首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of complexes between various thrombin preparations and a 30-mer aptamer DNA was comparatively studied, and a correlation between the complex formation and the fibrinogen-hydrolyzing activity of thrombin was found. The aptamer DNA was shown to inhibit the fibrin formation from fibrinogen.  相似文献   

2.
Cho M  Kim Y  Han SY  Min K  Rahman MA  Shim YB  Ban C 《BMB reports》2008,41(2):126-131
The folding of aptamer immobilized on an Au electrode was successfully detected using label-free electrochemical methods. A thrombin binding DNA aptamer was used as a model system in the presence of various monovalent cations. Impedance spectra showed that the extent to which monovalent cations assist in folding of aptamer is ordered as K(+) > NH(4)(+) > Na(+) > Cs(+). Our XPS analysis also showed that K(+) and NH(4)(+) caused a conformational change of the aptamer in which it forms a stable complex with these monovalent ions. Impedance results for the interaction between aptamer and thrombin indicated that thrombin interacts more with folded aptamer than with unfolded aptamer. The EQCM technique provided a quantitative analysis of these results. In particular, the present impedance results showed that thrombin participates a folding of aptamer to some extent, and XPS analysis confirmed that thrombin stabilizes and induces the folding of aptamer.  相似文献   

3.
Specific binding of the anticoagulants heparin and antithrombin III to the blood clotting cascade factor human thrombin was recorded as a function of time with a Love-wave biosensor array consisting of five sensor elements. Two of the sensor elements were used as references. Three sensor elements were coated with RNA or DNA aptamers for specific binding of human thrombin. The affinity between the aptamers and thrombin, measured using the biosensor, was within the same range as the value of K(D) measured by filter binding experiments. Consecutive binding of the thrombin inhibitors heparin, antithrombin III or the heparin-antithrombin III complex to the immobilized thrombin molecules, and binding of a ternary complex of heparin, anithrombin III, and thrombin to aptamers was evaluated. The experiments showed attenuation of binding to thrombin due to heparin-antithrombin III complex formation. Binding of heparin activated the formation of the inhibitory complex of antithrombin III with thrombin about 2.7-fold. Binding of the DNA aptamer to exosite II appeared to inhibit heparin binding to exosite I.  相似文献   

4.
We have applied circular dichroism (CD), temperature-gradient gel electrophoresis (TGGE) and differential scanning calorimetry (DSC) to study the properties of novel bioengineered DNA aptamer dimers sensitive to fibrinogen (F) and heparin (H) binding sites of thrombin and compared them with canonical single stranded aptamer sensitive to fibrinogen binding site of thrombin (Fibri). The homodimer (FF) and heterodimer (FH) aptamers were constructed based on hybridization of their supported parts. CD results showed that both FF and FH dimers form stable guanine quadruplexes in the presence of potassium ions like those in Fibri. The thermal stability of aptamer dimers was slightly lower compared to those of canonical aptamers, but sufficient for practical applications. Both FF and FH aptamer dimers exhibited a potassium-dependent inhibitory effect on thrombin-mediated fibrin gel formation, which was on average two-fold higher than those of canonical single stranded Fibri aptamers.  相似文献   

5.
以凝血酶适体(aptamer)为例,利用适体和核酸外切酶特性,通过定量PCR扩增建立一种高灵敏的蛋白质检测方法.首先合成3段寡核苷酸序列即凝血酶适体探针,上游连接子和下游连接子.将适体探针与凝血酶温育结合后,再加入核酸外切酶I降解未能结合的探针.接着将保护下来的探针与连接子杂交、连接和对连接产物进行定量PCR .分别建立连接产物标准品浓度与Ct 值的标准曲线和凝血酶浓度与连接产物浓度的标准曲线,通过定量PCR对凝血酶进行定量.结果显示,基于适体的外切酶保护凝血酶检测方法灵敏度较高,连接产物标准品浓度的对数值和Ct 值之间的方程为y =- 2 95x + 33 6 5 (R2 =0. 990 ,P <0 .0 1) ;凝血酶浓度和连接产物浓度对数值之间的方程为y =0 94x - 0 . 2 9(R2 =0 . 998,P <0 . 0 1) ,还对可能影响检测的有关参数举行了探讨.  相似文献   

6.
A fiber-optic microarray biosensor using aptamers as receptors   总被引:7,自引:0,他引:7  
A fiber-optic biosensor using an aptamer receptor has been developed for the measurement of thrombin. An antithrombin DNA aptamer was immobilized on the surface of silica microspheres, and these aptamer beads were distributed in microwells on the distal tip of an imaging fiber. A different oligonucleotide bead type prepared using the same method as the aptamer beads was also included in the microwells to measure the degree of nonspecific binding. The imaging fiber was coupled to a modified epifluorescence microscope system, and the distal end of the fiber was incubated with a fluorescein-labeled thrombin (F-thrombin) solution. Nonlabeled thrombin could be detected using a competitive binding assay with F-thrombin. The aptamer beads selectively bound to the target and could be reused without any sensitivity change. The fiber-optic microarray system has a detection limit of 1 nM for nonlabeled thrombin, and each test can be performed in ca. 15 min including the regeneration time.  相似文献   

7.
Aptamers are nucleic acid based molecular recognition elements with a high potential for the theranostics. Some of the aptamers are under development for therapeutic applications as promising antithrombotic agents; and G-quadruplex DNA aptamers, which directly inhibit the thrombin activity, are among them. RA-36, the 31-meric DNA aptamer, consists of two thrombin binding pharmacophores joined with the thymine linker. It has been shown earlier that RA-36 directly inhibits thrombin in the reaction of fibrinogen hydrolysis, and also it inhibits plasma and blood coagulation. Studies of both inhibitory and anticoagulation effects had indicated rather high species specificity of the aptamer. Further R&D of RA-36 requires exploring its efficiency in vivo. Therefore the development of a robust and adequate animal model for effective physiological studies of aptamers is in high current demand. This work is devoted to in vivo study of the antithrombotic effect of RA-36 aptamer. A murine model of thrombosis has been applied to reveal a lag and even prevention of thrombus formation when RA-36 was intravenous bolus injected in high doses of 1.4–7.1 µmol/kg (14–70 mg/kg). A comparative study of RA-36 aptamer and bivalirudin reveals that both direct thrombin inhibitors have similar antithrombotic effects for the murine model of thrombosis; though in vitro bivalirudin has anticoagulation activity several times higher compared to RA-36. The results indicate that both RA-36 aptamer and bivalirudin are direct thrombin inhibitors of different potency, but possible interactions of the thrombin-inhibitor complex with other components of blood coagulation cascade level the physiological effects for both inhibitors.  相似文献   

8.
It is noteworthy that the formation of the DNA G-quadruplex is induced by factors other than stabilizing cations because this event probably occurs in living cells. Previous studies have shown that thrombin-binding DNA aptamer (TBA) forms a chair-type intramolecular G-quadruplex structure that binds with thrombin protein in the absence of stabilizing cations. Here, we used circular dichroism (CD) spectroscopy to confirm G-quadruplex formation in the presence of thrombin without stabilizing cations. We obtained characteristic CD spectra that demonstrated that TBA forms the distinctive G-quadruplex structure. Additionally, we investigated G-quadruplex formation induced by change of solvent environment: the influence of low-temperature conditions and molecular crowding.  相似文献   

9.
Novel electrochemical detection system for protein in sandwich manner using the aptamers was developed. Two different aptamers, which recognize different positions of thrombin, were chosen to construct sandwich type sensing system for protein, and one was immobilized onto the gold electrode for capturing thrombin onto the electrode and the other was used for detection. To obtain the signal, the aptamer for detection was labeled with pyrroquinoline quinone glucose dehydrogenase ((PQQ)GDH), and the electrical current, generated from glucose addition after the formation of the complex of thrombin, gold immobilized aptamer and the (PQQ)GDH labeled aptamer on the electrode, was measured. The increase of the electric current generated by (PQQ)GDH was observed in dependent manner of the concentration of thrombin added, and more than 10nM thrombin was detected selectively. The batch type protein sensing system was constructed using the two different aptamers sandwiching thrombin and it showed linear response to the increase of the thrombin concentration in the range of 40-100 nM.  相似文献   

10.
A beacon aptamer-based biosensor for the detection of thrombin was developed using electrochemical transduction method. Gold surface was modified with a beacon aptamer covalently linked at 5'-terminus with a linker containing a primary aliphatic amine. Methylene blue (MB) was intercalated into the beacon sequence, and used as an electrochemical marker. When the beacon aptamer immobilized on gold surface encounters thrombin, the hairpin forming beacon aptamer is conformationally changed to release the intercalated MB, resulting a decrease in electrical current intensity in voltamogram. The peak signal of the MB is clearly decreased by the binding of thrombin onto the beacon aptamer. The linear range of the signal was observed between 0 and 50.8 nM of thrombin with 0.999 correlation factor. This method was able to linearly and selectively detect thrombin with a detection limit of 11 nM.  相似文献   

11.
Lead is unusually effective in sequence-specific folding of DNA   总被引:4,自引:0,他引:4  
DNA quadruplex structures based on the guanine quartet are typically stabilized by monovalent cations such as K(+), Na(+), or NH(+)(3). Certain divalent cations can also induce quadruplex formation, such as Sr(2+). Here we show that Pb(2+) binds with unusually high affinity to the thrombin binding aptamer, d(GGTTGGTGTGGTTGG), inducing a unimolecular folded structure. At micromolar concentrations the binding is stoichiometric, and a single lead cation suffices to fold the aptamer. The lead-induced changes in UV and CD spectra are characteristic of folded quadruplexes, although the long wavelength CD maximum occurs at 312 nm rather than the typical value of 293 nm. The one-dimensional exchangeable proton NMR spectrum shows resonances expected for imino protons involved in guanine quartet base-pairing. Furthermore, two-dimensional NMR experiments reveal NOE contacts typically seen in folded structures formed by guanine quartets, such as the K(+) form of the thrombin aptamer. Only sequences capable of forming guanine quartets appear to bind Pb(+2) tightly and change conformation. This sequence-specific, tight DNA binding may be relevant to possible genotoxic effects of lead in the environment.  相似文献   

12.
The thrombin-binding aptamer d(GGTTGGTGTGGTTGG) (TBA) is an efficient tool for the inhibition of thrombin function. We have studied conformations and thermodynamic stability of a number of modified TBA oligonucleotides containing thiophosphoryl substitution at different internucleotide sites. Using circular dichroism such modifications were found not to disrupt the antiparallel intramolecular quadruplex specific for TBA. Nevertheless, the presence of a single thiophosphoryl bond between two G-quartet planes led to a significant decrease in the quadruplex thermostability. On the contrary, modifications in each of the loop regions either stabilized an aptamer structure or did not reduce its stability. According to the thrombin time test, the aptamer with thio-modifications in both TT loops (LL11) exhibits the same antithrombin efficiency as the original TBA. This aptamer shows better stability against DNA nuclease compared to that of TBA. We conclude that such thio-modification patterns are very promising for the design of anticoagulation agents.  相似文献   

13.
A 15-mer DNA aptamer (named TBA) adopts a G-quadruplex structure that strongly inhibits fibrin-clot formation by binding to thrombin. We have performed thermodynamic analysis, binding affinity and biological activity studies of TBA variants modified by unlocked nucleic acid (UNA) monomers. UNA-U placed in position U3, U7 or U12 increases the thermodynamic stability of TBA by 0.15–0.50 kcal/mol. In contrast, modification of any position within the two G-quartet structural elements is unfavorable for quadruplex formation. The intramolecular folding of the quadruplexes is confirmed by Tm versus ln c analysis. Moreover, circular dichroism and thermal difference spectra of the modified TBAs displaying high thermodynamic stability show bands that are characteristic for antiparallel quadruplex formation. Surface plasmon resonance studies of the binding of the UNA-modified TBAs to thrombin show that a UNA monomer is allowed in many positions of the aptamer without significantly changing the thrombin-binding properties. The biological effect of a selection of the modified aptamers was tested by a thrombin time assay and showed that most of the UNA-modified TBAs possess anticoagulant properties, and that the construct with a UNA-U monomer in position 7 is a highly potent inhibitor of fibrin-clot formation.  相似文献   

14.
Different assay formats based on the coupling of magnetic beads with electrochemical transduction were compared here for the detection of thrombin by using a thrombin specific aptamer. By using the thrombin-binding aptamer, a direct and an indirect competitive assay for thrombin have been developed by immobilising the aptamer or the protein, respectively. Moreover, another strategy was based on the direct measurement of the enzymatic product of thrombin captured by the immobilised aptamer. All the assays were developed by coupling the electrochemical transduction with the innovative and advantageous use of magnetic beads.

The assays based on the immobilisation of the protein were not successful since no binding was recorded between thrombin and its aptamer. With the direct competitive assay, when the aptamer was immobilised onto the magnetic beads, a detection limit of 430 nM for thrombin was achieved. A lower detection limit for the protein (175 nM) was instead obtained by detecting the product of the enzymatic reaction catalysed by thrombin. All these assays were finally compared with a sandwich assay which reached a detection limit of 0.45 nM of thrombin demonstrating the best analytical performances.

With this comparison the importance of a deep study on the different analytical approaches for thrombin detection to reach the performances of the best assay configuration has been demonstrated.  相似文献   


15.
A novel electrochemical method for the detection of bioaffinity interactions based on a gold-nanoparticles sensing platform and on the usage of stripping voltammetry technique was developed. The oxidation of gold surface (resulted in gold oxide formation) upon polarization served as a basis for analytical response. As a model, thrombin-thrombin binding aptamer couple was chosen. The aptamer was immobilized on a screen-printed electrode modified with gold-nanoparticles by avidin-biotin technology. Cathodic peak area was found proportional to thrombin quantity specifically adsorbed onto electrode surface. Sigmoid calibration curve as is typical for immunoassay was obtained, with thrombin detection limit of 10(-9)M. Linear range corresponds from 10(-8) to 10(-5)M thrombin concentration or 2 x 10(-14) to 2 x 10(-11)mol/electrode (R=0.996). Binding of thrombin to an aptamer has also been detected using the ferricyanide/ferrocyanide redox couple as electrochemical indicator.  相似文献   

16.
A new quantum dot (QD)-aptamer (apt) beacon that acts by folding-induced dissociation of a DNA intercalating dye, BOBO-3(B), is demonstrated with label-free thrombin detection. The beacon, denoted as QD-apt:B, is constructed by (1) coupling of a single-stranded thrombin aptamer to Qdot 565 via EDC/Sulfo-NHS chemistry and (2) staining the duplex regions of the aptamer on QD with excess BOBO-3 before thrombin binding. When mixing a thrombin sample with QD-apt:B, BOBO-3 is competed away from the beacon due to target-induced aptamer folding, which then causes a decrease in QD fluorescence resonance energy transfer (FRET)-mediated BOBO-3 emission and achieves thrombin quantitation. In this work, the effects of Mg(2+), coupling time, and aptamer type on the beacon's performances are investigated and discussed thoroughly with various methods, including transmission electron microscopy (TEM), dynamic light scattering (DLS), and two-color differential gel electrophoresis. Using the best aptamer beacon (HTQ37), we attain highly specific and wide-range detection (from nM to μM) of thrombin in buffer, and the beacon can sense nM-range thrombin in 15% diluted serum. Compared to the reported QD aptamer assays, our method is advantageous from the aspect of using a simple sensory unit design without losing the detection sensitivity. Therefore, we consider the QD-apt:B beacon a potential alternative to immuno-reagents and an effective tool to study nucleic acid folding on QD as well.  相似文献   

17.
Atomic force microscopy (AFM) can detect the adhesion or affinity force between a sample surface and cantilever, dynamically. This feature is useful as a method for the selection of aptamers that bind to their targets with very high affinity. Therefore, we propose the Systematic Evolution of Ligands by an EXponential enrichment (SELEX) method using AFM to obtain aptamers that have a strong affinity for target molecules. In this study, thrombin was chosen as the target molecule, and an ‘AFM-SELEX’ cycle was performed. As a result, selected cycles were completed with only three rounds, and many of the obtained aptamers had a higher affinity to thrombin than the conventional thrombin aptamer. Moreover, one type of obtained aptamer had a high affinity to thrombin as well as the anti-thrombin antibody. AFM-SELEX is, therefore, considered to be an available method for the selection of DNA aptamers that have a high affinity for their target molecules.  相似文献   

18.
Thrombin is a major component of blood clotting and involved in the formation of a fibrin clot. One of the precursors during thrombin maturation is prethrombin-2, with the presence of Arg363-Ile364 bond between the light and heavy chain of protein, the only distinction from thrombin. Prethrombin-2 is able to interact with less efficiency with a 15-mer thrombin-binding aptamer (TBA). We investigate the interaction of both known conformers of TBA with thrombin and prethrombin-2 by simulation of molecular dynamics. It was shown that TBA could interact with thrombin in both conformations with similar efficiency, although a stable complex of prethrombin-2 with TBA was found only in conformation identical with the aptamer structure, pdb 1HAO. Analysis of molecular dynamics of complexes offered an assumption that the motion of the exosite-1 forming loop Lys428-Ile438 determined the difference in affinity of the complexes of TBA with thrombin and prethrombin-2.  相似文献   

19.
We have developed an aptameric enzyme subunit (AES) which can detect the DNA in a homogeneous solution. The AES is an artificial enzyme subunit composed of an enzyme-inhibiting aptamer bearing a target-molecule binding site. We connected a probe DNA to a thrombin-inhibiting aptamer at its 5′ or 3′ end. The inhibitory activity of the thrombin-inhibiting aptamer bearing the probe DNA decreased compared to that of the original aptamer; however, it recovered upon hybridization with the target DNA. Using this AES, we were able to detect target DNAs by measuring the thrombin activity in a homogeneous solution. K. Ikebukuro and W. Yoshida have contributed equally to this work.  相似文献   

20.
We present the DNA-assisted control of enzymatic activity for the detection of a target protein using a new type of DNA–enzyme conjugate. The conjugate is composed of an enzyme inhibitor to regulate enzyme activity and a DNA aptamer to be responsive toward the analyte protein. Glutathione S-transferase (GST) and thrombin were selected as a model enzyme and an analyte protein. A hexahistidine tag was genetically attached to the C terminus of the GST, and the 5′ end of an oligonucleotide was conjugated with nitrilotriacetic acid (NTA) for the site-specific conjugation of the DNA with the GST based on a Ni2+ complex interaction. We found that fluorescein acted as a weak inhibitor of GST and succeeded in the regulation of GST activity by increasing the local concentration of the weak inhibitor by the hybridization of a 3′-end fluorescein-modified DNA. The catalytic activity of the DNA aptamer–enzyme conjugate showed a dose-dependent response to thrombin, indicating that the GST activity was clearly recovered by the binding of the DNA aptamer to thrombin. The current system enables the sensitive and specific detection of thrombin simply by measuring the enzymatic activity in a homogeneous medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号