首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The abnormal form of the prion protein (PrP) is believed to be responsible for the transmissible spongiform encephalopathies. A peptide encompassing residues 106-126 of human PrP (PrP106-126) is neurotoxic in vitro due its adoption of an amyloidogenic fibril structure. The Alzheimer's disease amyloid beta peptide (Abeta) also undergoes fibrillogenesis to become neurotoxic. Abeta aggregation and toxicity is highly sensitive to copper, zinc, or iron ions. We show that PrP106-126 aggregation, as assessed by turbidometry, is abolished in Chelex-100-treated buffer. ICP-MS analysis showed that the Chelex-100 treatment had reduced Cu(2+) and Zn(2+) levels approximately 3-fold. Restoring Cu(2+) and Zn(2+) to their original levels restored aggregation. Circular dichroism showed that the Chelex-100 treatment reduced the aggregated beta-sheet content of the peptide. Electron paramagnetic resonance spectroscopy identified a 2N1S1O coordination to the Cu(2+) atom, suggesting histidine 111 and methionine 109 or 112 are involved. Nuclear magnetic resonance confirmed Cu(2+) and Zn(2+) binding to His-111 and weaker binding to Met-112. An N-terminally acetylated PrP106-126 peptide did not bind Cu(2+), implicating the free amino group in metal binding. Mutagenesis of either His-111, Met-109, or Met-112 abolished PrP106-126 neurotoxicity and its ability to form fibrils. Therefore, Cu(2+) and/or Zn(2+) binding is critical for PrP106-126 aggregation and neurotoxicity.  相似文献   

2.
Amyloid beta peptide (Abeta) is the major constituent of extracellular plaques and perivascular amyloid deposits, the pathognomonic neuropathological lesions of Alzheimer's disease. Cu(2+) and Zn(2+) bind Abeta, inducing aggregation and giving rise to reactive oxygen species. These reactions may play a deleterious role in the disease state, because high concentrations of iron, copper, and zinc have been located in amyloid in diseased brains. Here we show that coordination of metal ions to Abeta is the same in both aqueous solution and lipid environments, with His(6), His(13), and His(14) all involved. At Cu(2+)/peptide molar ratios >0.3, Abeta coordinated a second Cu(2+) atom in a highly cooperative manner. This effect was abolished if the histidine residues were methylated at N(epsilon)2, indicating the presence of bridging histidine residues, as found in the active site of superoxide dismutase. Addition of Cu(2+) or Zn(2+) to Abeta in a negatively charged lipid environment caused a conformational change from beta-sheet to alpha-helix, accompanied by peptide oligomerization and membrane penetration. These results suggest that metal binding to Abeta generated an allosterically ordered membrane-penetrating oligomer linked by superoxide dismutase-like bridging histidine residues.  相似文献   

3.
The amyloid beta-peptide (Abeta) is a principal component of insoluble amyloid plaques which are characteristic neuropathological features of Alzheimer's disease. Abeta also exists as a normal soluble protein that undergoes a pathogenic transition to an aggregated, fibrous form. This transition can be affected by extraneous proteinaceous and nonproteinaceous elements, such as zinc ions, which may promote aggregation and/or stabilization of the fibrils. Protein chelation of zinc is typically mediated by histidines, cysteines and carboxylates. Previous studies have demonstrated that the Abeta-Zn2+ binding site is localized within residues 6-28 and that histidines may serve as the principal sites of interaction. To localize key residues within this region, a series of Abeta peptides (residues 1-28) were synthesized that contained systematic His/Ala substitutions. Circular dichroism and electron microscopy were used to monitor the effects of Zn2+ on the peptide beta-sheet conformation and fibril aggregation. Our results indicate that substitution of either His13 or His14 but not His6 eliminates the zinc-mediated effects. These observations indicate a specific zinc binding site within Abeta that involves these central histidine residues.  相似文献   

4.
Although metal ions such as Cu(2+), Zn(2+), and Fe(3+) are implicated to play a key role in Alzheimer disease, their role is rather complex, and comprehensive understanding is not yet obtained. We show that Cu(2+) and Zn(2+) but not Fe(3+) renders the amyloid beta peptide, Abeta(1-40), nonfibrillogenic in nature. However, preformed fibrils of Abeta(1-40) were stable when treated with these metal ions. Consequently, fibril growth of Abeta(1-40) could be switched on/off by switching the molecule between its apo- and holo-forms. Clioquinol, a potential drug for Alzheimer disease, induced resumption of the Cu(2+)-suppressed but not the Zn(2+)-suppressed fibril growth of Abeta(1-40). The observed synergistic effect of clioquinol and Zn(2+) suggests that Zn(2+)-clioquinol complex effectively retards fibril growth. Thus, clioquinol has dual effects; although it disaggregates the metal ion-induced aggregates of Abeta(1-40) through metal chelation, it further retards the fibril growth along with Zn(2+). These results indicate the mechanism of metal ions in suppressing Abeta amyloid formation, as well as providing information toward the use of metal ion chelators, particularly clioquinol, as potential drugs for Alzheimer disease.  相似文献   

5.
Zinc may play an important role in the pathogenesis of Alzheimer's disease (AD) through influencing the conformation and neurotoxicity of amyloid beta-proteins (Abeta). Zn(2+) induces rapid aggregation of synthetic or endogenous Abeta in a pH-dependent fashion. Here we show for the first time that Zn(2+)-induced aggregation of Abeta (10-21) potentiates its action on outward potassium currents in hippocampal CA1 pyramidal neurons. Using the whole-cell voltage-clamp technique, we showed that Abeta (10-21) blocked the fast-inactivating outward potassium current (I(A)) in a concentration- and aggregation-dependent manner, but with no effect on the delayed rectifier potassium current (I(K)). Both the unaggregated and aggregated forms of Abeta (10-21) significantly shifted the activation curve and the inactivation curve of I(A) to more negative potentials. But the aggregated form has more effects than the unaggregated form. These data indicated that aggregation of amyloid fragments by zinc ions is required in order to obtain full modulatory effects on potassium channel currents.  相似文献   

6.
There is evidence that binding of metal ions like Zn2+ and Cu2+ to amyloid beta-peptides (Abeta) may contribute to the pathogenesis of Alzheimer's disease. Cu2+ and Zn2+ form complexes with Abeta peptides in vitro; however, the published metal-binding affinities of Abeta vary in an enormously large range. We studied the interactions of Cu2+ and Zn2+ with monomeric Abeta(40) under different conditions using intrinsic Abeta fluorescence and metal-selective fluorescent dyes. We showed that Cu(2+) forms a stable and soluble 1 : 1 complex with Abeta(40), however, buffer compounds act as competitive copper-binding ligands and affect the apparent K(D). Buffer-independent conditional K(D) for Cu(II)-Abeta(40) complex at pH 7.4 is equal to 0.035 micromol/L. Interaction of Abeta(40) with Zn2+ is more complicated as partial aggregation of the peptide occurs during zinc titration experiment and in the same time period (within 30 min) the initial Zn-Abeta(40) complex (K(D) = 60 micromol/L) undergoes a transition to a more tight complex with K(D) approximately 2 micromol/L. Competition of Abeta(40) with ion-selective fluorescent dyes Phen Green and Zincon showed that the K(D) values determined from intrinsic fluorescence of Abeta correspond to the binding of the first Cu2+ and Zn2+ ions to the peptide with the highest affinity. Interaction of both Zn2+ and Cu2+ ions with Abeta peptides may occur in brain areas affected by Alzheimer's disease and Zn2+-induced transition in the peptide structure might contribute to amyloid plaque formation.  相似文献   

7.
8.
We have synthesized and crystallized in the presence of Zn(2+) ions the peptidyl-oligonucleotide adduct CH(3)CO-(Arg)(4)-NH-(CH(2))(6)-NH-p-d(CGCAATTGCG). This is the first structure obtained from a deoxyoligonucleotide crystallized in the presence of zinc ions. Zn ions are clearly visible in the 2.9 A resolution map. On the other hand, the peptide tail is not visible in the crystal structure as determined by X-ray diffraction. The terminal bases C1 and G10 are found in extra-helical positions. Their phosphates are ligands of a Zn(2+) ion, located in a special position of the unit cell. This ion plays an important role in the packing arrangement, since it binds four different DNA molecules. Two other Zn(2+) ions are also important for DNA packing. They interact specifically with the N7 atoms of the terminal G2 and G10 bases, but not with the internal G8. This result supports the hypothesis that transition metals do not interact with the bases of duplex DNA in the B form.  相似文献   

9.
Amyloid deposits within the cerebral tissue constitute a characteristic lesion associated with Alzheimer disease. They mainly consist of the amyloid peptide Abeta and display an abnormal content in Zn(2+) ions, together with many truncated, isomerized, and racemized forms of Abeta. The region 1-16 of Abeta can be considered the minimal zinc-binding domain and contains two aspartates subject to protein aging. The influence of zinc binding and protein aging related modifications on the conformation of this region of Abeta is of importance given the potentiality of this domain to constitute a therapeutic target, especially for immunization approaches. In this study, we determined from NMR data the solution structure of the Abeta-(1-16)-Zn(2+) complex in aqueous solution at pH 6.5. The residues His(6), His(13), and His(14) and the Glu(11) carboxylate were identified as ligands that tetrahedrally coordinate the Zn(II) cation. In vitro aging experiments on Abeta-(1-16) led to the formation of truncated and isomerized species. The major isomer generated, Abeta-(1-16)-l-iso-Asp(7), displayed a local conformational change in the His(6)-Ser(8) region but kept a zinc binding propensity via a coordination mode involving l-iso-Asp(7). These results are discussed here with regard to Abeta fibrillogenesis and the potentiality of the region 1-16 of Abeta to be used as a therapeutic target.  相似文献   

10.
Cytosolic alterations of calcium ion concentrations are an integral part of signal transduction. Similar functions have been hypothesized for other metal ions, in particular zinc (Zn(2+)), but this still awaits experimental verification. Zn(2+) is important for multiple cellular functions, especially in the immune system. Among other effects, it influences formation and secretion of pro-inflammatory cytokines, including TNF-alpha. Here we demonstrate that these effects are due to a physiological signaling system involving intracellular Zn(2+) signals. An increase of the intracellular zinc ion concentration occurs upon stimulation of human leukocytes with Escherichia coli, LPS, Pam(3)CSK(4), TNF-alpha, or insulin, predominantly in monocytes. Chelating this zinc signal with the membrane permeable zinc-specific chelator TPEN (N,N,N',N'-tetrakis-(2-pyridyl-methyl)ethylenediamine) completely blocks activation of LPS-induced signaling pathways involving p38 MAPK, ERK1/2, and NF-kappaB, and abrogates the release of proinflammatory cytokines, including TNF-alpha. This function of Zn(2+) is not limited to monocytes or even the immune system, but seems to be another generalized signaling system based on intracellular fluctuations of metal ion concentrations, acting parallel to Ca(2+).  相似文献   

11.
Lim KH  Kim YK  Chang YT 《Biochemistry》2007,46(47):13523-13532
Transition-metal ions (Cu2+ and Zn2+) play critical roles in the Abeta plaque formation. However, precise roles of the metal ions in the Abeta amyloidogenesis have been controversial. In this study, the molecular mechanism of the metal-induced Abeta oligomerization was investigated with extensive metal ion titration NMR experiments. Upon additions of the metal ions, the N-terminal region (1-16) of the Abeta (1-40) peptide was selectively perturbed. In particular, polar residues 4-8 and 13-15 were more strongly affected by the metal ions, suggesting that those regions may be the major binding sites of the metal ions. The NMR signal changes of the N-terminal region were dependent on the peptide concentrations (higher peptide concentrations resulted in stronger signal changes), suggesting that the metal ions facilitate the intermolecular contact between the Abeta peptides. The Abeta (1-40) peptides (>30 microM) were eventually oligomerized even at low temperature (3 degrees C), where the Abeta peptides are stable as monomeric forms without the metal ions. The real-time oligomerization process was monitored by 1H/15N HSQC NMR experiments, which provided the first residue-specific structural transition information. Hydrophobic residues 12-21 initially underwent conformational changes due to the intermolecular interactions. After the initial structural rearrangements, the C-terminal residues (32-40) readjusted their conformations presumably for effective oligomerization. Similar structural changes of the metal-free Abeta (1-40) peptides were also observed in the presence of the preformed oligomers, suggesting that the conformational transitions may be the general molecular mechanism of the Abeta (1-40) amyloidogenesis.  相似文献   

12.
The metallo-beta-lactamases require zinc or cadmium for hydrolyzing beta-lactam antibiotics and are inhibited by mercurial compounds. To data, there are no clinically useful inhibitors of this class of enzymes. The crystal structure of the Zn(2+)-bound enzyme from Bacteroides fragilis contains a binuclear zinc center in the active site. A hydroxide, coordinated to both zinc atoms, is proposed as the moiety that mounts the nucleophilic attack on the carbonyl carbon atom of the beta-lactam ring. To study the metal coordination further, the crystal structures of a Cd(2+)-bound enzyme and of an Hg(2+)-soaked zinc-containing enzyme have been determined at 2.1 A and 2.7 A, respectively. Given the diffraction resolution, the Cd(2+)-bound enzyme exhibits the same active-site architecture as that of the Zn(2+)-bound enzyme, consistent with the fact that both forms are enzymatically active. The 10-fold reduction in activity of the Cd(2+)-bound molecule compared with the Zn(2+)-bound enzyme is attributed to fine differences in the charge distribution due to the difference in the ionic radii of the two metals. In contrast, in the Hg(2+)-bound structure, one of the zinc ions, Zn2, was ejected, and the other zinc ion, Zn1, remained in the same site as in the 2-Zn(2+)-bound structure. Instead of the ejected zinc, a mercury ion binds between Cys 104 and Cys 181, 4.8 A away from Zn1 and 3.9 A away from the site where Zn2 is located in the 2-Zn(2+)-bound molecule. The perturbed binuclear metal cluster explains the inactivation of the enzyme by mercury compounds.  相似文献   

13.
Ryu J  Girigoswami K  Ha C  Ku SH  Park CB 《Biochemistry》2008,47(19):5328-5335
Recently discovered evidences suggest that precipitation of Alzheimer's beta-amyloid (Abeta) peptide and the toxicity in Alzheimer's disease (AD) are caused by abnormal interactions with neocortical metal ions, especially Zn2+, Cu2+, and Fe3+. While many studies had focused on the role of a "single" metal ion and its interaction with Abeta peptides, such studies involving "multiple" metal ions have hardly been explored. Here, to explore the nature of codeposition of different metals, two or more metal ions along with Abeta were incubated over a solid template prepared by immobilizing Abeta42 oligomers. The influence of Zn2+,Cu2+, and Fe3+ on Abeta aggregation was investigated by two approaches: co-incubation and sequential addition. Our results using ex situ AFM, ThT-induced fluorescence, and FTIR spectroscopy indicated that the co-incubation of Cu2+, Zn2+, and Fe3+ significantly altered the morphology of aggregates. A concentration dependence study with mixed metal ions suggested that Zn2+ was required at much lower concentrations than Cu2+ to yield nonfibrillar amorphous Abeta deposits. In addition, sequential addition of Zn2+ or Cu2+ on fibrillar aggregates formed by Fe3+ demonstrated that Zn2+ and Cu2+ could possibly change the conformation of the aggregates induced by Fe3+. Our findings elucidate the coexistence of multiple metal ions through their interactions with Abeta peptides or its aggregates.  相似文献   

14.
Zinc-induced aggregation of amyloid-β peptide (Aβ) is a hallmark molecular feature of Alzheimer's disease. Here we provide direct thermodynamic evidence that elucidates the role of the Aβ region 6-14 as the minimal Zn(2+) binding site wherein the ion is coordinated by His(6), Glu(11), His(13), and His(14). With the help of isothermal titration calorimetry and quantum mechanics/molecular mechanics simulations, the region 11-14 was determined as the primary zinc recognition site and considered an important drug-target candidate to prevent Zn(2+)-induced aggregation of Aβ.  相似文献   

15.
Abeta binds Zn(2+), Cu(2+), and Fe(3+) in vitro, and these metals are markedly elevated in the neocortex and especially enriched in amyloid plaque deposits of individuals with Alzheimer's disease (AD). Zn(2+) precipitates Abeta in vitro, and Cu(2+) interaction with Abeta promotes its neurotoxicity, correlating with metal reduction and the cell-free generation of H(2)O(2) (Abeta1-42 > Abeta1-40 > ratAbeta1-40). Because Zn(2+) is redox-inert, we studied the possibility that it may play an inhibitory role in H(2)O(2)-mediated Abeta toxicity. In competition to the cytotoxic potentiation caused by coincubation with Cu(2+), Zn(2+) rescued primary cortical and human embryonic kidney 293 cells that were exposed to Abeta1-42, correlating with the effect of Zn(2+) in suppressing Cu(2+)-dependent H(2)O(2) formation from Abeta1-42. Since plaques contain exceptionally high concentrations of Zn(2+), we examined the relationship between oxidation (8-OH guanosine) levels in AD-affected tissue and histological amyloid burden and found a significant negative correlation. These data suggest a protective role for Zn(2+) in AD, where plaques form as the result of a more robust Zn(2+) antioxidant response to the underlying oxidative attack.  相似文献   

16.
Aggregation of the amyloid beta (Abeta) peptide yields both fibrillar precipitates and soluble oligomers, and is associated with Alzheimer's disease (AD). In vitro, Cu(2+) and Zn(2+) strongly bind Abeta and promote its precipitation. However, less is known about their interactions with the soluble oligomers, which are thought to be the major toxic species responsible for AD. Using fluorescence correlation spectroscopy to resolve the various soluble species of Abeta, we show that low concentrations of Cu(2+) (1 microM) and Zn(2+) (4 microM) selectively eliminate the oligomeric population (within approximately 2h), while Mg(2+) displays a similar effect at a higher concentration (60 microM). This uncovers a new aspect of Abeta-metal ion interactions, as precipitation is not substantially altered at these low metal ion concentrations. Our results suggest that physiological concentrations of Cu(2+) and Zn(2+) can critically alter the stability of the toxic Abeta oligomers and can potentially control the course of neurodegeneration.  相似文献   

17.
Phosphotriesterase, isolated from the soil-dwelling bacterium Pseudomonas diminuta, catalyzes the detoxification of organophosphate-based insecticides and chemical warfare agents. The enzyme has attracted significant research attention in light of its possible employment as a bioremediation tool. As naturally isolated, the enzyme is dimeric. Each subunit contains a binuclear zinc center that is situated at the C-terminal portion of a "TIM" barrel motif. The two zincs are separated by approximately 3.4 A and coordinated to the protein via the side chains of His 55, His 57, His 201, His 230, Asp 301, and a carboxylated Lys 169. Both Lys 169 and a water molecule (or hydroxide ion) serve to bridge the two zinc ions together. Interestingly, these metals can be replaced with cadmium or manganese ions without loss of enzymatic activity. Here we describe the three-dimensional structures of the Zn(2+)/Zn(2+)-, Zn(2+)/Cd(2+)-, Cd(2+)/Cd(2+)-, and Mn(2+)/Mn(2+)-substituted forms of phosphotriesterase determined and refined to a nominal resolution of 1.3 A. In each case, the more buried metal ion, referred to as the alpha-metal, is surrounded by ligands in a trigonal bipyramidal ligation sphere. For the more solvent-exposed or beta-metal ion, however, the observed coordination spheres are either octahedral (in the Cd(2+)/Cd(2+)-, Mn(2+)/Mn(2+)-, and the mixed Zn(2+)/Cd(2+)-species) or trigonal bipyramidal (in the Zn(2+)/Zn(2+)-protein). By measuring the anomalous X-ray data from crystals of the Zn(2+)/Cd(2+)-species, it has been possible to determine that the alpha-metal ion is zinc and the beta-site is occupied by cadmium.  相似文献   

18.
The photoreceptor cGMP phosphodiesterase (PDE6) plays a key role in vertebrate vision, but its enzymatic mechanism and the roles of metal ion co-factors have yet to be determined. We have determined the amount of endogenous Zn(2+) in rod PDE6 and established a requirement for tightly bound Zn(2+) in catalysis. Purified PDE6 contained 3-4-g atoms of zinc/mole, consistent with an initial content of two tightly bound Zn(2+)/catalytic subunit. PDE with only tightly bound Zn(2+) and no free metal ions was inactive, but activity was fully restored by Mg(2+), Mn(2+), Co(2+), or Zn(2+). Mn(2+), Co(2+), and Zn(2+) also induced aggregation and inactivation at higher concentrations and longer times. Removal of 93% of the tightly bound Zn(2+) by treatment with dipicolinic acid and EDTA at pH 6.0 resulted in almost complete loss of activity in the presence of Mg(2+). This activity loss was blocked almost completely by Zn(2+), less potently by Co(2+) and almost not at all by Mg(2+), Mn(2+), or Cu(2+). The lost activity was restored by the addition of Zn(2+), but Co(2+) restored only 13% as much activity, and other metals even less. Thus tightly bound Zn(2+) is required for catalysis but could also play a role in stabilizing the structure of PDE6, whereas distinct sites where Zn(2+) is rapidly exchanged are likely occupied by Mg(2+) under physiological conditions.  相似文献   

19.
Elevated levels of zinc2+ and copper2+ are found chelated to the amyloid-beta-peptide (Abeta) in isolated senile plaque cores of Alzheimer's disease (AD) patients. However, the precise residues involved in Zn2+ ligation are yet to be established. We have used 1H NMR and CD to probe the binding of Zn2+ to Abeta(1-28). Zinc binding to Abeta causes a number of 1H NMR resonances to exhibit intermediate exchange broadening upon Zn2+ addition, signals in slow and fast exchange are also observed. In addition, there is a general loss of signal for all resonances with Zn2+ addition, suggestive of the formation of high molecular weight polymeric species. Perturbations in specific 1H NMR resonances between residues 6 and 14, and analysis of various Abeta analogues in which each of the three His residues have been replaced by alanine, indicates that His6, His13 and His14 residues are implicated in Zn-Abeta binding. Complementary studies with Cd2+ ions cause perturbations to 1H NMR spectra that are strikingly similar to that observed for Zn2+. Binding monitored at Val12 indicates a 1:1 stoichiometry with Abeta for both Zn2+ and Cd2+ ions. Circular Dichroism (CD) studies in the far-UV indicate quite minimal ordering of the main-chain with Zn2+ or Cd2+ addition. Changes in the far-UV are quite different from that obtained with Cu2+ additions indicating that Zn2+ coordination is distinct from that of Cu2+ ions. Taken together, these observations seem to suggest that Zn2+ coordination is dominated by inter-molecular coordination and the formation of polymeric species.  相似文献   

20.
Zinc ion (Zn(2+)) is an endogenous allosteric modulator that regulates the activity of a wide variety of ion channels in a reversible and concentration-dependent fashion. Here we used patch clamp recording to study the effects of Zn(2+) on the melastatin transient receptor potential 2 (TRPM2) channel. Zn(2+) inhibited the human (h) TRPM2 channel currents, and the steady-state inhibition was largely not reversed upon washout and concentration-independent in the range of 30-1000 μM, suggesting that Zn(2+) induces channel inactivation. Zn(2+) inactivated the channels fully when they conducted inward currents, but only by half when they passed outward currents, indicating profound influence of the permeant ion on Zn(2+) inactivation. Alanine substitution scanning mutagenesis of 20 Zn(2+)-interacting candidate residues in the outer pore region of the hTRPM2 channel showed that mutation of Lys(952) in the extracellular end of the fifth transmembrane segment and Asp(1002) in the large turret strongly attenuated or abolished Zn(2+) inactivation, and mutation of several other residues dramatically changed the inactivation kinetics. The mouse (m) TRPM2 channels were also inactivated by Zn(2+), but the kinetics were remarkably slower. Reciprocal mutation of His(995) in the hTRPM2 channel and the equivalent Gln(992) in the mTRPM2 channel completely swapped the kinetics, but no such opposing effects resulted from exchanging another pair of species-specific residues, Arg(961)/Ser(958). We conclude from these results that Zn(2+) inactivates the TRPM2 channels and that residues in the outer pore are critical determinants of the inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号