首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BACKGROUND: 22q11 deletion syndrome (22q11DS) is characterized by conotruncal cardiac defects and hypoplasia of parathyroid glands and thymus, which result in variable hypoparathyroidism (HPT) and immune deficiency. METHODS: To study the course of HPT and the spectrum of other associated manifestations we evaluated all patients with 22q11DS, confirmed by fluorescence in situ hybridization, and HPT who were under follow-up at the Calcium-bone clinic, The Hospital for Sick Children, Toronto. Patients were clinically assessed and their hospital records were reviewed. RESULTS: Eighteen patients were included. At follow-up assessment at median age of 7.3 years HPT was judged complete in 11 (61%) and partial in 7 patients (39%). Patients with complete HPT presented with hypocalcemia later (median age at diagnosis 2.4 vs. 0.0 years) and more often with a hypocalcemic seizure than patients with partial HPT (73 vs. 29%). The spectrum of other associated manifestations did not differ between the groups. CONCLUSIONS: HPT in patients with 22q11DS is often partial. Many of the patients present with a hypocalcemic seizure which is predictive of complete HPT. Patients with complete and partial HPT do not differ in respect to their other associated features. Patients with features of 22q11DS should be actively screened for hypocalcemia to prevent development of symptomatic hypocalcemia.  相似文献   

2.
Microdeletions within chromosome 22q11.2 cause a variable phenotype, including DiGeorge syndrome (DGS) and velocardiofacial syndrome (VCFS). About 97% of patients with DGS/VCFS have either a common recurrent ~3 Mb deletion or a smaller, less common, ~1.5 Mb nested deletion. Both deletions apparently occur as a result of homologous recombination between nonallelic flanking low-copy repeat (LCR) sequences located in 22q11.2. Interestingly, although eight different LCRs are located in proximal 22q, only a few cases of atypical deletions utilizing alternative LCRs have been described. Using array-based comparative genomic hybridization (CGH) analysis, we have detected six unrelated cases of deletions that are within 22q11.2 and are located distal to the ~3 Mb common deletion region. Further analyses revealed that the rearrangements had clustered breakpoints and either a ~1.4 Mb or ~2.1 Mb recurrent deletion flanked proximally by LCR22-4 and distally by either LCR22-5 or LCR22-6, respectively. Parental fluorescence in situ hybridization (FISH) analyses revealed that none of the available parents (11 out of 12 were available) had the deletion, indicating de novo events. All patients presented with characteristic facial dysmorphic features. A history of prematurity, prenatal and postnatal growth delay, developmental delay, and mild skeletal abnormalities was prevalent among the patients. Two patients were found to have a cardiovascular malformation, one had truncus arteriosus, and another had a bicuspid aortic valve. A single patient had a cleft palate. We conclude that distal deletions of chromosome 22q11.2 between LCR22-4 and LCR22-6, although they share some characteristic features with DGS/VCFS, represent a novel genomic disorder distinct genomically and clinically from the well-known DGS/VCF deletion syndromes.  相似文献   

3.
4.
5.
In a group of 140 patients with typical phenotype, the 22q11.2 microdeletion was detected in 43 patients (32%) using FISH and MLPA methods. There were no deletions of other chromosomal loci causing to phenotypes similar to the 22q11.2 deletion syndrome (22q11.2DS). Sequencing of the TBX1 gene did not detect any mutations, except for some common neutral polymorphisms. For the first time in the Russian Federation, the diagnostic efficiency of 22q11.2DS appeared to be 32%, as a result of the application of a combination of genetic approaches for a large group of patients with suspected 22q11.2DS.  相似文献   

6.
We present prenatal diagnosis of de novo 22q11.2 microdeletion syndrome using uncultured amniocytes in a pregnancy with conotruncal heart malformations in the fetus. We discuss the genotype–phenotype correlation and the consequence of haploinsufficiency of TBX1, COMT, UFD1L, GNB1L and MED15 in the deleted region. We review the literature of chromosomal loci and genes responsible for conotruncal heart malformations and tetralogy of Fallot.  相似文献   

7.
Chromosome 22q11.2 deletion syndrome, one of the most common human genomic syndromes, has highly heterogeneous clinical presentation. Patients usually harbor a 1.5 to 3 Mb hemizygous deletion at chromosome 22q11.2, resulting in pathognomic TBX1, CRKL and/or MAPK1 haploinsufficiency. However, there are some individuals with clinical features resembling the syndrome who are eventually diagnosed with genomic disorders affecting other chromosomal regions. The objective of this study was to evaluate the additive value of high-resolution array-CGH testing in the cohort of 41 patients with clinical features of 22q11.2 deletion syndrome and negative results of standard cytogenetic diagnostic testing (karyotype and FISH for 22q11.2 locus). Array-CGH analysis revealed no aberrations at chromosomes 22 or 10 allegedly related to the syndrome. Five (12.2 %) patients were found to have other genomic imbalances, namely 17q21.31 microdeletion syndrome (MIM#610443), 1p36 deletion syndrome (MIM#607872), NF1 microduplication syndrome (MIM#613675), chromosome 6pter-p24 deletion syndrome (MIM#612582) and a novel interstitial deletion at 3q26.31 of 0.65 Mb encompassing a dosage-dependent gene NAALADL2. Our study demonstrates that the implementation of array-CGH into the panel of classic diagnostic procedures adds significantly to their efficacy. It allows for detection of constitutional genomic imbalances in 12 % of subjects with negative result of karyotype and FISH targeted for 22q11.2 region. Moreover, if used as first-tier genetic test, the method would provide immediate diagnosis in ~40 % phenotypic 22q11.2 deletion subjects.  相似文献   

8.

Objective

People with velo-cardio-facial syndrome or 22q11 deletion syndrome (22q11DS) have behavioral, cognitive and psychiatric problems. Approximately 30% of affected individuals develop schizophrenia-like psychosis. Glutamate dysfunction is thought to play a crucial role in schizophrenia. However, it is unknown if and how the glutamate system is altered in 22q11DS. People with 22q11DS are vulnerable for haploinsufficiency of PRODH, a gene that codes for an enzyme converting proline into glutamate. Therefore, it can be hypothesized that glutamatergic abnormalities may be present in 22q11DS.

Method

We employed proton magnetic resonance spectroscopy (1H-MRS) to quantify glutamate and other neurometabolites in the dorsolateral prefrontal cortex (DLPFC) and hippocampus of 22 adults with 22q11DS (22q11DS SCZ+) and without (22q11DS SCZ−) schizophrenia and 23 age-matched healthy controls. Also, plasma proline levels were determined in the 22q11DS group.

Results

We found significantly increased concentrations of glutamate and myo-inositol in the hippocampal region of 22q11DS SCZ+ compared to 22q11DS SCZ−. There were no significant differences in levels of plasma proline between 22q11DS SCZ+ and 22q11DS SCZ−. There was no relationship between plasma proline and cerebral glutamate in 22q11DS.

Conclusion

This is the first in vivo 1H-MRS study in 22q11DS. Our results suggest vulnerability of the hippocampus in the psychopathology of 22q11DS SCZ+. Altered hippocampal glutamate and myo-inositol metabolism may partially explain the psychotic symptoms and cognitive impairments seen in this group of patients.  相似文献   

9.
22q11 Deletion syndrome (22q11DS) is a common microdeletion syndrome with variable expression, including congenital and later onset conditions such as schizophrenia. Most studies indicate that expression does not appear to be related to length of the deletion but there is limited information on the endpoints of even the common deletion breakpoint regions in adults. We used a real-time quantitative PCR (qPCR) approach to fine map 22q11.2 deletions in 44 adults with 22q11DS, 22 with schizophrenia (SZ; 12 M, 10 F; mean age 35.7 SD 8.0 years) and 22 with no history of psychosis (NP; 8 M, 14 F; mean age 27.1 SD 8.6 years). QPCR data were consistent with clinical FISH results using the TUPLE1 or N25 probes. Two subjects (one SZ, one NP) negative for clinical FISH had atypical 22q11.2 deletions confirmed by FISH using the RP11-138C22 probe. Most (n = 34; 18 SZ, 16 NP) subjects shared a common 3 Mb hemizygous 22q11.2 deletion. However, eight subjects showed breakpoint variability: a more telomeric proximal breakpoint (n = 2), or more centromeric (n = 3) or more telomeric distal breakpoint (n = 3). One NP subject had a proximal nested 1.4 Mb deletion. COMT and TBX1 were deleted in all 44 subjects, and PRODH in 40 subjects (19 SZ, 21 NP). The results delineate proximal and distal breakpoint variants in 22q11DS. Neither deletion extent nor PRODH haploinsufficiency appeared to explain the clinical expression of schizophrenia in the present study. Further studies are needed to elucidate the molecular basis of schizophrenia and clinical heterogeneity in 22q11DS.  相似文献   

10.
The 22q11.2 deletion syndrome (22q11DS) is characterized by high rates of psychotic symptoms and schizophrenia, making this condition a promising human model for studying risk factors for psychosis. We explored the predictive value of ultra high risk (UHR) criteria in a sample of patients with 22q11DS. We also examined the additional contribution of socio‐demographic, clinical and cognitive variables to predict transition to psychosis within a mean interval of 32.5 ± 17.6 months after initial assessment. Eighty‐nine participants with 22q11DS (age range: 8‐30 years; mean 16.1 ± 4.7) were assessed using the Structured Interview for Psychosis‐Risk Syndromes. Information on Axis I diagnoses, internalizing and externalizing symptoms, level of functioning and IQ was also collected. At baseline, 22 (24.7%) participants met UHR criteria. Compared to those without a UHR condition, they had a significantly lower functioning, more frequent anxiety disorders, and more severe psychopathology. Transition rate to psychosis was 27.3% in UHR and 4.5% in non‐UHR participants. Cox regression analyses revealed that UHR status significantly predicted conversion to psychosis. Baseline level of functioning was the only other additional predictor. This is the first study investigating the predictive value of UHR criteria in 22q11DS. It indicates that the clinical path leading to psychosis is broadly comparable to that observed in other clinical high‐risk samples. Nevertheless, the relatively high transition rate in non‐UHR individuals suggests that other risk markers should be explored in this population. The role of low functioning as a predictor of transition to psychosis should also be investigated more in depth.  相似文献   

11.
Ventral and dorsal streams are visual pathways deputed to transmit information from the photoreceptors of the retina to the lateral geniculate nucleus and then to the primary visual cortex (V1). Several studies investigated whether one pathway is more vulnerable than the other during development, and whether these streams develop at different rates. The results are still discordant. The aim of the present study was to understand the functionality of the dorsal and the ventral streams in two populations affected by different genetic disorders, Noonan syndrome (NS) and 22q11.2 deletion syndrome (22q11.2DS), and explore the possible genotype–phenotype relationships. ‘Form coherence’ abilities for the ventral stream and ‘motion coherence’ abilities for the dorsal stream were evaluated in 19 participants with NS and 20 participants with 22q11.2DS. Collected data were compared with 55 age‐matched controls. Participants with NS and 22q11.2DS did not differ in the form coherence task, and their performance was significantly lower than that of controls. However, in the motion coherence task, the group with NS and controls did not differ, and both obtained significantly higher scores than the group with 22q11.2DS. Our findings indicate that deficits in the dorsal stream are related to the specific genotype, and that in our syndromic groups the ventral stream is more vulnerable than the dorsal stream.  相似文献   

12.
13.
14.

Background

Individuals with the 22q11.2 deletion syndrome (22q11DS) are at increased risk for schizophrenia and Autism Spectrum Disorders (ASDs). Given the prevalence of visual processing deficits in these three disorders, a causal relationship between genes in the deleted region of chromosome 22 and visual processing is likely. Therefore, 22q11DS may represent a unique model to understand the neurobiology of visual processing deficits related with ASD and psychosis.

Methodology

We measured Event-Related Potentials (ERPs) during a texture segregation task in 58 children with 22q11DS and 100 age-matched controls. The C1 component was used to index afferent activity of visual cortex area V1; the texture negativity wave provided a measure for the integrity of recurrent connections in the visual cortical system. COMT genotype and plasma proline levels were assessed in 22q11DS individuals.

Principal Findings

Children with 22q11DS showed enhanced feedforward activity starting from 70 ms after visual presentation. ERP activity related to visual feedback activity was reduced in the 22q11DS group, which was seen as less texture negativity around 150 ms post presentation. Within the 22q11DS group we further demonstrated an association between high plasma proline levels and aberrant feedback/feedforward ratios, which was moderated by the COMT 158 genotype.

Conclusions

These findings confirm the presence of early visual processing deficits in 22q11DS. We discuss these in terms of dysfunctional synaptic plasticity in early visual processing areas, possibly associated with deviant dopaminergic and glutamatergic transmission. As such, our findings may serve as a promising biomarker related to the development of schizophrenia among 22q11DS individuals.  相似文献   

15.
DiGeorge syndrome in humans is charaterized by immunodeficiency, heart defects, mental retardation and facial dysmorphism; cytogenetic analysis has shown that deletions at 22q11 occur in approximately 25% of cases. To generate DNA markers from this region, we have microdissected and microcloned band q11 of human Chromosome (Chr) 22. Nineteen thousand clones were obtained from material dissected from 20 chromosome fragments. Seventeen of 61 clones analyzed (28%) were repetitive, 27 (44%) gave no signal, and 17 (28%) detected single copy sequences of which ten mapped to Chr 22. Two of these were found to be deleted in patients with DiGeorge syndrome and either monosomy for 22q11-pter or visible interstitial deletions of 22q11. These two markers are also hemizygous in patients with no visible chromosomal abnormality, demonstrating that submicroscopic deletions are common in DiGeorge syndrome patients.  相似文献   

16.
17.
Interaction of human 14-3-3γ with the small heat shock protein Hsp20 was analyzed by means of size-exclusion chromatography and chemical crosslinking. Unphosphorylated Hsp20 and its mutant S16D mimicking phosphorylation by cAMP-dependent protein kinase did not interact with 14-3-3. Phosphorylated Hsp20 formed a tight complex with 14-3-3 in which dimer of 14-3-3 was bound to dimer of Hsp20. 14-3-3 did not affect the chaperone activity of unphosphorylated Hsp20 but increased the chaperone activity of phosphorylated Hsp20 if insulin was used as a model substrate. Estimation of the effect of 14-3-3 on the chaperone activity of Hsp20 with other model substrates was complicated by the fact that under in vitro conditions isolated 14-3-3 possessed its own high chaperone activity. Taken into account high content of Hsp20 in different muscles it is supposed that upon phosphorylation Hsp20 might effectively compete with multiple protein targets of 14-3-3 and by this means indirectly affect many intracellular processes.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号