首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phorbol ester–induced reorganization of the actin cytoskeleton was investigated in C6 rat glioma cells. Observations by fluorescence microscopy and photoelectron microscopy indicated that pretreatment with the transition metal chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) for 1–2 h at 50 μM reduced the sensitivity of the actin cytoskeleton to disruption by the subsequent addition of 200 nM phorbol myristate acetate (PMA). The protective effect of TPEN was eliminated by adding back Zn2+ prior to PMA addition, implicating chelation of metal ions as the mechanism of action of TPEN. C6 cells exposed to PMA experience potent activation of protein kinase C (PKC) and substantial redistribution of the kinase from a soluble to a particulate cellular fraction (translocation). TPEN pretreatment did not block PKC translocation in PMA-exposed cells. By two-dimensional gel analysis, TPEN also did not reduce, but rather slightly increased, the PMA-stimulated phosphorylation of the acidic 80 kDa endogenous PKC substrate, as well as two other proteins at 18 kDa and 50 kDa. In contrast, TPEN significantly suppressed phosphorylation of a 20 kDa protein, both in cells treated with TPEN only and in TPEN-pretreated PMA-exposed cells. The results indicate that the ability of TPEN to protect against PKC-mediated actin cytoskeletal disruption is not due to either a block of PKC translocation or to general inhibition of PKC activity. Rather, the action of TPEN is more selective and probably involves chelation of Zn2+ at a critical Zn2+ -dependent phosphorylation step downstream from the initial tumor promoter–-induced effects on PKC. © 1994 Wiley-Liss, Inc.  相似文献   

2.
Assembly of the tight junction: the role of diacylglycerol   总被引:27,自引:11,他引:16       下载免费PDF全文
Extracellular Ca2+ triggers assembly and sealing of tight junctions (TJs) in MDCK cells. These events are modulated by G-proteins, phospholipase C, protein kinase C (PKC), and calmodulin. In the present work we observed that 1,2-dioctanoylglycerol (diC8) promotes the assembly of TJ in low extracellular Ca2+, as evidenced by translocation of the TJ-associated protein ZO-1 to the plasma membrane, formation of junctional fibrils observed in freeze-fracture replicas, decreased permeability of the intercellular space to [3H]mannitol, and reorganization of actin filaments to the cell periphery, visualized by fluorescence microscopy using rhodamine-phalloidin. In contrast, diC8 in low Ca2+ did not induce redistribution of the Ca-dependent adhesion protein E-cadherin (uvomorulin). Extracellular antibodies to E-cadherin block junction formation normally induced by adding Ca2+. diC8 counteracted this inhibition, suggesting that PKC may be in the signaling pathway activated by E-cadherin-mediated cell-cell adhesion. In addition, we found a novel phosphoprotein of 130 kD which coimmunoprecipitated with the ZO-1/ZO-2 complex. Although the assembly and sealing of TJs may involve the activation of PKC, the level of phosphorylation of ZO-1, ZO-2, and the 130-kD protein did not change after adding Ca2+ or a PKC agonist. The complex of these three proteins was present even in low extracellular Ca2+, suggesting that the addition of Ca2+ or diC8 triggers the translocation and assembly of preformed TJ subcomplexes.  相似文献   

3.
We have shown before that Na(+)/K(+)-ATPase acts as a signal transducer, through protein-protein interactions, in addition to being an ion pump. Interaction of ouabain with the enzyme of the intact cells causes activation of Src, transactivation of EGFR, and activation of the Ras/ERK1/2 cascade. To determine the role of protein kinase C (PKC) in this pathway, neonatal rat cardiac myocytes were exposed to ouabain and assayed for translocation/activation of PKC from cytosolic to particulate fractions. Ouabain caused rapid and sustained stimulation of this translocation, evidenced by the assay of Ca(2+)-dependent and Ca(2+)-independent PKC activities and by the immunoblot analysis of the alpha, delta, and epsilon isoforms of PKC. Dose-dependent stimulation of PKC translocation by ouabain (1-100 microm) was accompanied by no more than 50% inhibition of Na(+)/K(+)-ATPase and doubling of [Ca(2+)](i), changes that do not affect myocyte viability and are known to be associated with positive inotropic, but not toxic, effects of ouabain in rat cardiac ventricles. Ouabain-induced activation of ERK1/2 was blocked by PKC inhibitors calphostin C and chelerythrine. An inhibitor of phosphoinositide turnover in myocytes also antagonized ouabain-induced PKC translocation and ERK1/2 activation. These and previous findings indicate that ouabain-induced activation of PKC and Ras, each linked to Na(+)/K(+)-ATPase through Src/EGFR, are both required for the activation of ERK1/2. Ouabain-induced PKC translocation and ERK1/2 activation were dependent on the presence of Ca(2+) in the medium, suggesting that the signal-transducing and ion-pumping functions of Na(+)/K(+)-ATPase cooperate in activation of these protein kinases and the resulting regulation of contractility and growth of the cardiac myocyte.  相似文献   

4.
Numerous hormones activate cells through receptor-regulated hydrolysis of phosphoinositides resulting in elevated cellular diacylglycerol (DAG), an activator of protein kinase C (PKC). Our previous studies showed that thyrotropin-releasing hormone (TRH) treatment of GH3 cells stimulated a rapid (less than 10 s) but transient (less than 60 s) association of cytosolic PKC with the membrane. In this study, we investigated the roles of hormone-stimulated Ca2+ and DAG levels in initiating and terminating the membrane association of PKC. The initial effects of TRH were not mimicked by elevating CA2+ levels, however, inhibiting TRH-stimulated Ca2+ increases blocked hormone-stimulated PKC translocation. Hence, the TRH stimulation of both Ca2+ and DAG levels were essential for the initial PKC translocation. The termination of PKC membrane association could not be attributed to proteolysis of PKC nor to limiting Ca2+ levels. Treatment of cells with phorbol diesters potentiated and prolonged the effects of TRH on PKC translocation, suggesting that DAG levels limited the membrane association of PKC. Since TRH stimulated a sustained increase in DAG levels, DAG composition was analyzed. There was a marked shift in DAG from tetraenoic (at 15 s) to more saturated DAGs at longer times. In addition, increases in plasma membrane DAG in response to TRH were transient rather than sustained. We propose that the TRH stimulation of PKC translocation is short-lived due to the metabolism of plasma membrane DAGs which are effective in promoting PKC activation. In contrast, DAGs which accumulate in intracellular membranes during the sustained phase of TRH treatment appear to be ineffective as activators of PKC.  相似文献   

5.
Fertilization of the sea urchin egg initiates or accelerates a number of metabolic activities, which have been causally linked to a rise in cytoplasmic pH due to increased Na+-H+ antiport. Two possible regulatory pathways linking sperm-egg fusion to the activity of the antiporter are activation of protein kinase C (PKC) and Ca2+, calmodulin (CaM)-dependent kinase. This report presents the effects of protein kinase inhibitors on antiporter activation during fertilization and treatment with PKC agonists, dioctanoylglycerol or phorbol diester. Protein kinase inhibitors, K252a and H-7 blocked the action of PKC agonists, without inhibiting cytoplasmic alkalinization during fertilization. In contrast, W-7 blocked fertilization-induced rise in cytoplasmic pH, without altering the actions of PKC agonists. These results suggest that the Na+-H+ antiporter may be regulated by PKC or Ca2+, CaM-dependent kinase activities, but activation of the antiporter during fertilization is Ca2+, CaM-dependent, despite production of diacylglycerols by hydrolysis of phosphatidylinositols.  相似文献   

6.
Electrically permeabilized RINm5F cells were used to assess the factors required for activation of protein kinase C (PKC) and insulin secretion. PKC was activated either by phorbol 12-myristate 13-acetate (PMA) or by the generation of endogenous diacylglycerol in response to the nonhydrolyzable guanine nucleotide analog guanosine 5'-O-(thiotriphosphate) (GTP gamma S). As shown previously, both PMA and GTP gamma S elicit Ca2+-independent insulin secretion. This effect was mimicked by guanyl-5'-yl imidodiphosphate (Gpp(NH)p) but not by guanosine 5'-O-(3-fluorotriphosphate) and guanosine 5'-O-(3-phenyltriphosphate) possessing only one negative charge in the gamma-phosphate group. The action of PMA was mediated by PKC, since the agent caused both phosphorylation of specific protein substrates and association of the enzyme with cellular membranes. This translocation was independent of the Ca2+ concentration employed. In contrast, GTP gamma S only promoted association of PKC with membranes at 10(-6) and 10(-5) M Ca2+ and failed to alter significantly protein phosphorylation in the absence of Ca2+. Neither Gpp(NH)p, which stimulates insulin release, nor the other two GTP analogs, increased the proportion of PKC associated with membranes. To verify that the Ca2+-dependent effect of GTP gamma S on PKC is due to activation of phospholipase C, we measured the generation of diacylglycerol. GTP gamma S indeed stimulated diacylglycerol production in the leaky cells by about 50% at Ca2+ concentrations between 10(-7) and 10(-5) M, an effect which was almost abolished in the absence of Ca2+. Thus, at 10(-7) M Ca2+, the concentration found in resting intact cells, the generated diacylglycerol was not sufficient to cause PKC insertion into the membrane, demonstrating that both elevated Ca2+ and diacylglycerol are necessary for translocation to occur. It is concluded that while PKC activation by PMA elicits Ca2+-independent insulin secretion, the kinase seems not to mediate the stimulatory action of GTP analogs in the absence of Ca2+.  相似文献   

7.
Earlier we showed that in serum-starved (27 h), washed mouse fibroblasts and other cell lines 40-80 mM concentrations of ethanol (EtOH) potentiate, in a zinc (Zn2+)-dependent manner, the combined stimulatory effects of calcium (Ca2+) and insulin (Ins) on DNA synthesis. We now report that the promitogenic EtOH effects require removal of the used medium at least 6 h prior to treatments with EtOH, Zn2+, and Ins. If serum-starved (27 h) cells were continuously incubated for another 18-h period without replacing the medium, a secreted cellular factor moderately enhanced the mitogenic effect of Ins and simultaneously blocked the potentiating effect of EtOH on DNA synthesis measured during the last hour of treatments. However, the presence of Ca2+ (2.8 mM) plus Zn2+ (25 microM) or 25-300 nM phorbol 12-myristate 13-acetate (PMA) during the serum starvation period partially restored the promitogenic effect of EtOH. The PMA effect was blocked by the protein kinase C (PKC) inhibitor GF 109203X added for the second (18 h) period. Even at 300 nM, PMA failed to fully downregulate PKC-alpha, the major PKC isoform, over a 28-h period, suggesting that an activated PKC enzyme was involved in the restoration of EtOH effect. When EtOH (40-80 mM) was added for the entire serum starvation period and the incubations were continued for 18 h without removing the medium, EtOH inhibited both the combined actions of Ins and cellular factor as well as the promoting effect of newly added EtOH on Ins-dependent DNA synthesis. Coaddition of Zn2+ and PMA with EtOH prevented these inhibitory effects of EtOH. The results indicate that in mouse fibroblasts EtOH can both enhance and inhibit Ins-dependent DNA synthesis depending on the timing of EtOH treatment as well as the presence of Zn2+, cellular factors, and activators of the PKC system.  相似文献   

8.
A LIM domain is a specialized double-zinc finger motif found in a variety of proteins. LIM domains are thought to function as molecular modules, mediating specific protein-protein interactions in cellular signaling. In a recent study, we have demonstrated that ENH, which has three consecutive LIM domains, acts as an adaptor protein for the formation of a functional PKCepsilon-ENH-N-type Ca2+ channel complex in neurons. Formation of this complex selectively recruits PKCepsilon to its specific substrate, N-type Ca2+ channels, and is critical for rapid and efficient potentiation of the Ca2+ channel activity by PKC in neurons. However, it is not clear whether changes in the local Ca2+ concentrations near the channel mouth may affect the formation of the triprotein complex. Furthermore, the molecular determinants for the interactions among these three proteins remain unknown. Biochemical studies were performed to address these questions. Within the physiological Ca2+ concentration range (0-300 microM), binding of ENH to the channel C-terminus was significantly increased by Ca2+, whereas increased Ca2+ levels led to dissociation of PKCepsilon from ENH. Mutagenesis studies revealed that the second LIM domain in ENH was primarily responsible for Ca2+-dependent binding of ENH to both the Ca2+ channel C-terminus and PKCepsilon. ENH existed as a dimer in vivo. PKCepsilon translocation inhibition peptide, which blocks the translocation of PKCepsilon from the cytosol to the membrane, inhibited the interaction between PKCepsilon and ENH. These results provide a molecular mechanism for how the PKCepsilon-ENH-N-type Ca2+ channel complex is formed and regulated, as well as potential drug targets to selectively disrupt the PKC signaling complex.  相似文献   

9.
An increase in concentration of cytosolic Ca2+ ([Ca2+]i) is associated with an accelerated influx of 45Ca2+ when cultured RBL-2H3 cells are stimulated with either antigen or analogs of adenosine although these agents act via different receptors and coupling proteins (Ali, H., Cunha-Melo, J.R., Saul, W.F., and Beaven, M.A. (1990) J. Biol. Chem. 265, 745-753). The same mechanism probably operates for basal Ca2+ influx in unstimulated cells and for the accelerated influx in stimulated cells. This influx had the following characteristics. 1) It was decreased when cells were depolarized with high external K+; 2) it was blocked by other cations (La3+ greater than Zn2+ greater than Cd2+ greater than Mn2 = Co2+ greater than Ba2+ greater than Ni2+ greater than Sr2+) either by competing with Ca2+ at external sites (e.g. La3+ or Zn2+) or by co-passage into the cell (e.g. Mn2+ or Sr2+); and 3) the inhibition of influx by K+ and the metal ions had exactly the same characteristics whether cells were stimulated or unstimulated even though influx rates were different. The dependence of various cellular responses on influx of Ca2+ was demonstrated as follows. The stimulated influx of Ca2+, rise in [Ca2+]i, and secretion, could be blocked in a concentration-dependent manner by increasing the concentration of La3+, but concentrations of La3+ (greater than 20 microM) that suppressed influx to below basal rates of influx markedly suppressed the hydrolysis of inositol phospholipids (levels of inositol 1,4,5-trisphosphate were unaffected). Some metal ions, e.g. Mn2+ and Sr2+, however, supported the stimulated hydrolysis of inositol phospholipid and some secretion in the absence of Ca2+. Thus a basal rate of influx of Ca2+ was required for the full activation of inositol phospholipid hydrolysis, but in addition an accelerated influx was necessary for exocytosis.  相似文献   

10.
The ability of Ca2(+)-mobilizing hormones to promote changes in the subcellular distribution of protein kinase C (PKC) was studied in isolated hepatocytes. In recently isolated cells the distribution of PKC between the soluble and particulate fractions was 47 and 53% respectively. Exposure of the hepatocytes to 100 nM-vasopressin produced an increased phosphoinositide turnover, as reflected by the changes in the concentrations of inositol trisphosphate and Ca2+, and in glycogen phosphorylase a activity. However, the distribution of both PKC activity and [3H]phorbol dibutyrate binding between the cytosol and the membranes remained unchanged under these conditions. To determine the threshold values of the concentrations of Ca2+ and diacylglycerol required to produce a redistribution of PKC, the hepatocytes were treated with the Ca2+ ionophore ionomycin, and with permeant diacylglycerol derivatives. Hepatocytes incubated in the presence of 100 nM-vasopressin required concentrations of Ca2+ 2.5 times those produced physiologically by the hormone to produce translocation of PKC from the cytosol to the membranes. These studies suggest that, at least in hepatocytes, activation of PKC in response to Ca2(+)-mobilizing hormones involves only the pre-existent membrane-bound enzyme without affecting the soluble enzyme.  相似文献   

11.
Cross-linking of receptor bound IgE antibodies by multivalent antigen (DNP8-BSA) on PB-3c cells leads to an increase of cytosolic calcium ((Ca2+)i). Active tumor promoting phorbol esters and teleocidin which specifically activate the phospholipid Ca2+-sensitive protein kinase (PKC), inhibited the antigen-mediated rise in (Ca2+)i and induced a time and dose-dependent translocation of cytosolic PKC to membranes of the PB-3c cells as determined by enzyme activity or immunoblotting using a polyclonal anti-PKC antibody. This TPA concentration did not affect the subcellular distribution of PKC, although 1 nM of 12-O-tetradecanoylphorbol-13-acetate (TPA) inhibited to 50% the antigen-mediated increase in (Ca2+)i. The concentration of TPA required to induce a half-maximal subcellular redistribution of immunodetectable PKC activity was an order of magnitude greater than the half-maximal dose required to inhibit the antigen-mediated increase in (Ca2+)i. These data demonstrate that the TPA-dependent activation of PKC is not directly coupled to its translocation to membranes.  相似文献   

12.
Recently, a novel peptide (Trp-Lys-Tyr-Met-Val-D-Met, WKYMVm) has been shown to induce superoxide generation in human monocytes. The peptide stimulated phospholipase A2 (PLA2) activity in a concentration- and time-dependent manner. Superoxide generation as well as arachidonic acid (AA) release evoked by treatment with WKYMVm could be almost completely blocked by pretreatment of the cells with cytosolic PLA2 (cPLA2)-specific inhibitors. The involvement of cPLA2 in the peptide-induced AA release was further supported by translocation of cPLA2 to the nuclear membrane of monocytes incubated with WKYMVm. WKYMVm-induced phosphatidylbutanol formation was completely abolished by pretreatment with PKC inhibitors. Immunoblot showed that monocytes express phospholipase D1 (PLD1), but not PLD2. GF109203X as well as butan-1-ol inhibited peptide-induced superoxide generation in monocytes. Furthermore, the interrelationship between the two phospholipases, cPLA2 and PLD1, and upstream signaling molecules involved in WKYMVm-dependent activation was investigated. The inhibition of cPLA2 did not blunt peptide-stimulated PLD1 activation or vice versa. Intracellular Ca2+ mobilization was indispensable for the activation of PLD1 as well as cPLA2. The WKYMVm-dependent stimulation of cPLA2 activity was partially dependent on the activation of PKC and mitogen-activated protein kinase, while PKC activation, but not mitogen-activated protein kinase activation, was an essential prerequisite for stimulation of PLD1. Taken together, activation of the two phospholipases, which are absolutely required for superoxide generation, takes place through independent signaling pathways that diverge from a common pathway at a point downstream of Ca2+.  相似文献   

13.
KCl causes smooth muscle contraction by elevating intracellular free Ca2+, whereas receptor stimulation activates an additional mechanism, termed Ca2+ sensitization, that can involve activation of RhoA-associated kinase (ROK) and PKC. However, recent studies support the hypothesis that KCl may also increase Ca2+ sensitivity. Our data showed that the PKC inhibitor GF-109203X did not, whereas the ROK inhibitor Y-27632 did, inhibit KCl-induced tonic (5 min) force and myosin light chain (MLC) phosphorylation in rabbit artery. Y-27632 also inhibited BAY K 8644- and ionomycin-induced MLC phosphorylation and force but did not inhibit KCl-induced Ca2+ entry or peak ( approximately 15 s) force. Moreover, KCl and BAY K 8644 nearly doubled the amount of ROK colocalized to caveolae at 30 s, a time that preceded inhibition of force by Y-27632. Colocalization was not inhibited by Y-27632 but was abolished by nifedipine and the calmodulin blocker trifluoperazine. These data support the hypothesis that KCl caused Ca2+ sensitization via ROK activation. We discuss a novel model for ROK activation involving translocation to caveolae that is dependent on Ca2+ entry and involves Ca2+-calmodulin activation.  相似文献   

14.
Influx of Ca2+ via Ca2+ channels is the major step triggering exocytosis of pituitary somatotropes to release growth hormone (GH). Voltage-gated Ca2+ and K+ channels, the primary determinants of the influx of Ca2+, are regulated by GH-releasing hormone (GHRH) through G-protein-coupled intracellular signalling systems. Using whole-cell patch-clamp techniques, the changes of the Ca2+ and K+ currents in primary cultured ovine and human somatotropes were recorded. Growth hormone-releasing hormone (10 nmol/L) increased both L- and T-type voltage-gated Ca2+ currents. Inhibition of the cAMP/protein kinase A (PKA) pathway by either Rp-cAMP or H89 blocked this increase in both L- and T-type Ca2+ currents. Growth hormone-releasing hormone also decreased voltage-gated transient (IA) and delayed rectified (IK) K+ currents. Protein kinase C (PKC) inhibitors, such as calphostin C, chelerythrine or downregulation of PKC, blocked the effect of GHRH on K+ currents, whereas an acute activation of PKC by phorbol 12, 13-dibutyrate (1 micromol/L) mimicked the effect of GHRH. Intracellular dialysis of a specific PKC inhibitor (PKC19-36) also prevented the reduction in K+ currents by GHRH. It is therefore concluded that GHRH increases voltage-gated Ca2+ currents via cAMP/PKA, but decreases voltage-gated K+ currents via the PKC signalling system. The GHRH-induced alteration of Ca2+ and K+ currents augments the influx of Ca2+, leading to an increase in [Ca2+]i and the GH secretion.  相似文献   

15.
Less information is available concerning the molecular mechanisms of cell survival after hypoxia in hepatocytes. Therefore, this study examined the effect of hypoxia on DNA synthesis and its related signal cascades in primary cultured chicken hepatocytes. Hypoxia increased [3H] thymidine incorporation, which was increased significantly after 0-24 h of hypoxic exposure. Indeed, the percentage of cell population in the S phase was increased in hypoxia condition. However, the release of LDH indicating cellular injury was not changed under hypoxic conditions. Hypoxia increased Ca2+ uptake and PKC translocation from the cytosol to the membrane fraction. Among the PKC isoforms, hypoxia stimulated the translocation of PKC alpha and epsilon. Hypoxia also phosphorylated the p38 and p44/42 mitogen-activated protein kinases (MAPKs), which were blocked by the inhibition of PKC. On the other hand, hypoxia increased Akt and mTOR phosphorylation, which was blocked in the absence of intra/extracellular Ca2+. The inhibition of PKC/MAPKs or PI3K/Akt pathway blocked the hypoxia-induced [3H] thymidine incorporation. However, hypoxia-induced Ca2+ uptake and PKC translocation was not influenced by LY 294002 or Akt inhibitor and hypoxia-induced MAPKs phosphorylation was not changed by rapamycin. In addition, LY 294002 or Akt inhibitor has no effect on the phosphorylation of MAPKs. It suggests that there is no direct interaction between the two pathways, which cooperatively mediated cell cycle progression to hypoxia in chicken hepatocytes. Hypoxia also increased the level of the cell cycle regulatory proteins [cyclin D(1), cyclin E, cyclin-dependent kinase (CDK) 2, and CDK 4] and p-RB protein but decreased the p21 and p27 expression levels, which were blocked by inhibitors of upstream signal molecules. In conclusion, short time exposure to hypoxia increases DNA synthesis in primary cultured chicken hepatocytes through cooperation of Ca2+/PKC, p38 MAPK, p44/42 MAPKs, and PI3K/Akt pathways.  相似文献   

16.
17.
In studies of developmental signaling pathways stimulated by the Wnt proteins and their receptors, Xenopus Wnt-5A (Xwnt-5A) and a prospective Wnt receptor, rat Frizzled 2 (Rfz2), have been shown to stimulate inositol signaling and Ca2+ fluxes in zebrafish [1] [2] [3]. As protein kinase C (PKC) isoforms can respond to Ca2+ signals [4], we asked whether expression of different Wnt and Frizzled homologs modulates PKC. Expression of Rfz2 and Xwnt-5A resulted in translocation of PKC to the plasma membrane, whereas expression of rat Frizzled 1 (Rfz1), which activates a Wnt pathway using beta-catenin but not Ca2+ fluxes [5], did not. Rfz2 and Xwnt-5A were also able to stimulate PKC activity in an in vitro kinase assay. Agents that inhibit Rfz2-induced signaling through G-protein subunits blocked Rfz2-induced translocation of PKC. To determine if other Frizzled homologs differentially stimulate PKC, we tested mouse Frizzled (Mfz) homologs for their ability to induce PKC translocation relative to their ability to induce the expression of two target genes of beta-catenin, siamois and Xnr3. Mfz7 and Mfz8 stimulated siamois and Xnr3 expression but not PKC activation, whereas Mfz3, Mfz4 and Mfz6 reciprocally stimulated PKC activation but not expression of siamois or Xnr3. These results demonstrate that some but not all Wnt and Frizzled signals modulate PKC localization and stimulate PKC activity via a G-protein-dependent mechanism. In agreement with other studies [1] [2] [3]. [6] [7] these data support the existence of multiple Wnt and Frizzled signaling pathways in vertebrates.  相似文献   

18.
T Sakai  Y Okano  Y Nozawa  N Oka 《Cell calcium》1992,13(5):329-340
Effects of protein kinase C (PKC) on bradykinin (BK)-induced intracellular calcium mobilization, consisting of rapid Ca2+ release from internal stores and a subsequent sustained Ca2+ inflow, were examined in Fura-2-loaded osteoblast-like MC3T3-E1 cells. The sustained Ca2+ inflow as inferred with Mn2+ quench method was blocked by Ni2+ and a receptor-operated Ca2+ channel blocker SK&F 96365, but not by nifedipine. The short-term pretreatment with phorbol 12-myristate 13-acetate (PMA), inhibited BK-stimulated Ca2+ inflow, and the prior treatment with PKC inhibitors, H-7 or staurosporine, enhanced the initial internal release and reversed the PMA effect. Moreover, 6 h pretreatment with PMA caused similar effect on the BK-induced inflow to that obtained with PKC inhibitors, whereas 24 h pretreatment was necessary to affect the internal release. On the other hand, the translocation and down-regulation of PKC isozymes were examined after PMA treatment of MC3T3-E1 cells by immunoblot analyses of PKCs with the isozyme-specific antibodies. 6 h treatment with PMA induced down-regulation of PKC beta, whereas longer treatment was needed for down-regulation of PKC alpha. Taken together, it was suggested that the BK-induced initial Ca2+ peak and the sustained Ca2+ inflow through the activation of a receptor-operated Ca2+ channel, are differentially regulated by PKC isozymes alpha and beta, respectively, in osteoblast-like MC3T3-E1 cells.  相似文献   

19.
The cation specificity of dolichol kinase of mammalian brain and the potential involvement of a Ca2+-calmodulin system in regulation of this enzyme have been studied. Among 10 divalent cations examined, Zn2+ was found to be most effective for the activation of dolichol kinase of rat and calf brain and cultured C-6 glial cells. The activations with Ca2+, Co2+, and Mg2+ were 53%, 32%, and 18% of the full activation with Zn2+, respectively. No combinations of the cations could activate the enzyme as much as Zn2+ alone. A role for a Ca2+-calmodulin system in the regulation of brain dolichol kinase was not supported by our data. First, the concentration of free Ca2+ required for the maximum activation of dolichol kinase was two to three orders of magnitude greater than the concentration required by typical calmodulin-dependent enzymes. Second, neither the depletion of calmodulin from the microsomal fraction nor the addition of exogenous calmodulin caused an alteration in the activation of dolichol kinase by Ca2+ (or Zn2+). Third, antagonists of calmodulin failed to suppress the activation of the enzyme by Ca2+ (or Zn2+). The data raise the possibility that Zn2+ is involved in the regulation of dolichol kinase in brain.  相似文献   

20.
Osteoclasts display a membrane Ca(2+)-sensing mechanism capable of detecting the extracellular calcium concentration ([Ca2+]o), and to induce increase of [Ca2+]i and inhibition of bone resorption. The ultimate result of the stimulation of such sensing is probably the activation of protein kinase C (PKC). To demonstrate whether PKC plays a role in the control of the osteoclast activity, we treated rabbit single osteoclasts with agents known to activate or to inhibit the enzyme. We measured [Ca2+]i in single fura 2-loaded single cells and found that activation of PKC by phorbol esters doubled the [Ca2+]o-induced [Ca2+]i elevation, whereas inhibition of the enzyme by H7, staurosporine or sphingosine, completely blocked the ability of the cell to respond to elevated [Ca2+]i. By contrast, a control inactive agent, 4Aphorbol, failed to modify the cellular response to elevated [Ca2+]o. We conclude that PKC plays a synergistic role in the regulation of osteoclast Ca(2+)-sensing. Since we have previously demonstrated that activation of PKA up-regulates the Ca(2+)-sensing as well, we hypothesize that such mechanism is positively fed-back by both PKA and PKC-dependent threonine/serine phosphorylations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号