首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The laminar distribution of 1-, 2- and β-adrenoreceptors was studied in the visual cortex of adult rat together with an investigation of noradrenaline uptake sites. The different layers of the visual cortex were separated by cutting serial cryostat sections and binding studies were performed in slide-mounted tissue sections of 10μm thickness collected from one individual cortical layer. [3H]desipramine binding, assumed to label noradrenaline uptake sites, was found to be highest in layer I by about 37%, whereas binding in the remaining layers was uniformly distributed. The laminar distribution of the 1- and 2-adrenoreceptors studied using [3H]prazosin and [3H]clonidine as radioligands, was similar to that of the noradrenaline uptake sites: markedly higher binding was detectable in layer I compared to the remaining layers. In contrast, the density of β-adrenoreceptors, as revealed by [3H]dihydroalprenolol binding, was highest in layers I and IV, followed by layer II/III, (58% of that in layer I and IV). Lowest binding was observed in layers V and VI (36%). The similarity in laminar distributions of -adrenoreceptors and noradrenaline uptake sites suggests a close correlation of receptor localization and fibre termination, whereas the localization of β-adrenoreceptors cannot be easily related to the pattern of noradrenergic fibres and terminals.  相似文献   

2.
The distribution and morphology of neurons containing three calcium-binding proteins, calbindin D28K, calretinin, and parvalbumin in the adult rabbit visual cortex were studied. The calcium-binding proteins were identified using antibody immunocytochemistry. Calbindin D28K-immunoreactive (IR) neurons were located throughout the cortical layers with the highest density in layer V. However, calbindin D28K-IR neurons were rarely encountered in layer I. Calretinin-IR neurons were mainly located in layers II and III. Considerably lower densities of calretinin-IR neurons were observed in the other layers. Parvalbumin-IR neurons were predominantly located in layers III, IV, V, and VI. In layers I and II, parvalbumin-IR neurons were only rarely seen. The majority of the calbindin D28K-IR neurons were stellate, round or oval cells with multipolar dendrites. The majority of calretinin-IR neurons were vertical fusiform cells with long processes traveling perpendicularly to the pial surface. The morphology of the majority of parvalbumin-IR neurons was similar to that of calbindin D28K: stellate, round or oval with multipolar dendrites. These results indicate that these three different calcium-binding proteins are contained in specific layers and cells in the rabbit visual cortex.  相似文献   

3.
The laminar distribution of binding to a number of postsynaptic neurotransmitter receptors was assessed autoradiographically in postmortem samples of area 23a in posterior cingulate cortex from 13 Alzheimer and nine age-matched control cases. Specific binding in all Alzheimer cases was compared to that in control cases, and the following alterations were observed: reduced muscimol binding in most layers; no changes in pirenzepine binding; and elevated cyanopindolol binding in layers Ic, IIIc, and IV. The Alzheimer cases were classified further on the basis of neuronal degeneration: class 1, no neuron loss; class 2, greatest losses in layer II or III; class 3, greatest losses in layer IV; and class 4, greatest losses in layer V or VI. This classification uncovered further alterations in ligand binding patterns. First, muscimol binding was reduced in layers II and III only in class 2 cases and in layers V and VI only in class 4 cases. Second, pirenzepine binding was reduced in layers Ic, IIIa-b, and VI of class 1 cases and layers Va and VI of class 4 cases. In spite of neuron degeneration in classes 2 and 3, there was no change in pirenzepine binding in these classes. Third, elevated cyanopindolol binding occurred in classes 3 and 4, whereas classes 1 and 2 had normal levels of binding. These results suggest that cases of Alzheimer's disease express heterogeneities in neocortical pathology which are reflected in the laminar patterns of binding to postsynaptic receptors. Reductions in muscimol binding to the gamma-aminobutyric acidA receptor had the closest relationship with neuron degeneration, whereas pirenzepine binding appeared to reflect a compensation in muscarinic receptors for changes in neuron densities.  相似文献   

4.
Investigation of receptive fields of 232 primary visual cortical neurons in rabbits by the use of shaped visual stimuli showed that 21.1% are unselective for stimulus orientation, and 34.1% have simple, 16.4% complex, and 18.5% hypercomplex receptive fields, and 9.9% have other types. Neurons with different types of receptive fields also differed in spontaneous activity, selectivity for rate of stimulus movement, and acuteness of orientational selectivity. Neurons not selective to orientation were found more frequently in layer IV than in other layers, and very rarely in layer VI. Cells with simple receptive fields were numerous in all layers but predominated in layer VI. Neurons with complex receptive fields were rare in layer IV and more numerous in layers V and VI. Neurons with hypercomplex receptive fields were found frequently in layers II + III and IV, rarely in layers V and VI. Spontaneous unit activity in layer II + III was lowest on average, and highest in layer V. Acuteness or orientational selectivity of neurons with simple and complex receptive fields in layers II + III and V significantly exceeded the analogous parameter in layers IV and VI.A. N. Severtsov Institute of Evolutionary Morphology and Ecology of Animals, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 17, No. 1, pp. 19–27, January–February, 1985.  相似文献   

5.
Quantitative autoradiographic assessment of cerebral cortical laminar distribution of μ, δ and κ opioid receptors was carried out in coronal sections of five post-mortem human brains obtained at autopsy. The cortical areas studied were: cingulate, frontal, insular, parietal, parahippocampal, temporal, occipitotemporal, occipital and striate area. In general, the laminar patterns of distribution for the three types of receptors are distinctive. Peak levels of δ opioid binding are in laminae I, II, and IIa. μ-Receptors are located in lamina III followed by I and II in cingulate, frontal, insular and parietal cortices and lamina IV in temporal and occiptotemporal cortices. κ-Receptors are found concentrated in laminae V and VI. The patterns of opioid binding in cortical laminae showed remarkable consistency in all five brains examined. In contrast to other cortical areas, the parahippocampal gyrus, at the level of the amygdaloid formation, demonstrated peak κ receptor density in laminae I, II and III. μ-Opioid binding was undetectable in the lateral occipital cortex and in the striate area. Special issue dedicated to Dr. Eric J. Simon.  相似文献   

6.
Local field potentials (LFPs) are widely used to study the function of local networks in the brain. They are also closely correlated with the blood-oxygen-level-dependent signal, the predominant contrast mechanism in functional magnetic resonance imaging. We developed a new laminar cortex model (LCM) to simulate the amplitude and frequency of LFPs. Our model combines the laminar architecture of the cerebral cortex and multiple continuum models to simulate the collective activity of cortical neurons. The five cortical layers (layer I, II/III, IV, V, and VI) are simulated as separate continuum models between which there are synaptic connections. The LCM was used to simulate the dynamics of the visual cortex under different conditions of visual stimulation. LFPs are reported for two kinds of visual stimulation: general visual stimulation and intermittent light stimulation. The power spectra of LFPs were calculated and compared with existing empirical data. The LCM was able to produce spontaneous LFPs exhibiting frequency-inverse (1/ƒ) power spectrum behaviour. Laminar profiles of current source density showed similarities to experimental data. General stimulation enhanced the oscillation of LFPs corresponding to gamma frequencies. During simulated intermittent light stimulation, the LCM captured the fundamental as well as high order harmonics as previously reported. The power spectrum expected with a reduction in layer IV neurons, often observed with focal cortical dysplasias associated with epilepsy was also simulated.  相似文献   

7.
Using polyclonal antibody against dopamine D4 receptor we investigated cortical distribution of D4 receptors, with the special emphasis on regions of the prefrontal cortex. Prefrontal cortex is regarded as a target for neuroleptic drugs, and engaged in the regulation of the psychotic effects of various substances used in the experimental modeling of schizophrenia. Western blot analysis performed on samples from the rat cingulate, parietal, piriform cortices and also striatum revealed that antibody recognized one main band of approximately 40 kD, which corresponds to the predicted molecular weight of D4 receptor protein. In immunocytochemical studies we found D4 receptor-positive neurons in all regions of prefrontal cortex (cingulate, agranular/insular and orbital cortices) and all cortical regions adjacent to prefrontal cortex, such as frontal, parietal and piriform cortex. Substantial number of D4 receptor-positive neurons has also been observed within the striatum and nucleus accumbens. In general, a clear stratification of the D4 receptor-positive neurons was observed in the cortex with the highest density seen in layers II/III and V/VI. D4 immunopositive material was also found in the dendritic processes, particularly clearly visible in the layer II/III. At the cellular level D4 receptor immunoreactivity was seen predominantly on the periphery of the cell body, but a certain population of neurons with clear cytoplasmatic localization was also identified. In addition to cortical distribution of D4 receptor-positive neurons we tried also to define types of neurons expressing D4 receptor protein. In double-labeling experiments, D4 receptor protein was found in nonphosphorylated neurofilament H-positive, calbindin-D28k-positive, as well as parvalbumin-positive cells. Since, used proteins are markers of certain populations of pyramidal neurons and GABA-ergic interneurons, respectively, our data indicate that D4 receptors are located on cortical pyramidal output neurons and their dendritic processes as well as on interneurons. Above localization indicates that D4 receptors are not only directly influencing excitability of cortical inter- and output neurons but also might be engaged in dendritic spatial and temporal integration, required for the generation of axonal messages. Additionally, our data show that D4 receptors are widely distributed throughout the cortex of rat brain, and that their cortical localization exceeds the localization of dopaminergic terminals.  相似文献   

8.
DNA and RNA and the cytoarchitecture of human frontal cortex   总被引:1,自引:0,他引:1  
DNA and RNA were studied in the layers of human prefrontal cortex by quantitative microchemical analyses on microtome-prepared serial frozen sections. Eleven cortical specimens from six autopsy brains were assayed. The mean total number of cells per mm3 of fresh cortex was estimated from DNA values. The number in layer I (61,000) was falsely high because of the inclusion of cells from the pia mater. From a plateau of 82,000-86,000 in layers II, IIIa and IIIb, the number of cells rose to 91,000 and 113,000 in layers IIIc and IV, respectively. The mean number was slightly lower in layer V, then gradually rose through layer VI to 127,000 cells in white matter. Per unit dry weight, DNA and cells varied much less than per unit volume; values averaged 14 per cent higher in layers II and IV than in neighbouring layers and in white matter were 20 per cent lower than in layer I. Intracortical patterns of RNA and RNA/cell reflected chiefly the distribution of neuronal cell bodies. Per unit fresh volume, RNA roughly paralleled DNA in layers I-V; through layer VI and into white matter RNA declined as DNA rose, reflecting the decline in neurons and increasing predominance of glial cells of lower RNA content. Per unit dry weight, RNA rose 50 per cent from layer I to layer II; a plateau of high values extended through layers II-V, then RNA declined rapidly through layer VI to a level in white matter that was 28 per cent of the value in layer II. Mean RNA/cell in cortex was 9-8 pg, with a maximum in layer IIIb (11.4 pg); in subcortical white matter it was 5.3 pg.  相似文献   

9.
The cyto- and mieloarchitecture of the first auditory cortex (A I) was studied in the cat. The cortical layers II, III and IV are very densely populated by relatively uniform, round or stellate cells with 20 to 30 micro perikaryal diameter. The separation between these three layers, which is not possible in Nissl stained sections, becomes visible in 1 to 3 micro thick sections of plastic embedded material. nerve cells in layer II are randomly disposed, whilst they form in laver III loose rounded cellular groups, and in layer IV vertical cylinders which have 50 to 60 micro in outside diameter and a cell poor centre. These cylinders are best visible in 100 micro thick Nissl preparations, cut parallel to the pial surface. The cylinders may extend into layer V, which is comparatively cell poor. The VIth layer contains numerous round, stellate or fusiform cells with 20 to 30 micro in diameter. The IIIrd and Vth layers have few pyramidal perikarya which are small. Large or giant pyramidal cells are not found in A I. The overall thickness of the cortex in the convexity of A I is 2,000 micro, measured in sections of plastic blocks. The thickness of the 6 layers is 200 to 250 micro for layer I; 300 micro for layer II; 300 micro for layer III; 300 to 400, for layer IV; 350 micro for layer V; and 400 micro for layer VI. In preparations stained for myelin sheats A I is characterized by the presence of a very dense plexus of fibres running in all directions in the IVth, Vth anti VIth layers. These plexus obscurs the radiations of Meynert, giving a characteristic appearance to A I, since these radiations are prominent in the neighbouring cortical areas. In preliminary studies of Golgi rapid preparations of A I the cell types commonly present in others cortical areas were found. Pyramidal cells have small perikarya, and very long (600 micro) horizontal basal dendrites. Modified pyramidal cells (star pyramids) are the main cellular element in layer II and constitute one of the main sources of efferent fibres of A I. Several types of stellate cells were found, including a particular cell type, found very often in the IVth layer, with a very long horizontal axon. The specific thalamic afferents were identified as fibres with 5 or 8 micro in diameter, which run obliquely and sinuously through the VIth and Vth layers of A I. These fibres give off many branches with 1 to 2 micro in diameter, which pass to the IVth layer where they give off very thin sinuous branches, ending in small terminal knobs. The ramification of one of these fibres may spread horizontally over 800 micros, at the level of the IVth layer.  相似文献   

10.
Metabotropic glutamate receptors have been implicated in plasticity in the hippocampus and cerebellum. Are they also involved in plasticity in the visual cortex? This is a complicated question because of the diversity of metabotropic glutamate receptors and the variations in both receptors and plasticity with layer. Inhibition driven by group II metabotropic glutamate receptors is certainly correlated with ocular dominance segregation in layer IV of the cortex. Of the group I metabotropic glutamate receptors, mGluR5 may be involved in plasticity, but mGluR1 is unlikely to be. Both group I and group II receptors produce increases in cyclic adenosine monophosphate which are clearly related to plasticity. Further conclusions await the development of agonists and antagonists specific for individual metabotropic glutamate receptors, as opposed to groups of the receptors.  相似文献   

11.
Activation of N-methyl-D-aspartate receptors (NMDARs) has been implicated in various forms of synaptic plasticity depending on the receptor subtypes involved. However, the contribution of NR2A and NR2B subunits in the induction of long-term depression (LTD) of excitatory postsynaptic currents (EPSCs) in layer II/III pyramidal neurons of the young rat visual cortex remains unclear. The present study used whole-cell patch-clamp recordings in vitro to investigate the role of NR2A- and NR2B-containing NMDARs in the induction of LTD in visual cortical slices from 12- to 15-day old rats. We found that LTD was readily induced in layer II/III pyramidal neurons of the rat visual cortex with 10-min 1-Hz stimulation paired with postsynaptic depolarization. D-APV, a selective NMDAR antagonist, blocked the induction of LTD. Moreover, the selective NR2B-containing NMDAR antagonists (Ro 25-6981 and ifenprodil) also prevented the induction of LTD. However, Zn2+, a voltage-independent NR2A-containing NMDAR antagonist, displayed no influence on the induction of LTD. These results suggest that the induction of LTD in layer II/III pyramidal neurons of the young rat visual cortex is NMDAR-dependent and requires NR2B-containing NMDARs, not NR2A-containing NMDARs.  相似文献   

12.
Biochemical and fluorescence histochemical evidence suggest dopaminergic and noradrenergic projections to the prefrontal cortex which primarily innervate the deep layers (V & VI) and superficial layers respectively. Using microiontophoretic techniques, we determined the sensitivity of cells in the rat prefrontal cortex to the inhibitory effects of dopamine (DA) and norepinephrine (NE). A clear correspondence was found between the response of a cell to DA and NE and the layer in which that cell resided. Thus cells in layers II and III were more sensitive to NE than DA, whereas the opposite was true for layers V and VI. Applied microiontophoretically, desmethylimipramine, a selective NE uptake blocker, potentiated the inhibitory effects of NE in layers II and III but not in layers V and VI. Benztropine, a DA uptake blocker, potentiated the inhibitory effects of DA only on DA sensitive cells in layers V and VI. Trifluoperazine, a DA receptor blocker, selectively blocked DA inhibition of cell activity in the deep layers. Similar experiments performed in the hippocampus and accumbens nucleus yielded results identical to those obtained for cortical layers II and III (primary NE innervation) and V and VI (primary DA innervation, respectively).These findings suggest that using microiontophoretic techniques one can pharmacologically differentiate between DA and NE innervated cells in the rat prefrontal cortex.  相似文献   

13.
The distribution of glucose, glycogen, ATP, P-creatine and inorganic phosphate was measured in layers I, III, IV, V and VI of cerebral cortex and subjacent white matter of mouse brain. ATP, P-creatine and inorganic phosphate were evenly distributed in all regions examined, whereas levels of glucose and glycogen were higher in white matter than the average for the other layers. Anaesthesia increased levels of glucose and P-creatine in layers I and V and subjacent white matter (other layers were not examined). Anaesthesia doubled the level of glycogen in molecular layer I with lesser increases in layers III, IV, V and VI, but with no change in white matter from the unanaesthetized control value. The metabolic rates in the individual layers were estimated from the rates of expenditure of energy reserves during total ischaemia. In non-anaesthetized mice, white matter had a higher metabolic rate than either layer I or V. Anaesthesia reduced the metabolic rates in all layers; however, the largest reduction occurred in subjacent white matter (86 per cent), with reductions of 54 per cent and 76 per cent respectively in layers I and V.  相似文献   

14.
Tien LT  Ma T  Fan LW  Loh HH  Ho IK 《Neurochemical research》2007,32(11):1891-1897
Anatomical evidence indicates that γ-aminobutyric acid (GABA)-ergic and opioidergic systems are closely linked and act on the same neurons. However, the regulatory mechanisms between GABAergic and opioidergic system have not been well characterized. In the present study, we investigated whether there are changes in GABAA receptors in mice lacking μ-opioid receptor gene. The GABAA receptor binding was carried out by autoradiography using [3H]-muscimol (GABAA), [3H]-flunitrazepam (FNZ, native type 1 benzodiazepine) and [35S]-t-butylbicyclophosphorothionate (TBPS, binding to GABAA-gated chloride channels) in brain slices of wild type and μ-opioid receptor knockout mice. The binding of [3H]-FNZ in μ-opioid receptor knockout mice was significantly higher than that of the wild type controls in most of the cortex and hippocampal CA1 and CA2 formations. μ-Opioid receptor knockout mice show significantly lower binding of [35S]-TBPS than that of the wild type mice in few of the cortical areas including ectorhinal cortex layers I, III, and V, but not in the hippocampus. There was no significant difference in binding of [3H]-muscimol between μ-opioid receptor knockout and wild type mice in the cortex and hippocampus. These data indicate that there are specific regional changes in GABAA receptor binding sites in μ-opioid receptor knockout mice. These data also suggest that there are compensatory up-regulation of benzodiazepine binding site of GABAA receptors in the cortex and hippocampus and down-regulation of GABA-gated chloride channel binding site of GABAA receptors in the cortex of the μ-opioid receptor knockout mice.  相似文献   

15.
Cannabinoid receptors are found in moderate density throughout the cerebral cortex. The anterior cingulate cortex (ACC) is of particular interest due its high level of cannabinoid receptors and role in behaviors known to be modulated by cannabinoids. These studies were conducted to determine the cellular localization of cannabinoid receptors and to compare the level of cannabinoid receptor binding with receptor-mediated G-protein activity in the rat ACC. Either ibotenic acid or undercut lesions were made in ACC, and brains were processed for [3H]WIN 55,212-2 and WIN 55,212-2-stimulated [35S]GTPgammaS autoradiography. Both cannabinoid receptors and receptor-activated G-proteins were highest in laminae I and VI of ACC in control tissue. Although similar levels of receptor binding were found in these laminae, significantly higher levels of receptor-activated G-proteins were found in lamina VI. Ibotenic acid lesions that destroyed ACC neurons decreased [3H]WIN 55,212-2 binding by 60-70% and eliminated WIN 55,212-2-stimulated [35S]GTPgammaS binding. In contrast, deafferentation of the ACC with undercut lesions had no significant effect on cannabinoid receptor binding or G-protein activation. These results indicate that cannabinoid receptors in laminae I and VI of the ACC are located on somatodendritic elements or axons intrinsic to the ACC. In addition, differences in the relative levels of cannabinoid binding sites and activated G-proteins between cortical laminae indicate that the efficiency of cannabinoid receptors for G-protein activation may vary within a specific brain region.  相似文献   

16.
Katagiri H  Fagiolini M  Hensch TK 《Neuron》2007,53(6):805-812
Local GABAergic circuits trigger visual cortical plasticity in early postnatal life. How these diverse connections contribute to critical period onset was investigated by nonstationary fluctuation analysis following laser photo-uncaging of GABA onto discrete sites upon individual pyramidal cells in slices of mouse visual cortex. The GABA(A) receptor number decreased on the soma-proximal dendrite (SPD), but not at the axon initial segment, with age and sensory deprivation. Benzodiazepine sensitivity was also higher on the immature SPD. Too many or too few SPD receptors in immature or dark-reared mice, respectively, were adjusted to critical period levels by benzodiazepine treatment in vivo, which engages ocular dominance plasticity in these animal models. Combining GAD65 deletion with dark rearing from birth confirmed that an intermediate number of SPD receptors enable plasticity. Site-specific optimization of perisomatic GABA response may thus trigger experience-dependent development in visual cortex.  相似文献   

17.
Serotonin 1A (5-HT(1A)) receptors are found in high densities in prefrontal cortex. However, their distribution within cortical cell populations is unknown in both humans and primates. We used double in situ hybridization histochemistry to quantify the percentage of glutamatergic and GABAergic neurons expressing 5-HT(1A) receptors in human and monkey prefrontal cortex. Moreover, in the case of the monkey, we also quantified the parvalbumin and calbindin GABAergic subpopulations expressing this receptor. 5-HT(1A) receptor mRNAs were expressed in about 80% of glutamatergic neurons in external layers II and upper III, and in around 50% in layer VI; they were also present in approximately 20% of GABAergic neurons in both species. Although they were found in up to 43% of the calbindin cell subpopulation they were rarely present in parvalbumin cells in monkey prefrontal cortex. The knowledge of the phenotype of the prefrontal cortex (PFC) cells expressing 5-HT(1A) will help understanding serotonin actions in PFC.  相似文献   

18.
Neuromodulatory input, acting on G protein-coupled receptors, is essential for the induction of experience-dependent cortical plasticity. Here we report that G-coupled receptors in layer II/III of visual cortex control the polarity of synaptic plasticity through a pull-push regulation of LTP and LTD. In slices, receptors coupled to Gs promote LTP while suppressing LTD; conversely, receptors coupled to Gq11 promote LTD and suppress LTP. In vivo, the selective stimulation of Gs- or Gq11-coupled receptors brings the cortex into LTP-only or LTD-only states, which allows the potentiation or depression of targeted synapses with visual stimulation. The pull-push regulation of LTP/LTD occurs via direct control of the synaptic plasticity machinery and it is independent of changes in NMDAR activation or neuronal excitability. We propose these simple rules governing the pull-push control of LTP/LTD form a general metaplasticity mechanism that may contribute to neuromodulation of plasticity in other cortical circuits.  相似文献   

19.
The human primary somatosensory cortex consists of four cytoarchitectonic subdivisions (3a, 3b, 1 and 2) that are likely to contain distinct somatosensory representations. The intraareal organization of these areas as well as that of the primary motor cortex (area 4) has been analyzed using histochemical stains of cytochrome oxidase, acetylcholinesterase and NADPH-diaphorase activity in normal human brains. Cytochrome oxidase activity was revealed in individual cortical neurons and neuropil. Areas 4, 3a and 3b were on average darker than areas 1 and 2. The laminar distribution of cytochrome oxidase activity varied in different areas. A prominent dark band was present in layers IV and lower III in areas 3a and 3b and in layer III in areas 1, 2 and 4. Acetylcholinesterase staining revealed fibers and pyramidal cells in layers III and V; stained layer III pyramids were rare in areas 3a and 3b and numerous in areas 1, 2 and 4. NADPH-diaphorase positive elements included Golgi-like stained non-pyramidal neurons and Nissl-like stained pyramidal neurons; the former were found, in small numbers, in layer II of areas 4, 3a, 3b and 1, and the latter in layers III and V of areas 4 and 3a and in layer V of areas 1 and 2. The dark cytochrome oxidase staining of layer IV and the paucity of acetylcholinesterase positive pyramids in areas 3a and 3b resemble the pattern found in primary visual and auditory areas, whereas the dark cytochrome oxidase staining in layer III and abundance of acetylcholinesterase positive pyramids in areas 1 and 2 that of association areas. These results suggest that the four areas included in human SI constitute hierarchical stages of cortical processing, with 3a and 3b corresponding to primary and 1 and 2 to secondary areas.  相似文献   

20.
The human primary somatosensory cortex consists of four cytoarchitectonic subdivisions (3a, 3b, 1 and 2) that are likely to contain distinct somatosensory representations. The intraareal organization of these areas as well as that of the primary motor cortex (area 4) has been analyzed using histochemical stains of cytochrome oxidase, acetylcholinesterase and NADPH-diaphorase activity in normal human brains. Cytochrome oxidase activity was revealed in individual cortical neurons and neuropil. Areas 4, 3a and 3b were on average darker than areas 1 and 2. The laminar distribution of cytochrome oxidase activity varied in different areas. A prominent dark band was present in layers IV and lower III in areas 3a and 3b and in layer III in areas 1, 2 and 4. Acetylcholinesterase staining revealed fibers and pyramidal cells in layers III and V; stained layer III pyramids were rare in areas 3a and 3b and numerous in areas 1, 2 and 4. NADPH-diaphorase positive elements included Golgi-like stained non-pyramidal neurons and Nissl-like stained pyramidal neurons; the former were found, in small numbers, in layer II of areas 4, 3a, 3b and 1, and the latter in layers III and V of areas 4 and 3a and in layer V of areas 1 and 2. The dark cytochrome oxidase staining of layer IV and the paucity of acetylcholinesterase positive pyramids in areas 3a and 3b resemble the pattern found in primary visual and auditory areas, whereas the dark cytochrome oxidase staining in layer III and abundance of acetylcholinesterase positive pyramids in areas 1 and 2 that of association areas. These results suggest that the four areas included in human SI constitute hierarchical stages of cortical processing, with 3a and 3b corresponding to primary and 1 and 2 to secondary areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号