首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the course of studies on local keratin phenotypes in the epidermis of the adult mouse, we have identified a new 65 kD and 48 kD keratin pair. In mouse skin, this keratin pair is only expressed in suprabasal cells of adult mouse tail scale epidermis which is characterized by the complete absence of a granular layer and the formation of a remarkably compact stratum corneum. A second site in which the 65 kD and 48 kD keratin pair is suprabasally expressed and whose morphology corresponds to that of tail scale epidermis is found in the posterior unit of the complex filiform papillae of mouse tongue. The causal relationship of the expression of the 65 kD and 48 kD keratins with this particular type of a non-pathological epithelial parakeratosis is emphasized by the suppression of the mRNA synthesis of the two keratins during retinoic acid mediated orthokeratotic conversion of tail scale epidermis. Apart from tail scale epidermis and the posterior unit of the filiform papillae, the 65 kD and 48 kD keratin pair is, however, also coexpressed with "hard" alpha keratins in suprabulbar cells of hair follicles and in suprabasal cells of the central core unit of the lingual filiform papillae. The non alpha-helical domains of the two new keratins are rich in cysteine and proline residues and lack the typical subdomains into which epithelial keratins of both types can be divided. This structural resemblance of the 65 kD and 48 kD keratins to "hard" alpha keratins is supported by comparative flexibility predictions for their non alpha-helical domains. Phylogenetic investigations then show that the 65 kD and 48 kD keratin pair has evolved together with hair keratins, but has diverged from these during evolution to constitute an independent branch of a pair of hair-related keratins. In view of this exceptional position of the 65 kD and 48 kD keratins within the keratin multigene family, their expression has apparently been adopted by rare anatomical sites in which an orthokeratinized stratum corneum would be too soft and a hard keratinized structure would be too rigid to meet the functional requirement of the respective epithelia.  相似文献   

2.
The morphogenesis of filiform papillae on rat tongue was investigated with the electron microscope. Tongue rudiments were first seen on the 12th day of gestation. At 15-17 days, dermal papillae had formed and were arranged in hexagonal array on the dorsal lingual surface. Capping each dermal papilla was a two-layered epithelium that protruded slightly above the lingual surface, thus forming the early filiform papilla. In the next stage of development, at 18-19 days of gestation, the epithelium lining the papilla had differentiated into two cell populations, one producing hard keratin, the other producing soft keratin. Some of the keratinized epithelial cells assumed a position at an acute angle to the tongue surface and extended deep into the epithelium. In the next stage, 20-21 days, a cleft appeared within these angularly oriented cells. This resulted in the division of the epithelium into keraatin-lined individual filiform papillae. Finally, the individual papillae increased in size to the adult form.  相似文献   

3.
《The Journal of cell biology》1986,103(6):2583-2591
The tongue of the adult mouse is covered by a multilayered squamous epithelium which is continuous on the ventral surface, however interrupted on the dorsal surface by many filiform and few fungiform papillae. The filiform papillae themselves are subdivided into an anterior and posterior unit exhibiting different forms of keratinization. Thus, the entire epithelium shows a pronounced morphological diversity of well recognizable tissue units. We have used a highly sensitive in situ hybridization technique to investigate the differential expression of keratin mRNAs in the tongue epithelium. The hybridization probes used were cDNA restriction fragments complementary to the most specific 3'-regions of any given keratin mRNA. We could show that independent of the morphologically different tongue regions, all basal cells uniformly express the mRNA of a type I 52-kD keratin, typical also for basal cells of the epidermis. Immediately above the homogenous basal layer a vertically oriented specialization of the keratin expression occurs within the morphological tissue units. Thus the dorsal interpapillary and ventral epithelium express the mRNAs of a type II 57-kD and a type I 47-kD keratin pair. In contrast, in the anterior unit of the filiform papillae, only the 47-kD mRNA is present, indicating that this keratin may be coexpressed in tongue epithelium with different type II partners. In suprabasal cells of both, the fungiform papillae and the posterior unit of the filiform papillae, a mRNA of a type I 59-kD keratin could be detected; however, its type II 67-kD epidermal counterpart seems not to be present in these cells. Most surprisingly, in distinct cells of both types of papillae, a type I 50-kD keratin mRNA could be localized which usually is associated with epidermal hyperproliferation. In conclusion, the in situ hybridization technique applied has been proved to be a powerful method for detailed studies of differentiation processes, especially in morphologically complex epithelia.  相似文献   

4.
Filiform papillae, which were densely distributed all over the dorsal surface of the lingual body, were crown-shaped, with a central, circular area that sloped in the anterior direction and several branches that surrounded it in a semicircle from the back of the central area. Dome-shaped, fungiform papillae were scattered among these filiform papillae. At the posterior end of the lingual body, there were four circumvallate papillae. Prominent microridges and elevated intercellular borders were widely distributed in the central area of the filiform papillae and the interpapillar region. On the surface of the branches of the filiform papillae, microridges were rarely seen. On the surface of the fungiform papillae, indistinct microridges were observed. Histologically, the dorsal lingual epithelium revealed three different regions: the epithelium on the anterior side of the filiform papillae, the epithelium on the posterior side of the filiform papillae and the interpapillar epithelium. Whereas the basal and suprabasal cells are similar throughout, differences characterize the intermediate and surface layers. Keratohyalin granules appear predominantly in the intermediate layer in the epithelium on the anterior side of filiform papillae. In the epithelium on the posterior side of the filiform papillae, no keratohyalin granules occur and, instead, tonofibrils are prominent. The cells become significantly flattened. In the interpapillar epithelium, no keratohyalin granules are visible, and the tonofilaments occupy almost the entire cytoplasm of most cells in the intermediate and surface layers. The cells are larger in volume in these layers.  相似文献   

5.
Mucosa from the hard and soft palates, molar gingiva, cheek and dorsal surface of the tongue of the rat was examined in the light microscope, following Mallory's triple connective tissue stain, and in the scanning and transmission electron microscopes. The epithelium covering the hard palate, gingiva, the smooth band of mucosa at the junction of the hard and soft palates, intermediate zones of the soft palate, fungiform papilla-like structures in the central zone of the soft palate, the fungiform papillae, and the more superficial part and posterior surfaces of the filiform papillae of the tongue all exhibited complete orthokeratinization. The oral surfaces of the epithelial cells in all these areas had a honeycomb pattern of interconnecting ridges surrounding depressions. Imprints of the overlying cells that had been desquamated were apparent, and the lateral boundaries between the cells were formed by two raised ridges separated by a gap. The epithelium covering the cheek, central zone of the soft palate apart from the fungiform papilla-like structures, lateral zones of the soft palate, gingival crevice, and the mucosa between the fungiform and filiform papillae of the tongue all exhibited incomplete orthokeratinization. The oral surfaces of the epithelial cells in all these areas were relatively smooth and did not exhibit a honeycomb pattern of interconnecting ridges. Imprints of the overlying cells that had been desquamated and the lateral boundaries between the cells were only very occasionally found. In the transmission electron microscope the outlines of the cells were compatible with the surface patterns seen in the scanning electron microscope. The possible relationships between the degree of orthokeratinization and ultrastructure of the various epithelia are discussed.  相似文献   

6.
The fine structure of the keratinization of the papilla filiformis of the human tongue was described for the first time; Two biopsies of normal tongue tissue were fixed in 2,5% phosphate-buffered glutaraldehyde, postfixed in 1% osmiumtetroxyde, embedded in Durcopan und contrasted ultrathin sections were examined by electron microscopes JEM 7A and 100B. The findings show a highly configurated epithel-connective tissue border with basal lamina and irregular hemidesmosomes. The epithelial structure of the interpapillary area is identical with the fine structure of the human buccal mucosa, which was classified as non-keratinized or incompletely keratinized. Accordingly, a stratum granulosum is missing. After loss of nucleus and organelles, surface cells become flattened, parallel to the surface of the tongue and have a fine fibrillar cytoplasm. The papilla filiformis is formed by cell growth along the secondary connective tissue papillae and consequently tube-like epithelial structures appear. In the papillary area basal and stratum spinosum cells show epidermal structural features. A difference from epidermal and other oral epithelial cells becomes apparent for the first time in the stratum granulosum by the appearance of a great number of round, small, electron-dense KHG, surrounded by ribosomes. The KHG are not associated with tonofilaments. In the area of the walls of the tubes 1...3 mum large, electron-dense structures are formed by fusion of several KHG. With further differentiation these large KHG disintegrate into bulky or granular masses, filling the cell cytoplasm and thus mask the tonofilaments. The cells at the borders of the tubes show a great structural variability. After the disintegration of nucleus and organelles, the cytoplasm is formed by randomly oriented filaments of different packing or by fiber-bundles. Yet the interfibrilla embedding substance, typical of orthokeratinization is mostly lackingmin some cells of the tubeborders, masses of disintegrated KHG substance are masking the fibrillar cell cytoplasm. In other areas, where the KHG do not increase by fusion, intense fibrillar packing and abrupt keratinization becomes apparent. At the rim of the tube fully keratinized epithelial threads are regularly found. These are lacking at the bottom of the tubes. All surface areas show a strong tendency towards desquamation. Thus a more or less wide surface plaque is formed on the tongue, consisting of desquamated and disintegrated surface cells and of bacterial. Groups of little differentiated basal cells, which can be considered as the initial material for an accelerated regeneration, can be evaluated as a truly remarkable finding. This accelerated regeneration might be due to an increased wear of the inclompletely keratinized cells of the bulk of the papilla filiformis of the human tongue. Based on the findings of this study, an attempt was made, to explain the pathological reactions of human tongue epithelium in various systemic diseases.  相似文献   

7.
The dorsal surface of the tongue of the little tern, Sterna albifrons, has a distinctive anterior region for five-sixths of its length and a terminal posterior region. The anterior region observed by scanning electron microscopy is distinguished along its forward half by a median line from which median papillae protrude. The hind half of the anterior region has a median sulcus without papillae. The deciduous epithelium on both sides of the median line and sulcus bears scattered epithelial protrusions. The posterior lingual region has neither median papillae nor deciduous epithelium. So-called giant conical papillae are located in a transverse row between anterior and posterior regions. Delicate microridges adorn the surfaces of all outer epithelial cells in both regions. Examination of the dorsal lingual epithelium by light and electron microscopy provides histologic and cytologic criteria for distinguishing anterior and posterior regions. Basal cells are nearly alike throughout the dorsal epithelium. Intermediate layer cells of the anterior region contain numerous tonofibrils in electron-dense bundles composed of 10 nm tonofilaments. The outer layer is composed of electron-dense, well-keratinized cells, and electron-lucent epithelial protrusions are present on the exposed surface of the outermost cells. Median papillae are composed of typical keratinized cells, which are nearly filled with keratin filaments. Intermediate layer cells in the posterior region of the tongue are nearly filled with unbundled tonofilaments. There is only a very thin outer keratinized layer in this region.  相似文献   

8.
We present here a 1770 bp-long cDNA which encodes a murine type II keratin. Sequence comparisons of the keratin with those of various type II keratins expressed in mouse epidermis and internal stratified epithelia reveal that the new keratin is unrelated to epithelial keratins. Rather the structural organization of its amino- and carboxyterminal domains and the high content of cysteine and proline residues in these regions suggest that the keratin represents a murine type II hair keratin. This assumption was confirmed by in situ hybridization which localized the mRNA of the keratin in upper cells of the hair cortex and in suprabasal cells of the central core unit of filiform papillae of the tongue. Hybrid selection analyses revealed that the keratin has a molecular weight of 58 kD. It remains to be seen whether the keratin corresponds to MHb 3 or MHb 4.  相似文献   

9.
The amphibian tongue contains two types of papilla which are believed to function in gustation and in the secretion of salivary fluid. Scanning electron microscopy reveals that columnar, filiform papillae are compactly distributed over nearly the entire dorsal surface of the tongue of the frog, Rana cancrivora, and fungiform papillae are scattered among the filiform papillae. Microridges and microvilli are distributed on the epithelial cell surface of the extensive area of the filiform papillae. Light microscopy shows that the apex of each filiform papilla is composed of stratified columnar and/or cuboidal epithelium and its base is composed of simple columnar epithelium. Transmission electron microscopy reveals that most of the epithelium of the filiform papillae is composed of cells that contain numerous round electron-dense granules 1–3 μm in diameter. Cellular interdigitation is well developed between adjacent cells. On the free-surface of epithelial cells, microridges or microvilli are frequently seen. Between these granular cells, a small number of ciliated cells, mitochondria-rich cells and electron-lucent cells are inserted. In some cases, electron-dense granules are present in the ciliated cells. At higher magnification, the electron-dense granules appear to be covered with patterns of spots and tubules. Overall, the morphology and ultrastructure of the lingual epithelium of the three species of Rana that have been studied are quite similar, but they can be easily distinguished from those of Bufo japonicus. Therefore, it appears that lingual morphology is phylogenetically constrained among members of the predominantly freshwater genus Rana to produce uniformity of papillary structure and this morphology persists in Rana cancrivora despite the distinct saline environment in which it lives. © 1993 Wiley-Liss, Inc.  相似文献   

10.
Summary Nervous elements supplying the filiform papillae of the tongue of cattle and rats were investigated using immunohistochemistry against neurofilament protein (NFP) and glia-specific S-100 protein. The rod-shaped bovine filiform papillae were heavily keratinized along their entire length and lacked the connective tissue core that occurs in other mammals. Instead, the core was located posterior to the filiform papilla. The base of the bovine filiform papillae was invaded vertically by laminar connective tissue papillae. The core contained a large number of NFP-positive nerve fibers, most of them terminating as free endings in its anterior margin. NFP-positive nerves gathered around the anterior ridge of the epithelium at the base of the core and occasionally penetrated into the epithelium. The laminar connective tissue papillae at the base of the filiform papilla also contained NFP-positive nerve fibers. The core contained S-100-immunoreactive lamellated corpuscles, which were identified as simple corpuscles in electron micrographs. The structure and innervation of the bovine filiform papilla suggest that they represent a specialized sensory apparatus. The pyramidal filiform papillae of the rat were smaller, each containing a simple connective tissue core. Few NFP-positive nerve fibers from the nerve plexus entered the core. Filiform papillae are thus less specialized in rats than in cattle.  相似文献   

11.
The dorsal surfaces of mammalian tongues are covered with numerous projections known as filiform papillae whose morphology varies in different species. Using a panel of monoclonal antibodies to keratins as probes, we have established that, in both human and mouse, the interpapillary epithelia express mainly the "esophageal-type" keratins, while the papillary epithelia express "skin-type" keratins as well as some keratins reacting with a monoclonal antibody (AE13) to hair keratins. The AE13-reactive proteins of the mouse were found to be very similar to those of authentic mouse hair keratins. However, the corresponding protein of human tongue appears to be different from all known human keratins. This protein has a MW of 51K; it is relatively acidic; it is sulfhydryl-rich, as revealed by iodoacetic acid-induced charge and apparent size shift; it shares an epitope with all the known acidic human hair keratins; and it is associated with keratin fibrils in vivo. This protein may therefore be regarded as a novel type I "hard" keratin. These data establish that mammalian dorsal tongue epithelia can be divided into at least three compartments that undergo mainly "esophageal-", "skin-" and "hair"-types of differentiation. Different keratin filaments, e.g., those of the esophageal- and hair-types, exhibit strikingly different degrees of lateral aggregation, which can potentially account for the different physical strength and rigidity of various cellular compartments. Our data also suggest the possibility that variations in papillary structure in human and mouse may arise from different spatial arrangements of specific keratinocytes, and/or from the expression of specialized hair-related keratins.  相似文献   

12.
Light and electron microscopic examination of the dorsal lingual epithelium of beagle dogs (Canis domesticus) revealed three different regions: that anterior to the filiform papillae, that posterior to the papillae, and an interpapillary region. Whereas the basal and suprabasal cells are similar throughout, differences characterize the intermediate and surface layers. Keratohyalin granules are common in the intermediate layers in the anterior and interpapillary regions, tonofibrils are prominent in the posterior region, and no keratohyalin granules occur. The surface layer of the interpapillary region is not keratinized, that of the anterior region shows soft keratinization, and that of the posterior region shows hard keratinization. The perimeter of keratohyalin granules is composed of ribosomes 10-20 nm in diameter.  相似文献   

13.
Keratins are cytoplasmic intermediate filament proteins expressed by epithelial cells. Keratin 7 (K7) is expressed in a wide range of epithelial structures in humans. We have cloned and fully sequenced the human and mouse K7 genes and mRNAs, and the K7 mRNA from the marsupial Potorous tridactylis, from which the widely used simple epithelial cell lines PtK1 and PtK2 are derived. Percentage identity plots comparing the mouse and human genomic sequences revealed a number of conserved CpG islands associated with the K7 gene. There was considerable conservation of introns between the two species, which may indicate the presence of intronic regulatory elements. Only the most proximal 500bp of the promoter was conserved, although an additional conserved sequence island was found 2-3kb upstream. Protein sequence comparisons between the three species allowed identification of conserved regions of the keratin variable domains that may be candidates for protein-protein interactions and/or regulatory modification. From the mouse sequence, we generated a polyclonal rabbit antibody specific for murine K7. This antibody was used to perform a survey of K7 expression in the mouse. The expression pattern was similar to the reported human distribution, with substantial expression observed in lung, bladder, mesothelium, hair follicle, and ductal structures. We also noted previously unreported expression of K7 in the gastrointestinal tract and filiform papillae of the tongue and specific K7 expression in a range of "hard" epithelial tissues. The distribution of K7 in mouse and availability of genomic sequence from the 129/Sv mouse strain will allow the generation and analysis of transgenic mice expressing mutant forms of K7 and to predict the phenotype of human genetic disorders caused by mutations in this keratin.  相似文献   

14.
Scanning electron microscopy reveals that the flat tongue of Platemys pallidipectoris has shallow grooves and no lingual papillae. The surface of the tongue is covered with dome-shaped bulges, each corresponding to a single cell. Short microvilli are distributed over the cell surface. Light microscopy shows a stratified cuboidal epithelium with an underlying strong connective tissue. Transmission electron microscopy indicates four layers. The basal cells of the epithelium are electron-translucent and have a large central nucleus and a cytoplasm with keratin tonofilaments. Plasma cells with abundant rough endoplasmic reticulum and mitochondria occur in the basal layer. Production of secretory granules begins in the more electron-dense intermediate layers and increases as the cells move toward the surface. The membranes of the cells of the deep intermediate layer form processes that project into relatively wide intercellular spaces. In the superficial intermediate layer, the cytoplasm of the cells contains numerous fine granules; these increase in number but not in size in more distal layers. The cells of the surface layer are electron-translucent with a round nucleus. Contents of their fine granules are secreted into the oral cavity. © 1995 Wiley-Liss, Inc.  相似文献   

15.
16.
To study the dorsal surface of the human tongue using a scanning electron microscopy (SEM), tissue specimens were taken from the anterior part of the tongues of 15 individuals aged from 21- to 28-years-old. The formalin-fixed samples were processed routinely for SEM. With SEM the surface of the normal tongue mucosa was shown to be rather evenly covered by filiform papillae, with some fungiform papillae scattered among them. Filiform papillae consisted of two parts: the body and hairs. The mucosal surface of the body was smooth; the squamous epithelial cells were polygonal, and their boundaries were prominent. On the surface of the superficial epithelial cells were parallel or branching microplicae. Each filiform papilla had 6-10 hairs, which were scaled and covered by an extensive plaque of microorganism. The upper surface of the fungiform papillae was smooth; only a few desquamating cells were seen. The superficial cells had a pitted appearance and cell boundaries overlapped. Taste pores, up to 3 pores in a single papilla, were found on the upper surface. Desquamation was more pronounced on the base of the fungiform papillae than on the upper surface. In almost all fungiform papillae some hairs protruded from the base. Parallel microplicae were found on the surface of the superficial cells of the base. The structure and function of the human tongue, as well as the microplicae of its superficial cells, are compared to those of various species of animals.  相似文献   

17.
Mammalian genomes feature multiple genes encoding highly related keratin 6 (K6) isoforms. These type II keratins show a complex regulation with constitutive and inducible components in several stratified epithelia, including the oral mucosa and skin. Two functional genes, K6alpha and K6beta, exist in a head-to-tail tandem array in mouse genomes. We inactivated these two genes simultaneously via targeting and homologous recombination. K6 null mice are viable and initially indistinguishable from their littermates. Starting at two to three days after birth, they show a growth delay associated with reduced milk intake and the presence of white plaques in the posterior region of dorsal tongue and upper palate. These regions are subjected to greater mechanical stress during suckling. Morphological analyses implicate the filiform papillae as being particularly sensitive to trauma in K6alpha/K6beta null mice, and establish the complete absence of keratin filaments in their anterior compartment. All null mice die about a week after birth. These studies demonstrate an essential structural role for K6 isoforms in the oral mucosa, and implicate filiform papillae as being the major stress bearing structures in dorsal tongue epithelium.  相似文献   

18.
Keratin intermediate filaments (IF) are obligate heteropolymers containing equal amounts of type I and type II keratin. We have previously shown that microinjected biotinylated type I keratin is rapidly incorporated into endogenous bundles of keratin IF (tonofilaments) of PtK2 cells. In this study we show that the earliest steps in the assembly of keratin subunits into tonofilaments involve the extremely rapid formation of discrete aggregates of microinjected keratin. These are seen as fluorescent spots containing both type I and type II keratins within 1 min post-injection as determined by double label immunofluorescence. These observations suggest that endogenous type II keratin subunits can be rapidly mobilized from their endogenous state to form complexes with the injected type I protein. Furthermore, confocal microscopy and immunogold electron microscopy suggest that the type I-type II keratin spots from in close association with the endogenous keratin IF network. When the biotinylated protein is injected at concentrations of 0.3-0.5 mg/ml, the organization of the endogenous network of tonofilaments remains undisturbed during incorporation into tonofilaments. However, microinjection of 1.5-2.0 mg/ml of biotinylated type I results in significant alterations in the organization and assembly state of the endogenous keratin IF network soon after microinjection. The results of this study are consistent with the existence of a state of equilibrium between keratin subunits and polymerized keratin IF in epithelial cells, and provide further proof that IF are dynamic elements of the cytoskeleton of mammalian cells.  相似文献   

19.
Scanning and transmission electron microscopy was employed to investigate the ultrastructure of the lingual dorsal epithelial cells of the frog, Rana rugosa. The specimens for scanning electron microscopy were prepared by a method that involved osmium postfixation and treatment with acid to remove extracellular material that adhered to the surface of the tongue. Over almost the entire dorsal surface, filiform papillae, consisting of a large number of non-ciliated cells with microridges and a very small number of ciliated cells, were compactly distributed. Fungiform papillae were scattered among these filiform papillae. A round sensory disk was located on the top of each fungiform papilla. Each sensory disk was encircled by a band of ciliated cells. Transmission electron microscopy revealed that a large part of the filiform papillar epithelium was composed of cells that contained numerous electron-dense granules. These cells were coincident with the non-ciliated cells observed by scanning electron microscopy. In these cells, the nucleus was located on the basal side, and the ergastoplasm was well-developed on the basal side of the nucleus.  相似文献   

20.
A cloned population of mouse C3H/He keratinocytes was obtained from the 14th passage of an epidermal cell line. A two-step cloning procedure using Petriperm dishes was performed. The cloned population, grown at 34 °C, was subcultured more than 30 times over a one year period. By day 14, three cell layers were formed; the ultrastructural morphology and immunofluorescence characterization of these layers showed numerous tonofilament bundles and well organized desmosome tonofilament structures. They thereby resemble the proliferative compartment of the epidermis. High resolution acrylamide gel electrophoresis of the keratins extracted from the cloned cells showed the presence of many keratin subunits. The tonofilaments extracted from the cell layers, as well as from the supernatant cells, contained a small quantity of high MW keratins (rel. MW 63 000; apparent isoelectric point 5.5–6.2). These results indicate that the cloned keratinocyte cell line had retained a certain maturation capacity in culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号