upon LPS stimulation. Moreover, NPY acting through Y(1) receptor inhibited LPS-stimulated release of IL-1β, inhibiting NO synthesis. IL-1β activation of NF-κB was inhibited by NPY treatment, as observed by confocal microscopy and Western blotting analysis of nuclear translocation of NF-κB p65 subunit, leading to the decrease of NO synthesis. Our results showed that upon LPS challenge, microglial cells release IL-1β, promoting the production of NO through a NF-κB-dependent pathway. Also, NPY was able to strongly inhibit NO synthesis through Y(1) receptor activation, which prevents IL-1β release and thus inhibits nuclear translocation of NF-κB. The role of NPY in key inflammatory events may contribute to unravel novel gateways to modulate inflammation associated with brain pathology.  相似文献   

7.
The m1 muscarinic acetylcholine receptor gene was transfected into and stably expressed in A9 L cells. The muscarinic receptor agonist, carbachol, stimulated inositol phosphate generation, arachidonic acid release, and cAMP accumulation in these cells. Carbachol stimulated arachidonic acid and inositol phosphate release with similar potencies, while cAMP generation required a higher concentration. Studies were performed to determine if the carbachol-stimulated cAMP accumulation was due to direct coupling of the m1 muscarinic receptor to adenylate cyclase via a GTP binding protein or mediated by other second messengers. Carbachol failed to stimulate adenylate cyclase activity in A9 L cell membranes, whereas prostaglandin E2 did, suggesting indirect stimulation. The phorbol ester, phorbol 12-myristate 13-acetate (PMA), stimulated arachidonic acid release yet inhibited cAMP accumulation in response to carbachol. PMA also inhibited inositol phosphate release in response to carbachol, suggesting that activation of phospholipase C might be involved in cAMP accumulation. PMA did not inhibit prostaglandin E2-, cholera toxin-, or forskolin-stimulated cAMP accumulation. The phospholipase A2 inhibitor eicosatetraenoic acid and the cyclooxygenase inhibitors indomethacin and naproxen had no effect on carbachol-stimulated cAMP accumulation. Carbachol-stimulated cAMP accumulation was inhibited with TMB-8, an inhibitor of intracellular calcium release, and W7, a calmodulin antagonist. These observations suggest that carbachol-stimulated cAMP accumulation does not occur through direct m1 muscarinic receptor coupling or through the release of arachidonic acid and its metabolites, but is mediated through the activation of phospholipase C. The generation of cytosolic calcium via inositol 1,4,5-trisphosphate and subsequent activation of calmodulin by m1 muscarinic receptor stimulation of phospholipase C appears to generate the accumulation of cAMP.  相似文献   

8.
Abstract: Neuropeptide Y (NPY) gene expression is known to be modulated in the mossy fiber projection of hippocampal granule cells following seizure. We investigated NPY biosynthesis and metabolism in an attempt to characterize NPY biochemically as a neurotransmitter in the granule cell mossy fiber projection. NPY biosynthesis was compared in normal control animals and in animals that had experienced a single pentylenetetrazole-induced seizure. In situ hybridization analysis established the postseizure time course of preproNPY mRNA expression in the hippocampal formation, localizing the majority of increased preproNPY mRNA content to the hilus of the dentate gyrus. Radioimmunoassay analysis of the CA3/mossy fiber terminal subfield confirmed a subsequent increase in NPY peptide content. Biosynthesis of NPY peptide by granule cells and transport to the CA3/mossy fiber subfield was demonstrated by in vivo radiolabel infusion to the dentate gyrus/hilus followed by sequential HPLC purification of identified radiolabeled peptide from the CA3/mossy fiber terminal subfield. Additional in vivo radiolabeling studies revealed a postseizure increase in an unidentified NPY-like immunoreactive (NPY-LI) species. HPLC/radioimmunoassay analyses of CA3 subfield tissue extracts comparing normal control animals and pentylenetetrazole-treated animals confirmed the increased total NPY-LI, and demonstrated that the increased NPY-LI was comprised of a minor increase in native NPY and a major increase in the unknown NPY-LI. Data from subsequent and separate analyses incorporating immunoprecipitation with anti-C-terminal flanking peptide of NPY, further HPLC purification, and matrix-assisted laser desorption/ionization mass spectrometry support the conclusion that the unknown NPY-LI is methionine sulfoxide NPY. NPY and NPY-sulfoxide displayed differential calcium sensitivity for release from mossy fiber synaptosomes. Similar to NPY, NPY sulfoxide displayed high-affinity binding to each of the cloned Y1, Y2, Y4, and Y5 receptor subtypes. Postrelease inactivation of NPY was demonstrated in a mossy fiber synaptosomal preparation. Thus, the present study in combination with previously reported electrophysiological activity of NPY in the CA3 subfield demonstrates that NPY fulfills the classical criteria for a neurotransmitter in the hippocampal granule cell mossy fiber projection, and reveals the presence of two molecular forms of NPY that display differential mechanisms of release while maintaining similar receptor potencies.  相似文献   

9.
Stimulation of cardiac muscarinic receptors leads to increases in the synthesis and hydrolysis of the membrane phospholipid phosphatidylinositol (PI). Carbachol stimulates PI hydrolysis in right and left murine atria as well as in murine ventricule and dissociated embryonic chick heart cells. Muscarinic stimulation of PI hydrolysis is markedly attenuated in calcium-free medium, is not antagonized by isoproterenol, occurs after a latency of several minutes, and is half-maximally activated by approximately 10 microM carbachol. In contrast, muscarinic inhibition of cyclic AMP accumulation in the same preparations is calcium independent, is opposed by the effect of isoproterenol, is maximal in minutes, and is half-maximally activated by 0.1 microM carbachol. These differences demonstrate that the two muscarinic receptor-mediated events are probably unrelated and independent responses. The concentration of carbachol that causes half-maximal activation of PI hydrolysis is almost identical to that causing half muscarinic receptor occupancy as assessed by 3H-labeled (-)-quinuclidinyl benzilate binding. Thus activation of the PI response by carbachol appears to be closely linked to receptor occupancy, whereas cyclase inhibition may occur when only a small percentage of receptors are occupied. The possible role of the PI response in generating intracellular signals such as arachidonic acid release, cyclic GMP synthesis, or C-kinase activation is discussed.  相似文献   

10.
Neuropeptide Y (NPY) is an important regulator of energy balance in mammals through its orexigenic, antithermogenic, and insulin secretagogue actions. We investigated the regulation of endogenous NPY release from rat hypothalamic slices by NPY receptor ligands and calcium channel antagonists. High-potassium stimulation (60 mM) of the slices produced a calcium-dependent threefold increase in NPY release above basal release. The Y2 receptor agonists NPY(13-36) and N-acetyl[Leu28,Leu31]NPY(24-36), the Y4 agonist rat pancreatic polypeptide (rPP), and the Y4/Y5 agonist human pancreatic polypeptide (hPP) significantly reduced both basal and stimulated NPY release. NPY(13-36)-induced reduction of NPY release could be partially prevented in the presence of the weak Y2 antagonist T4-[NPY(33-36)]4, whereas the hPP- and rPP-induced inhibition of release was not affected by the Y5 antagonist CGP71683A or the Y1 antagonist BIBP3226. The selective Y1, Y2, and Y5 antagonists had no effect on either basal or potassium-stimulated release when administered alone. The calcium channel inhibitors omega-conotoxin GVIA (N-type), omega-agatoxin TK (P/Q-type), and omega-conotoxin MVIIC (Q-type) all significantly inhibited potassium-stimulated NPY release, without any effect on basal release, whereas nifedipine had no effect on either basal or stimulated release. Addition of both omega-conotoxin GVIA and omega-agatoxin TK together completely inhibited the potassium-stimulated release. In conclusion, we have demonstrated that NPY release from hypothalamic slices is calcium-dependent, involving N-, P-, and Q-type calcium channels. NPY release is also inhibited by Y2 agonists and rPP/hPP, suggesting that Y2 and Y4 receptors may act as autoreceptors on NPY-containing nerve terminals.  相似文献   

11.
Several types of transmembrane receptors regulate cellular responses through the activation of phospholipase C-mediated Ca2+ release from intracellular stores. In non-excitable cells, the initial Ca2+ release is typically followed by a prolonged Ca2+ influx phase that is important for the regulation of several Ca2+-sensitive responses. Here we describe an agonist concentration-dependent mechanism by which m3 muscarinic acetylcholine receptors (mAChRs) differentially regulate the magnitude of the release and influx components of a Ca2+ response. In transfected Chinese hamster ovary cells expressing m3 mAChRs, doses of the muscarinic agonist carbachol ranging from 100 nM to 1 mM evoked Ca2+ release responses of increasing magnitude; maximal Ca2+ release was elicited by the highest carbachol concentration. In contrast, Ca2+ influx was maximal when m3 mAChRs were activated by moderate doses (1-10 microM) of carbachol, but substantially reduced at higher agonist concentrations. Manipulation of the membrane potential revealed that the carbachol-induced Ca2+ influx phase was diminished at depolarized potentials. Importantly, carbachol doses above 10 microM were found to couple m3 mAChRs to the activation of an inward, monovalent cation current resulting in depolarization of the cell membrane and a selective decrease in the influx, but not release, component of the Ca2+ response. These studies demonstrate, in one experimental system, a mechanism by which a single subtype of G-protein-coupled receptor can utilize the information encoded in the concentration of an agonist to generate distinct intracellular Ca2+ signals.  相似文献   

12.
Astrocytes have been shown to release factors that have promoting or inhibiting effects on neuronal development. However, mechanisms controlling the release of such factors from astrocytes are not well established. Astrocytes express muscarinic receptors whose activation stimulates a robust intracellular signaling, although the role of these receptors in glial cells is not well understood. Acetylcholine and acetylcholine receptors are present in the brain before synaptogenesis occurs and are believed to be involved in neuronal maturation. The present study was undertaken to investigate whether stimulation of muscarinic receptors in astrocytes would modulate neurite outgrowth in hippocampal neurons. Rat hippocampal neurons, co-cultured with rat cortical astrocytes previously exposed to the cholinergic agonist carbachol, displayed longer neurites. The effect of carbachol in astrocytes was due to the activation of M3 muscarinic receptors. Exposure of astrocytes to carbachol increased the expression of the extracellular matrix proteins fibronectin and laminin-1 in these cells. This effect was mediated in part by an increase in laminin-1 and fibronectin mRNA levels and in part by the up-regulation of the production and release of plasminogen activator inhibitor-1, an inhibitor of the proteolytic degradation of the extracellular matrix. The inhibition of fibronectin activity strongly reduced the effect of carbachol on the elongation of all the neurites, whereas inhibition of laminin-1 activity reduced the elongation of minor neurites only. Plasminogen activator inhibitor-1 also induced neurite elongation through a direct effect on neurons. Taken together, these results demonstrate that cholinergic muscarinic stimulation of astrocytes induces the release of permissive factors that accelerate neuronal development.  相似文献   

13.
The effects of hypoxia and carbachol on the release of newly synthesized catecholamines from superfused rat carotid bodies have been examined. Hypoxic superfusion medium was found to evoke catecholamine release which was dependent on the extracellular calcium concentration and was reduced by nitrendipine and atropine. Superfusion with the muscarinic agonist, carbachol, stimulated catecholamine release independently of the oxygen tension of the medium. The effect of carbachol on catecholamine release was abolished by atropine, suggesting that it was mediated by activation of cholinergic receptors of the muscarinic type. Both hypoxia and carbachol stimulated the release of 45Ca from carotid bodies prelabelled with 45Ca. The release of 45Ca with either stimulus was reduced by atropine and nitrendipine. These results suggest that although extracellular calcium plays an important role in the exocytotic secretory process of the carotid body, the mobilization of intracellular calcium pools may also contribute to the secretory response.  相似文献   

14.
The ability of muscarinic receptors, present in either the cell surface or sequestered compartments of intact human SK-N-SH neuroblastoma cells, to stimulate phosphoinositide hydrolysis has been examined. When cells were first exposed to carbachol for 1 h at 37 degrees C, approximately 50% of the cell surface receptors became sequestered, and this was accompanied by a comparable reduction in the subsequent ability of muscarinic agonists to stimulate phosphoinositide turnover, as monitored by the release of labeled inositol phosphates at 10 degrees C. At this temperature, muscarinic receptor cycling between the two cell compartments is prevented. Upon warming the carbachol-pretreated cells to 37 degrees C, receptor cycling is reinitiated and stimulated phosphoinositide turnover is fully restored within 5-8 min. When measured at 10 degrees C, the reduction of stimulated phosphoinositide turnover observed following carbachol pretreatment was similar in magnitude for both hydrophilic (carbachol, oxotremorine-M) and lipophilic (arecoline, oxotremorine-2, and L-670,548) agonists. The loss of response for both groups of agonists could be prevented if the incubation temperature was maintained at 37 degrees C, rather than at 10 degrees C. At the latter temperature carbachol pretreatment of SK-N-SH cells reduced the maximum release of inositol phosphates elicited by either carbachol or L-670,548 but not the agonist concentrations required for half-maximal stimulation. Radioligand binding studies, carried out at 10 degrees C, indicate that following receptor sequestration, significantly higher concentrations of carbachol were required to occupy the available muscarinic receptor sites. In contrast the lipophilic full agonist L-670,548 recognized receptors present in control and carbachol-pretreated cells with comparable affinities. Analysis of the inositol lipids present after carbachol pretreatment indicate that only a minimal depletion of the substrates necessary for phospholipase C activation had occurred. The results indicate that the agonist-induced sequestration of muscarinic receptors from the cell surface results in a loss of stimulated phosphoinositide hydrolysis when measured under conditions in which the return of the sequestered receptors to the cell surface is prevented. Thus, only those receptors present at the cell surface are linked to phospholipase C activation.  相似文献   

15.
The effects of extracellular ATP on intracellular free calcium concentration [( Ca2+]i), phosphatidylinositol (PtdIns) turnover, amylase release and Ca2+-activated membrane currents were examined in isolated rat parotid acinar cells and contrasted with the effects of receptor agonists known to activate phospholipase C. ATP was more effective than muscarinic and alpha-adrenergic agonists and substance P as a stimulus for elevating [Ca2+]i (as measured with quin2). The ATP effect was selectively antagonized by pretreating parotid cells with the impermeant anion-exchange blocker 4,4'-di-isothiocyano-2,2'-stilbenedisulphonate (DIDS), which also inhibited binding of [alpha-32P]ATP to parotid cells. By elevating [Ca2+]i, ATP and the muscarinic agonist carbachol both activated Ca2+-sensitive membrane currents, which were measured by whole-cell and cell-attached patch-clamp recordings. However, there were marked contrasts between the effects of ATP and the receptor agonists linked to phospholipase C, as follows. (1) Although the combination of maximally effective concentrations of carbachol, substance P and phenylephrine had no greater effect on [Ca2+]i than did carbachol alone, there was some additivity between maximal ATP and carbachol effects. (2) Intracellular dialysis with guanosine 5'-[beta-thio]diphosphate did not block activation of ion channels by ATP, but did block channel activation by the muscarinic agonist carbachol. This suggests that a G-protein is involved in the muscarinic response, but not in the response to ATP. (3) Despite its pronounced effect on [Ca2+]i, ATP had little effect on PtdIns turnover in these cells, in contrast with the effects of carbachol and other Ca2+-mobilizing agents. (4) Although ATP was able to stimulate amylase release from parotid acinar cells, the stimulation was only 33 +/- 9% of that obtained with phospholipase C-linked receptor agonists. These differences suggest that ATP increases [Ca2+]i through specific activation of a pathway which is distinct from that shared by the classical phospholipase C-linked receptor agonists.  相似文献   

16.
The role of protein kinase C (PKC) on muscarinic regulation of serotonin release in the pineal gland was investigated by measuring the pineal-PKC activity and serotonin secretion in response to muscarinic agents. Pineal slices, short-term incubated (0-15 min) without additions produced a low serotonin release and 20 to 24 percent PKC activity was found associated with membrane fractions. Prolonged exposure of pineal slices (30-180 min) produced further translocation of PKC activity to the membranes and a significant increase of serotonin release. Short-term treatment with pilocarpine and carbachol, stimulated PKC activity of both cytosolic and particulate fractions and the release of pineal serotonin. The pilocarpine effect was blocked by atropine indicating that it was mediated by muscarinic receptors. The present data support that PKC activation correlates with the increase of serotonin release by muscarinic agonist in pineal gland.  相似文献   

17.
18.
The involvement of protein kinase C (PKC) and protein kinase A (PKA) in cholinergic signalling in CHO cells expressing the M3 subtype of the muscarinic acetylcholine receptor was examined. Muscarinic signalling was assessed by measuring carbachol-induced activation of phospholipase C (PLC), arachidonic acid release, and calcium mobilisation. Carbachol activation of PLC was not altered by inhibition of PKC with chelerythrine chloride, bisindolylmaleimide or chronic treatment with phorbol myristate acetate (PMA). Activation of PKC by acute treatment with PMA was similarly without effect. In contrast, inhibition of PKC blocked carbachol stimulation of arachidonic acid release. Likewise, PKC inhibition resulted in a decreased ability of carbachol to mobilise calcium, whereas PKC activation potentiated calcium mobilisation. Inhibition of PKA with H89 or Rp-cAMP did not alter the ability of carbachol to activate PLC. Similarly, PKA activation with Sp-cAMP or forskolin had no effect on PLC stimulation by carbachol. Carbachol-mediated release of arachidonic acid was decreased by H89 but only slightly increased by forskolin. Forskolin also increased calcium mobilisation by carbachol. These results suggest a function for PKC and PKA in M3 stimulation of arachidonic acid release and calcium mobilisation but not in PLC activation.  相似文献   

19.
In rat hippocampal slices kept in Krebs-Henseleit medium, an increase of K+ ions to 12 mM potentiates the stimulation of phosphoinositide turnover elicited by carbachol and (+/-)-cis-methyldioxolane. Oxotremorine is inactive if tested in Krebs-Henseleit medium but it stimulates by 220% the phosphoinositide turnover when K+ is increased to 12 mM. The K+ facilitation of the carbachol stimulation of phosphoinositide turnover was blocked by pirenzepine, a muscarinic antagonist. This drug was equally potent in inhibiting the carbachol stimulation of phosphoinositide turnover both in normal and 12 mM K+ Krebs medium. This facilitatory effect of K+ appears to be preferential for muscarinic receptors, since it failed to increase the activation of phosphoinositide breakdown induced by norepinephrine and histamine. The K+ potentiation of the muscarinic stimulation of phosphoinositide turnover is not mediated by a release of one of the endogenous neurotransmitters stored in these slices because such a facilitation occurs in Ca2+-deprived Krebs-Henseleit medium and failed to occur following a depolarizing dose of veratrine. Our experiments excluded that K+ facilitates carbachol stimulation of phosphoinositide turnover because it modifies the binding characteristics of muscarinic receptors; however, they cannot exclude that K+ acts at the receptor transducer coupling.  相似文献   

20.
Cholinergic muscarinic receptors were identified in AtT-20/D16-16 (AtT-20) cell membranes by receptor binding techniques and the effect of carbachol on basal and stimulated cyclic AMP formation and ACTH release was investigated. Carbachol markedly decreased the stimulatory effect of the adenylate cyclase activator, forskolin, on both cyclic AMP formation and ACTH secretion. Carbachol also reduced forskolin-stimulated adenylate cyclase activity. The stimulatory effects of (-) isoproterenol on cyclic nucleotide formation and ACTH secretion were also blocked by carbachol. The inhibitory effects of carbachol on (-) isoproterenol-stimulated cyclic AMP synthesis and ACTH secretion were reversed by the muscarinic antagonist, atropine, and not by the nicotinic antagonist, gallamine. These data suggest that in AtT-20 cells, inhibition of ACTH secretion may be regulated by activation of muscarinic receptors coupled negatively to adenylate cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号