首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Recent developments in phosphoproteomic sample-preparation techniques and sensitive mass spectrometry instrumentation have led to large-scale identifications of phosphoproteins and phosphorylation sites from highly complex samples. This has facilitated the implementation of different quantitation strategies in order to study the biological role of protein phosphorylation during disease progression, differentiation or during external stimulation of a cellular system. In this article, a brief summary of the most popular strategies for phosphoproteomic studies is given; however, the main focus will be on different quantitation strategies. Methods for metabolic labeling, chemical modification and label-free quantitation and their applicability or inapplicability in phosphoproteomic studies are discussed.  相似文献   

5.
To better understand the role that reversible phosphorylation plays in woody plant ribosomal P-protein function, we initiated a phosphoproteomic investigation of P-proteins from Populus dormant terminal buds. Using gel-free (in-solution) protein digestion and phosphopeptide enrichment combined with a nanoUPLC–ESI–MS/MS strategy, we identified six phosphorylation sites on eight P-proteins from Populus dormant terminal buds. Among these, six Ser sites and one Thr site were identified in the highly conserved C-terminal region of eight P-proteins of various P-protein subfamilies, including two P0, two P1, three P2 and one P3 protein. Among these, the Thr site was shown to be novel and has not been identified in any other organisms. Sequence analysis indicated that the phosphothreonine sites identified in the C-terminus of Ptr RPP2A exclusively occurred in woody species of Populus, etc. The identified phosphopeptides shared a common phosphorylation motif of (S/T)XX(D/E) and may be phosphorylated in vivo by casein kinase 2 as suggested by using Scansite analysis. Furthermore, phylogenetic analysis suggested that divergence of P2 also occurred in Populus, including type I and type II. To the best of our knowledge, this is the first systematic phosphoproteomic and phylogenetic analysis of P-proteins in woody plants, the results of which will provide a wealth of resources for future understanding and unraveling of the regulatory mechanisms of Populus P-protein phosphorylation during the maintenance of dormancy.  相似文献   

6.
7.
Plant phosphoproteomics: a long road ahead   总被引:3,自引:0,他引:3  
Phosphoproteomics can be defined as the comprehensive study of protein phosphorylation by identification of the phosphoproteins, exact mapping of the phosphorylation sites, quantification of phosphorylation, and eventually, revealing their biological function. Its place in today's research is vitally important to address the most fundamental question - how the phosphorylation events control most, if not all, of the cellular processes in a given organism? Despite the immense importance of phosphorylation, the analysis of phosphoproteins on a proteome-wide scale remains a formidable challenge. Nevertheless, several technologies have been developed, mostly in yeast and mammals, to conduct a large-scale phosphoproteomic study. Some of these technologies have been successfully applied to plants with a few modifications, resulting in documentation of phosphoproteins, phosphorylation site mapping, identification of protein kinase substrates, etc. at the global level. In this review, we summarize in vitro and in vivo approaches for detection and analysis of phosphoproteins including protein kinases and we discuss the importance of phosphoproteomics in understanding plant biology. These approaches along with bioinformatics will help plant researchers to design and apply suitable phosphoproteomic strategies in helping to find answers to their biological questions.  相似文献   

8.
Han D  Moon S  Kim Y  Ho WK  Kim K  Kang Y  Jun H  Kim Y 《Journal of proteome research》2012,11(4):2206-2223
Type 2 diabetes results from aberrant regulation of the phosphorylation cascade in beta-cells. Phosphorylation in pancreatic beta-cells has not been examined extensively, except with regard to subcellular phosphoproteomes using mitochondria. Thus, robust, comprehensive analytical strategies are needed to characterize the many phosphorylated proteins that exist, because of their low abundance, the low stoichiometry of phosphorylation, and the dynamic regulation of phosphoproteins. In this study, we attempted to generate data on a large-scale phosphoproteome from the INS-1 rat pancreatic beta-cell line using linear ion trap MS/MS. To profile the phosphoproteome in-depth, we used comprehensive phosphoproteomic strategies, including detergent-based protein extraction (SDS and SDC), differential sample preparation (in-gel, in-solution digestion, and FASP), TiO2 enrichment, and MS replicate analyses (MS2-only and multiple-stage activation). All spectra were processed and validated by stringent multiple filtering using target and decoy databases. We identified 2467 distinct phosphorylation sites on 1419 phosphoproteins using 4 mg of INS-1 cell lysate in 24 LC-MS/MS runs, of which 683 (27.7%) were considered novel phosphorylation sites that have not been characterized in human, mouse, or rat homologues. Our informatics data constitute a rich bioinformatics resource for investigating the function of reversible phosphorylation in pancreatic beta-cells. In particular, novel phosphorylation sites on proteins that mediate the pathology of type 2 diabetes, such as Pdx-1, Nkx.2, and Srebf1, will be valuable targets in ongoing phosphoproteomics studies.  相似文献   

9.
Protein phosphorylation has become a focus of many proteomic studies due to the central role that it plays in biology. We combine peptide-based gel-free isoelectric focusing and immobilized metal affinity chromatography to enhance the detection of phosphorylation events within complex protein samples using LC-MS. This method is then used to carry out a quantitative phosphoproteomic analysis of the tumor necrosis factor (TNF) pathway using HeLa cells metabolically labeled with 15N-containing amino acids, where 145 phosphorylation sites were found to be up-regulated upon the activation of the TNF pathway.  相似文献   

10.
Meyer LJ  Gao J  Xu D  Thelen JJ 《Plant physiology》2012,159(1):517-528
To characterize protein phosphorylation in developing seed, a large-scale, mass spectrometry-based phosphoproteomic study was performed on whole seeds at five sequential stages of development in soybean (Glycine max), rapeseed (Brassica napus), and Arabidopsis (Arabidopsis thaliana). Phosphopeptides were enriched from 0.5 mg of total peptides using a combined strategy of immobilized metal affinity and metal oxide affinity chromatography. Enriched phosphopeptides were analyzed by Orbitrap tandem mass spectrometry and mass spectra mined against cognate genome or cDNA databases in both forward and randomized orientations, the latter to calculate false discovery rate. We identified a total of 2,001 phosphopeptides containing 1,026 unambiguous phosphorylation sites from 956 proteins, with an average false discovery rate of 0.78% for the entire study. The entire data set was uploaded into the Plant Protein Phosphorylation Database (www.p3db.org), including all meta-data and annotated spectra. The Plant Protein Phosphorylation Database is a portal for all plant phosphorylation data and allows for homology-based querying of experimentally determined phosphosites. Comparisons with other large-scale phosphoproteomic studies determined that 652 of the phosphoproteins are novel to this study. The unique proteins fall into several Gene Ontology categories, some of which are overrepresented in our study as well as other large-scale phosphoproteomic studies, including metabolic process and RNA binding; other categories are only overrepresented in our study, like embryonic development. This investigation shows the importance of analyzing multiple plants and plant organs to comprehensively map the complete plant phosphoproteome.  相似文献   

11.
Luo R  Zhou C  Lin J  Yang D  Shi Y  Cheng G 《Journal of Proteomics》2012,75(3):868-877
Schistosome is the causative agent of human schistosomiasis and related animal disease. Reversible protein phosphorylation plays a key role in signaling processing that are vital for a cell and organism. However, it remains to be undercharacterized in schistosomes. In the present study, we characterized in vivo protein phosphorylation events in different developmental stages (schistosomula and adult worms) of Schistosoma japonicum by using microvolume immobilized metal-ion affinity chromatography (IMAC) pipette tips coupled to nanoLC-ESI-MS/MS. In total, 127 distinct phosphorylation sites were identified in 92 proteins in S. japonicum. A comparison of the phosphopeptides identified between the schistosomula and the adult worms revealed 30 phosphoproteins co-detected in both of the two worms. These proteins included several signal molecules and enzymes such as 14-3-3 protein, cysteine string protein, heat shock protein 90, epidermal growth factor receptor pathway substrate 8, proliferation-associated protein 2G4, peptidyl-prolyl isomerase G, phosphofructokinase and thymidylate kinase. Additionally, the phosphorylation sites were examined for phosphorylation specific motif and evolutionarily conservation. The study represents the first attempt to determine in vivo protein phosphorylation in S. japonicum by using a phosphoproteomic approach. The results by providing an inventory of phosphorylated proteins may facilitate to further understand the mechanisms involved in schistosome development and growth, and then may result in the development of novel vaccine candidates and drug targets for schistosomiasis control.  相似文献   

12.
玉米早期花药蛋白质组和磷酸化蛋白质组分析   总被引:1,自引:0,他引:1  
蛋白质磷酸化修饰是调控其功能的一种重要方式。植物有性生殖过程在农作物产量形成和物种繁衍过程中起着重要作用。作为植物雄性生殖器官的花药,其正常生长发育对于保证形成功能性配子(花粉)以及完成双受精过程至关重要。本研究以重要农作物玉米(B73)为材料,利用Nano UHPLC-MS/MS质谱技术对玉米早期发育的花药在蛋白质组和磷酸化蛋白质组水平进行全面分析,以探究玉米花药发育过程中的蛋白调控网络和磷酸化修饰调控网络。在蛋白质组学分析中,共鉴定到了3 016个多肽,匹配到1 032个蛋白质上。通过Map Man分析,预测到了一些和花药发育相关的蛋白质,例如受体激酶(GRMZM2G082823_P01、GRMZM5G805485_P01等)。另外,在磷酸化蛋白质组学研究中,通过对Ti O2亲和层析富集到的磷酸化多肽进行质谱分析,检测到了257个磷酸化多肽,匹配到210个蛋白质上。我们的数据揭示了玉米花药发育过程中的223个磷酸化位点。与已发现的玉米中的86个磷酸化蛋白质(植物蛋白磷酸化数据库(P3DB):http://www.p3db.org/organism.php)相比,其中203个磷酸化蛋白和218个磷酸化位点为首次揭示。进一步生物信息学分析表明:磷酸化在14-3-3蛋白质、激酶、磷酸酶、转录因子、细胞周期和染色质结构相关的蛋白质介导的玉米早期花药发育过程中起着重要的调控作用。总之,本研究首次在蛋白质组学和磷酸化蛋白质组学水平研究了玉米早期花药发育的蛋白质调控网络,不仅丰富了玉米蛋白质和磷酸化修饰蛋白质数据库,并为利用遗传学和生物化学手段深入研究玉米花药发育的分子调控机理提供了基础。  相似文献   

13.
Plant mitochondria play central roles in cellular energy production, metabolism and stress responses. Recent phosphoproteomic studies in mammalian and yeast mitochondria have presented evidence indicating that protein phosphorylation is a likely regulatory mechanism across a broad range of important mitochondrial processes. This study investigated protein phosphorylation in purified mitochondria from cell suspensions of the model plant Arabidopsis thaliana using affinity enrichment and proteomic tools. Eighteen putative phosphoproteins consisting of mitochondrial metabolic enzymes, HSPs, a protease and several proteins of unknown function were detected on 2‐DE separations of Arabidopsis mitochondrial proteins and affinity‐enriched phosphoproteins using the Pro‐Q Diamond phospho‐specific in‐gel dye. Comparisons with mitochondrial phosphoproteomes of yeast and mouse indicate that these three species share few validated phosphoproteins. Phosphorylation sites for seven of the eighteen mitochondrial proteins were characterized by titanium dioxide enrichment and MS/MS. In the process, 71 phosphopeptides from Arabidopsis proteins which are not present in mitochondria but found as contaminants in various types of mitochondrial preparations were also identified, indicating the low level of phosphorylation of mitochondrial components compared with other cellular components in Arabidopsis. Information gained from this study provides a better understanding of protein phosphorylation at both the subcellular and the cellular level in Arabidopsis.  相似文献   

14.
Trypanosoma cruzi is the etiologic agent of Chagas disease, which affects millions of people in Latin America and has become a public health concern in the United States and areas of Europe. The possibility that kinase inhibitors represent novel anti‐parasitic agents is currently being explored. However, fundamental understanding of the cell‐signaling networks requires the detailed analysis of the involved phosphorylated proteins. Here, we have performed a comprehensive MS‐based phosphorylation mapping of phosphoproteins from T. cruzi epimastigote forms. Our LC‐MS/MS, dual‐stage fragmentation, and multistage activation analysis has identified 237 phosphopeptides from 119 distinct proteins. Furthermore, 220 phosphorylation sites were unambiguously mapped: 148 on serine, 57 on threonine, and 8 on tyrosine. In addition, immunoprecipitation and Western blotting analysis confirmed the presence of at least seven tyrosine‐phosphorylated proteins in T. cruzi. The identified phosphoproteins were subjected to Gene Ontology, InterPro, and BLAST analysis, and categorized based on their role in cell structure, motility, transportation, metabolism, pathogenesis, DNA/RNA/protein turnover, and signaling. Taken together, our phosphoproteomic data provide new insights into the molecular mechanisms governed by protein kinases and phosphatases in T. cruzi. We discuss the potential roles of the identified phosphoproteins in parasite physiology and drug development.  相似文献   

15.
16.
Like other types of plastids, chromoplasts have essential biosynthetic and metabolic activities which may be regulated via post‐translational modifications, such as phosphorylation, of their resident proteins. We here report a proteome‐wide mapping of in vivo phosphorylation sites in chromoplast‐enriched samples prepared from sweet orange [Citrus sinensis (L.) Osbeck] at different ripening stages by titanium dioxide‐based affinity chromatography for phosphoprotein enrichment with LC‐MS/MS. A total of 109 plastid‐localized phosphoprotein candidates were identified that correspond to 179 unique phosphorylation sites in 135 phosphopeptides. On the basis of Motif‐X analysis, two distinct types of phosphorylation sites, one as proline‐directed phosphorylation motif and the other as casein kinase II motif, can be generalized from these identified phosphopeptides. While most identified phosphoproteins show high homology to those already identified in plastids, approximately 22% of them are novel based on BLAST search using the public databases PhosPhAt and P3DB. A close comparative analysis showed that approximately 50% of the phosphoproteins identified in citrus chromoplasts find obvious counterparts in the chloroplast phosphoproteome, suggesting a rather high‐level of conservation in basic metabolic activities in these two types of plastids. Not surprisingly, the phosphoproteome of citrus chromoplasts is also characterized by the lack of phosphoproteins involved in photosynthesis and by the presence of more phosphoproteins implicated in stress/redox responses. This study presents the first comprehensive phosphoproteomic analysis of chromoplasts and may help to understand how phosphorylation regulates differentiation of citrus chromoplasts during fruit ripening.  相似文献   

17.
Most regulatory pathways are governed by the reversible phosphorylation of proteins. Recent developments in mass spectrometry-based technology allow the large-scale analysis of protein phosphorylation. Here, we show the application of immobilized metal affinity chromatography to purify phosphopeptides from Arabidopsis extracts. Phosphopeptide sequences were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS/MS). A total of 79 unique phosphorylation sites were determined in 22 phosphoproteins with a putative role in RNA metabolism, including splicing of mRNAs. Among these phosphoproteins, 12 Ser/Arg-rich (SR) splicing factors were identified. A conserved phosphorylation site was found in most of the phosphoproteins, including the SR proteins, suggesting that these proteins are targeted by the same or a highly related protein kinase. To test this hypothesis, Arabidopsis SR protein-specific kinase 4 (SRPK4) that was initially identified as an interactor of SR proteins was tested for its ability to phosphorylate the SR protein RSp31. In vitro kinase assays showed that all in vivo phosphorylation sites of RSp31 were targeted by SRPK4. These data suggest that the plant mRNA splicing machinery is a major target of phosphorylation and that a considerable number of proteins involved in RNA metabolism may be targeted by SRPKs.  相似文献   

18.
19.
Kang TH  Bae KH  Yu MJ  Kim WK  Hwang HR  Jung H  Lee PY  Kang S  Yoon TS  Park SG  Ryu SE  Lee SC 《Proteomics》2007,7(15):2624-2635
Oxidative stress is one of the major causes of neuronal cell death in disorders such as perinatal hypoxia and ischemia. Protein phosphorylation is the most significant PTM of proteins and plays an important role in stress-induced signal transduction. Thus, the analysis of alternative protein phosphorylation states which occur during oxidative stress-induced cell death could provide valuable information regarding cell death. In this study, a reference phosphoproteome map of the mouse hippocampal cell line HT22 was constructed based on 125 spots that were identified by MALDI-TOF or LC-ESI-Q-TOF-MS analysis. In addition, proteins of HT22 cells at various stages of oxidative stress-induced cell death were separated by 2-DE and alterations in phosphoproteins were detected by Pro-Q Diamond staining. A total of 17 spots showing significant quantitative changes and seven newly appearing spots were identified after glutamate treatment. Splicing factor 2, peroxiredoxin 2, S100 calcium binding protein A11, and purine nucleoside phosphorylase were identified as up- or down-regulated proteins. CDC25A, caspase-8, and cyp51 protein appeared during oxidative stress-induced cell death. The data in this study from phosphoproteomic analysis provide a valuable resource for the understanding of HT22 cell death mechanisms mediated by oxidative stress.  相似文献   

20.
Protein phosphorylation is a key regulatory factor in all aspects of plant biology; most regulatory pathways are governed by the reversible phosphorylation of proteins. To better understand the role that phosphorylated proteins play in a woody model plant, we performed a systemic analysis of the phosphoproteome from Populus leaves using high accuracy NanoLC–MS/MS in combination with biochemical enrichments using strong cation exchange chromatography and titanium dioxide chromatography. We identified 104 phosphopeptides from 94 phosphoproteins and determined 111 phosphorylation sites including 93 occurring on serine residues and 18 on threonine residues. The identified phosphoproteins are involved in a wide variety of metabolic processes. Among these identified phosphoproteins, 68 phosphorylation sites (72 %) were located outside of conserved domains. The identified phosphopeptides share a common phosphorylation motif of pS/pT-P/D-S/A. These data suggest that the Populus metabolism and gene regulation machinery are major targets of phosphorylation. To our knowledge, this is the first gel-free, large-scale phosphoproteomics analysis in woody plants. The identified phosphorylation sites will be a valuable resource for many fields of plant biology, and information gained from the study will provide a better understanding of protein phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号