首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The distribution of endogenous peroxidase activity in rat, mouse and human thyroid follicle cells was studied with electron microscopic cytochemistry after incubation in 3-3'-diaminobenzidine (DAB). In all three species enzyme activity was found at the apical plasma membrane (facing the follicle lumen) as well as in intracellular compartments. The enzyme activity in the apical plasma membrane was more sensitive to changes in fixation conditions than the activity in intracellular compartments. Under optimal conditions more than 90% of the follicle cells in normal rat thyroids displayed a cytochemical reaction at the apical plasma membrane. In all three species the reaction product at the apical plasma membrane formed a gradient which extended into the colloid which otherwise was unreactive. Evidence obtained indicated that this gradient was not due to the presence of soluble peroxidase in the lumen but most likely signified the diffusion of the reaction product from the membrane-bound enzyme.  相似文献   

2.
Iodination within the thyroid follicle is intimately associated with a thyroid peroxidase. In order to locate the in vivo site of iodination, the initial cytochemical appearance of this enzyme has been determined in fetal rat thyroid and its presence correlated with the onset of iodinated thyroglobulin synthesis. Peroxidase first appears in follicular cells during the 18th day of gestation. It is seen first in the perinuclear cisternae, the cisternae of the endoplasmic reticulum, and within the inner few Golgi lamellae. These organelles presumably represent sites of peroxidase synthesis. During the 19th and 20th days of gestation, there is a tremendous increase in peroxidase activity. In addition to the stained sites described, there are now many peroxidase-positive apical vesicles in the follicular cells. Newly forming follicles stain most conspicuously for peroxidase, the reaction product being heavily concentrated at the external surfaces of apical microvilli and in the adjacent colloid. Iodinated thyroglobulin becomes biochemically detectable in thyroids during the 19th day of gestation and increases greatly during the 20th day. The parallel rise in peroxidase staining that just precedes, and overlaps, the rise in iodinated thyroglobulin, suggests that apical vesicles and the apical cell membrane are the major sites of iodination within the thyroid follicle.  相似文献   

3.
Sites of H2O2 generation in lightly prefixed, intact thyroid follicles were studied by two cytochemical reactions: peroxidase-dependent DAB oxidation and cerium precipitation. In both cases reaction product accumulated on the apical surface of the follicle cell at the membrane-colloid interface. The former reaction was inhibited by the peroxidase inhibitor, aminotriazole; both reactions were blocked by the presence of catalase. NADH in the medium slightly increased the amount of cerium precipitation. The ferricyanide technique for oxidoreductase activity was also applied; reaction product again was associated with the apical surface. These results strongly imply that the follicle cells have a NADH oxidizing system generating H2O2 at the apical plasma membrane.  相似文献   

4.
Summary In early diplotene frog oocytes incubated to illustrate thiamine pyrophosphatase (TPPase) activity, reaction product is uniformly distributed within the compartments of the endoplasmic reticulum and nuclear envelope as well as within the saccules and small vesicles comprising the dictyosomes. With continued oocyte development the reaction product becomes concentrated in localized regions of the dictyosome saccules. Eventually, the enzyme is no longer apparent within the endoplasmic reticulum, but is concentrated in the cisternae of the inner dictyosome saccules. The variations noted suggest that the enzyme is synthesized early in diplotene by the endoplasmic reticulum and is subsequently transported to the Golgi apparatus where it is consistently observed at later developmental stages. TPPase activity is also present in the Golgi apparatus of follicle and theca cells as well as in ovarian epithelial cells. The enzyme is also detected in micropinocytotic vesicles contained within the cells comprising the follicle envelope and in intercellular spaces of the follicle. Horseradish peroxidase injected into the coelomic cavity is transported via micropinocytotic vesicles into and through the cells comprising the follicle envelope and in intercellular spaces. The exogenous protein is not found even after a prolonged time period in early diplotene oocytes. The protein is, however, present in large spherical and tubular vesicles in the cortex of vitellogenic oocytes approximately 500 microns in diameter. The possible functional role of the enzyme TPPase during oogenesis is discussed.This investigation was supported by a research grant from the National Science Foundation (GB-8736).  相似文献   

5.
Summary A technique for the cytochemical demonstration of peroxidase activity in unfixed guinea-pig thyroid tissue is described in this paper. The substrate 3,3-diaminobenzidine tetrahydrochloride (DAB) is oxidized by the peroxidase to form an insoluble reaction product. Optimal results were obtained after 20 min incubation at 37° C in reaction medium containing 1.4mm DAB (in 0.1m Tris-HCl) and 0.15mm hydrogen peroxide at pH 8.0. Peroxidase activity was seen in the thyroid follicle cells as a diffuse brown reaction product (which was more dense and granular in erythrocytes). The enzyme activity was quantified using a scanning-integrating microdensitometer, and the effects of two specific peroxidase inhibitors were evaluated. Both 3-amino-1,2,4-triazole and methimazole inhibited peroxidase activity in the follicle cells (enzyme activity was still seen in the erythrocytes), maximal inhibition occurring at 10mm. Stimulation of peroxidase in the thyroid was observedin vivo (1 I.U. TSH administered every 8 h for two days), with the maximal stimulation occurring after 1 day.  相似文献   

6.
The structure and function of abluminal vesicles in endothelial cells of rat retinal capillaries was examined using glutaraldehyde-tannic acid fixation and the hemeproteins--horseradish peroxidase, microperoxidase, and lactoperoxidase--as tracers. Numerous vesicles, delimited by a tannic acid-positive membrane, were distributed along the abluminal front. Other vesicles were arranged in clusters and chains or tubule-like structures. Such vesicles were not found in the vicinity of the capillary lumen. When the retina was exposed to hemeproteins, either in vitro or after intravitreal injection, the abluminal vesicles became labeled with tracer reaction product. Apparently "free" vesicles and tubules seen in tangential sections through the basal lamina were also labeled, suggesting that they were in continuity with the plasma membrane in another plane of section. No enzyme reaction product was present in the capillary lumen. Peroxidase-positive multivesicular bodies were observed, suggesting that some protein was endocytosed and directed to lysosomes where it was presumably degraded. The results suggest that abluminal endothelial vesicles represent pits or invaginations of the plasma membrane and, as such, are not involved in the transendothelial transport of protein from the perivascular space to the capillary lumen. Tannic acid treatment revealed a population of similar vesicles associated with the plasma membrane of pericytes. After exposure to hemeproteins, enzyme reaction product was localized in these vesicles and in a few multivesicular bodies. The results suggest that the majority of these vesicles are in continuity with the plasma membrane and are not involved in endocytosis.  相似文献   

7.
Summary Using horseradish peroxidase (HRP) as a tracer, we have investigated if the so-called apical tubules (AT) in the kidney proximal tubule cells are directly involved in the endocytic process by carrying the tracer into the cells, or if they are derived from the intracellular membrane compartments. Rat kidney was fixed by vascular perfusion at different time intervals after intravenous injection of HRP and prepared for electron microscopy. An analysis revealed that 0.5 min after injection, invaginations of the plasma membrane and small apical endocytic vesicles, including coated vesicles, were labelled with reaction product, whereas almost all large apical endocytic vacuoles and the AT were negative. The endocytic vacuoles and about 18% of the AT were labelled 1 min after injection. The reaction product in the large endocytic vacuoles was usually seen along the luminal surface of the vacuoles. The AT with reaction product appeared as a branched network, and were frequently connected with the labelled endocytic vacuoles. Three min after injection, reaction product was detected in about 38% of the AT, and thereafter, the percentage increased to about 74% after 7 min. No reaction product was detected in the Golgi complex at any time after HRP-injection. These findings indicate that the AT are probably formed by budding off from the large endocytic vacuoles, rather than being directly involved in the endocytic process.  相似文献   

8.
 We have demonstrated the alteration of the localization of ecto-ATPase activity in human neutrophils after stimulation with phorbol myristate acetate or N-formylmethionyl-leucyl-phenylalanine using a cerium-based cytochemical method. In unstimulated cells, the enzyme activity was observed on the plasma membrane. Both the diazonium salt of sulfanilic acid and diethylpyrocarbonate inhibited the production of the reaction precipitates. Within 2–3 min of stimulation, cells developed cytoplasmic projections (ruffles). The ecto-ATPase activity on the plasma membrane of these ruffles was, however, weaker than that at the non-ruffle-forming side. The ruffle-forming side (RFS) was also the site where elongated tubular structures positive for the enzyme reaction tended to concentrate and associated with the plasma membrane. The enzyme activity was also detected in intracellular compartments, which appeared predominantly in the RFS concomitantly with the disappearance of the enzyme activity from the plasma membrane. Using a series of thick sections and computer-assisted three-dimensional reconstruction, the enzyme reaction-positive internalized membranes were visualized as a complicated mass formed by enzyme reaction-positive vesicles which gathered together and were, at least in part, interconnected. The present results indicate that the detected enzyme reaction is a product of the ecto-ATPase activity, and that RFS possibly serves the membrane flow with respect to endocytosis. Accepted: 25 February 1997  相似文献   

9.
Summary The effect of exposure to leupeptin (25 g/ml for 24 h) on the endocytotic activity and the membrane flow of apical cell membranes was studied in endodermal cells of cultured rat visceral yolk sacs by applying a doublelabelling method using concanavalin-A ferritin (Con-A Fer) and horseradish peroxidase (HRP). Control and leupeptintreated yolk sacs were labelled with Con-A Fer at 4°C and then incubated with HRP for 5, 15 or 60 min at 37°C. In controls, HRP reaction product was detected after 5 min in many of the apical vacuoles as well as a few lysosomes; after 15 min, reaction product was observed in all apical vacuoles and in lysosomes of various sizes. These HRP-positive structures usually contained a variable amount of membrane-bound Fer. After 60 min, all apical vacuoles and almost all lysosomes exhibited HRP reactions, but only some of these structures contained Fer particles. At this time, many apical canaliculi (which are involved in membrane recycling) exhibited positive HRP reactions and sometimes also contained Fer particles. In leupeptin-treated cells, HRP reaction product and variable amounts of membrane-bound Fer particles were found in apical vacuoles after 5 min; after 15 min, both labels were also observed in some small lysosomes, and after 60 min, they were found in all apical vacuoles as well as some small and middle-sized lysosomes. Significantly fewer labelled apical vacuoles, lysosomes and apical canaliculi were present after leupeptin treatment than in controls at corresponding times. At all times examined, the giant lysosomes found in leupeptintreated cells did not exhibit any labelling. These findings indicate that, after leupeptin treatment, both endocytotic activity and membrane recycling decrease, and that fusions of the apical vacuolar system with giant lysosomes are retarded or inhibited.Supported by the Deutsche Forschungsgemeinschaft (SFB 105)  相似文献   

10.
The ultrastructural appearance of colloid vacuoles, considered to be a typical sign of hyperactivity in the human thyroid gland, was studied in human thyroid tissue transplanted to nude mice and in human thyroid tissue fixed directly after surgical removal in patients with thyrotoxicosis. Transplanted normal thyroid tissue and toxic diffuse goiter (TDG) tissue was fixed by vascular perfusion with glutaraldehyde 5 or 12 weeks after transplantation. Light microscopic quantification showed that daily injections for 2 weeks of a gamma globulin fraction of patient sera containing thyroid-stimulating immunoglobulins (TSI) greatly increased the number of colloid vacuoles in both types of transplants. The vacuoles were mainly located in the periphery of the follicle lumen, giving the colloid a scalloped appearance. Electron microscopy of TSI-exposed tissue revealed, in addition to colloid vacuoles, the presence of large amounts of membrane material in the follicle lumen. Only sparse amounts of intraluminal membrane material were present in controls. The colloid vacuoles were almost invariably associated with such membrane material, which lined the border between the vacuole and the surrounding colloid. The intraluminal material consisted of spherical and elongated formations, each structure limited by a triple-layered membrane and often containing a dense interior. The elongated structures were often of the same dimensions as microvilli. The apical surface of follicle cells in TSI-exposed tissue expressed numerous microvilli, of which many showed a similar dense interior as the intraluminal membrane structures. The intraluminal membranes frequently showed, like the apical plasma membrane of the follicle cells, a positive reaction for peroxidase. Organelles, such as mitochondria, lysosomes or rough endoplasmic reticulum, were not encountered among the intraluminal membrane structures. These observations indicate that the intraluminal membrane material is derived from the apical plasma membrane of the follicle cells, presumably by shedding of microvilli. A similar association between colloid vacuoles and membrane material was also found in thyroid tissue from patients with thyrotoxicosis fixed directly at operation. It is suggested that the presence of membrane material in the follicle lumen precipitates the formation of colloid vacuoles in hyperactive thyroid tissue. The possible involvement of intraluminal membrane material in the development of microsomal autoantibodies in Graves’ disease, i.e. exposure and presentation of thyroid microsomal antigen (identical to thyroperoxidase) to the immune system, is discussed.  相似文献   

11.
The ultrastructural appearance of colloid vacuoles, considered to be a typical sign of hyperactivity in the human thyroid gland, was studied in human thyroid tissue transplanted to nude mice and in human thyroid tissue fixed directly after surgical removal in patients with thyrotoxicosis. Transplanted normal thyroid tissue and toxic diffuse goiter (TDG) tissue was fixed by vascular perfusion with glutaraldehyde 5 or 12 weeks after transplantation. Light microscopic quantification showed that daily injections for 2 weeks of a gamma globulin fraction of patient sera containing thyroid-stimulating immunoglobulins (TSI) greatly increased the number of colloid vacuoles in both types of transplants. The vacuoles were mainly located in the periphery of the follicle lumen, giving the colloid a scalloped appearance. Electron microscopy of TSI-exposed tissue revealed, in addition to colloid vacuoles, the presence of large amounts of membrane material in the follicle lumen. Only sparse amounts of intraluminal membrane material were present in controls. The colloid vacuoles were almost invariably associated with such membrane material, which lined the border between the vacuole and the surrounding colloid. The intraluminal material consisted of spherical and elongated formations, each structure limited by a triple-layered membrane and often containing a dense interior. The elongated structures were often of the same dimensions as microvilli. The apical surface of follicle cells in TSI-exposed tissue expressed numerous microvilli, of which many showed a similar dense interior as the intraluminal membrane structures. The intraluminal membranes frequently showed, like the apical plasma membrane of the follicle cells, a positive reaction for peroxidase. Organelles, such as mitochondria, lysosomes or rough endoplasmic reticulum, were not encountered among the intraluminal membrane structures. These observations indicate that the intraluminal membrane material is derived from the apical plasma membrane of the follicle cells, presumably by shedding of microvilli. A similar association between colloid vacuoles and membrane material was also found in thyroid tissue from patients with thyrotoxicosis fixed directly at operation. It is suggested that the presence of membrane material in the follicle lumen precipitates the formation of colloid vacuoles in hyperactive thyroid tissue. The possible involvement of intraluminal membrane material in the development of microsomal autoantibodies in Graves' disease, i.e. exposure and presentation of thyroid microsomal antigen (identical to thyroperoxidase) to the immune system, is discussed.  相似文献   

12.
ML-7, (5-iodonaphthalene-1-sulfonyl) homopiperazine, is commonly employed as a myosin light chain kinase (MLCK) inhibitor. In the present study, we demonstrated that ML-7 affects the superoxide (O(2)(-))-producing system of human neutrophils in an MLCK-independent manner. Human neutrophils were stimulated with phorbol myristate acetate (PMA), which does not activate MLCK. ML-7 inhibited extracellular release, but not intracellular production of O(2)(-) in the stimulated cells. Fluorescence microscopy revealed the generation of O(2)(-) at intracellular compartments in the stimulated cells exposed to ML-7. At the electron microscopic level, the reaction product of NADPH oxidase activity was found in intracellular compartments. ML-7 strongly inhibited the association of the oxidant-producing intracellular compartments with the plasma membrane. Furthermore, the upregulation of alkaline phosphatase activity, a marker enzyme of the oxidant-producing intracellular compartments, was also inhibited by ML-7. These findings indicate that ML-7 inhibits the fusion of the oxidant-producing intracellular compartments to the plasma membrane resulting in the inhibition of the extracellular release of O(2)(-) in PMA-stimulated human neutrophils in an MLCK-independent manner.  相似文献   

13.
Summary Ultrastructural and cytochemical techniques were used to study the effects of trypan blue on the response of mouse-thyroid cells to exogenous stimulation by thyroid stimulating hormone (TSH). The dye delayed the response to TSH resulting in decreased colloid-droplet formation in the apical region of the cells. The dye did not stop the shift of trimetaphosphatase activity from lysosomes to phagolysosomes. The duration of the TSH-induced response was shorter in the dye treated thyroids. Small vesicles, with trimetaphosphatase reaction product, were found near Golgi elements, phagolysosomes, and the plasma membrane facing the intercellular space of adjacent follicle cells. Their enzyme activity was not affected by exposure to the dye. These data indicate that the primary effect of trypan blue on the response of thyroid follicle cells to TSH stimulation was reduced endocytosis in the apical region resulting in fewer colloid droplets.  相似文献   

14.
The formation and fate of apical endocytic vesicles in resting and isoproterenol-stimulated rat parotid acinar cells were studied using luminally administered horseradish peroxidase (HRP) to mark the vesicles. The tracer was taken up from the lumen by endocytosis in small, smooth-surfaces "c"- or ring-shaped vesicles. About 1 h after HRP administration the vesicles could be found adjacent to the Golgi apparatus. At later times HRP reaction product was localized in multivesicular bodies and lysosomes; in isoproterenol-stimulated cells it was also present in autophagic vacuoles. HRP reaction product was never localized in any structure associated with secretory granule formation. These results suggest that the apical endocytic vesicles play a role in membrane recovery, but that they are degraded and not reutilized directly in secretory granule formation. Additionally, it was found that when isoproterenol was injected before HRP administration, the apical junctional complexes became permeable to the tracer, allowing it to gain access to the lateral and basal intercellular spaces. This permeability may provide an additional route whereby substances in the extracellular fluid could reach the saliva.  相似文献   

15.
The transport of iodide was studied in porcine thyroid follicle cells cultured in bicameral chambers. The continuous layer of polarized follicle cells, joined by tight junctions, formed a diffusion barrier between the two compartments (apical and basal) of the culture chamber. Uptake and efflux of 125I- at either surface (apical and basolateral) of the cells were thus possible to determine. Protein binding of iodide was inhibited by methimazole (10(-3) M) in all experiments. Radioiodide was taken up by the cells from the basal medium in a thyroid-stimulating hormone (TSH)-dose dependent manner with a maximal cell/medium ratio of 125I- of about 50 in cultures prestimulated with 0.1 to 1 mU/ml for 2 days. This uptake was inhibited by perchlorate and ouabain. In contrast, 125I- was not taken up from the apical medium. In preloaded cells, iodide efflux was rapidly (within 1-2 min) and dose-dependently (0.1-10 mU/ml) stimulated by TSH. Bidirectional measurements revealed that TSH stimulated iodide efflux in apical direction, leaving efflux in basal direction unchanged. In experiments with continuous uptake of label from the basal compartment, the TSH-stimulated efflux in apical direction had a duration of 4 to 6 min and resulted in a reduction in the cellular content of radioiodide by up to 80%. Decreased levels of cellular 125I- remained for at least 15 min after TSH addition. From our observations we conclude that the TSH-regulated uptake and efflux of iodide take place at opposite surfaces of the porcine thyroid follicle cell. Acutely stimulated iodide efflux is not the result of an increased permeability for iodide in the entire plasma membrane but only in the apical domain of this membrane. This implicates the presence of an iodide channel mediating TSH-stimulated efflux across the apical plasma membrane of the follicle cell. The mechanism is suggested to facilitate a vectorial transport of iodide in apical direction, i.e., to the lumen of the intact follicle.  相似文献   

16.
Summary Ca-dependent ATPase activity in the rat anterior pituitary was demonstrated in 50-m tissue slices of aldehyde-fixed tissue with the medium of Takano et al. (Cell Tissue Res. 243:91. 1986). — The outer surface of the plasma membrane of the parenchymal as well as the folliculo-stellate cells was lined with lead precipitate. The reaction deposit was particularly well localized in intercellular spaces both between two parenchymal cells, and between a parenchymal and a folliculo-stellate cell. A fine reaction deposit was also seen in the endoplasmic reticulum and Golgi apparatus of some parenchymal cells. Elimination of Ca2+ from the tissue and the substrate medium drastically reduced the amount of reaction product. If ATP was omitted or replaced by sodium -glycerophosphate, no reaction product was seen. Changing the Ca2+ concentration or addition of Mg2+ to the standard medium caused a decrease in reaction intensity. Substitution of Mg2+ for Ca2+ resulted again in well-localized lead deposition which we attribute to the activity of another enzyme. We suggest that the activity we described in the membrane of glandular cells may correspond to the enzyme involved in the long-term regulation of intracellular Ca2+ level.  相似文献   

17.
In polarized Madin-Darby canine kidney epithelial cells, components of the plasma membrane fusion machinery, the t-SNAREs syntaxin 2, 3, and 4 and SNAP-23, are differentially localized at the apical and/or basolateral plasma membrane domains. Here we identify syntaxin 11 as a novel apical and basolateral plasma membrane t-SNARE. Surprisingly, all of these t-SNAREs redistribute to intracellular locations when Madin-Darby canine kidney cells lose their cellular polarity. Apical SNAREs relocalize to the previously characterized vacuolar apical compartment, whereas basolateral SNAREs redistribute to a novel organelle that appears to be the basolateral equivalent of the vacuolar apical compartment. Both intracellular plasma membrane compartments have an associated prominent actin cytoskeleton and receive membrane traffic from cognate apical or basolateral pathways, respectively. These findings demonstrate a fundamental shift in plasma membrane traffic toward intracellular compartments while protein sorting is preserved when epithelial cells lose their cell polarity.  相似文献   

18.
The distribution of endogenous peroxidase and hydrogen-peroxide-producing NAD(P)H-oxidase, which are essential enzymes for the iodination of thyroglobulin, was cytochemically determined in the thyroid follicular cells of propylthiouracil (PTU)-treated rats. Peroxidase activity was determined using the diaminobenzidine technique. The presence of NAD(P)H-oxidase was determined using H2O2 generated by the enzyme; the reaction requires NAD(P)H as a substrate and cerous ions for the formation of an electron-dense precipitate. Peroxidase activity was found in the developed rough endoplasmic reticulum (rER) and Golgi apparatus, but it was also associated with the apical plasma membrane; NAD(P)H-oxidase activity was localized on the apical plasma membrane. The presence of both enzymes on the apical plasma membrane implies that the iodination of thyroglobulin occurs at the apical surface of the follicular cell in the TSH-stimulated state which follows PTU treatment.  相似文献   

19.
More than apical: Distribution of SGLT1 in Caco-2 cells   总被引:2,自引:0,他引:2  
We investigated the distribution of the endogenous sodium-D-glucose cotransporter (SGLT1) in polarized Caco-2 cells, a model for enterocytes. A cellular organelle fraction was separated by free-flow electrophoresis and subjected to the analysis of endogenous and exogenous marker enzymes for various membrane vesicle components. Furthermore, the presence of SGLT1 was tested by an ELISA assay employing newly developed epitope specific antibodies. Thereby it was found that the major amount of SGLT1 resided in intracellular compartments and only a minor amount in apical plasma membranes. The distribution ratio between intracellular SGLT1 and apical membrane-associated SGLT1 was 2:1. Further immunocytochemical investigation of SGLT1 distribution in fixed Caco-2 cells by epifluorescence and confocal microscopy revealed that the intracellular compartments containing SGLT1 were associated with microtubules. Elimination of SGLT1 synthesis by incubation of cells with cycloheximide did not significantly reduce the size of the intracellular SGLT1 pool. Furthermore, the half-life of SGLT1 in Caco-2 cells was determined to be 2.5 days by metabolic labeling followed by immunoprecipitation. Our data suggest that most of the intracellular SGLT1 are not transporters en route from biosynthesis to their cellular destination but represent an intracellular reserve pool. We therefore propose that intracellular compartments containing SGLT1 are involved in the regulation of SGLT1 abundance at the apical cell surface. endosome; microtubules; enterocyte; D-glucose transport; antibodies  相似文献   

20.
Summary The fate of lectin labeled internalized plasma membrane in the ascites tumor form of the Chang rat hepatoma growing under in vivo and in vitro conditions was investigated cytochemically. Ascites cells were incubated in Concanavalin A (Con A) and horseradish peroxidase (PO), either with or without prior glutaraldehyde fixation and subsequently treated with 3,3-diaminobenzidine. In cells fixed before Con-A-PO labeling the reaction product was localized as a continuous and even layer upon the external surface of the plasma membrane. If unfixed cells were treated with Con A, coupled with PO at 4°C and reinbated in phosphate buffered saline at 37°C for varying periods of time, the Con-A-PO layer was of irregular thickness. In as little as 15 min of reincubation endocytotic vesicles containing PO positive material were closely associated with GERL components of the Golgi Apparatus. Localization of acid phosphatase (ACPase) within GERL vesicles, similar in size and location to those containing Con-A-PO reaction product, indicates that the Con-A-PO labeled vesicles may be a component of the Golgi apparatus in hepatoma cells.Supported by NIH Grant CA 16663.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号