首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Collagen fibrils are the principal source of mechanical strength of connective tissues such as tendon, skin, cornea, cartilage and bone. The ability of these tissues to withstand tensile forces is directly attributable to the length and diameter of the fibrils, and to interactions between individual fibrils. Although electron microscopy studies have provided information on fibril diameters, little is known about the length of fibrils in tissue and how fibrils interact with each other. The question of fibril length has been difficult to address because fibril ends are rarely observed in cross-sections of tissue. The paucity of fibril ends, or tips, has led to controversy about how long individual fibrils might be and how the fibrils grow in length and diameter. This review describes recent discoveries that are relevant to these questions. We now know that vertebrate collagen fibrils are synthesised as short (1-3 microm) early fibrils that fuse end-to-end in young tissues to generate very long fibrils. The diameter of the final fibril is determined by the diameter of the collagen early fibrils. During a late stage of tissue assembly fibril tips fuse to fibril shafts to generate branched networks. Of direct relevance to fibril fusion is the fact that collagen fibrils can be unipolar or bipolar, depending on the orientation of collagen molecules in the fibril. Fusion relies on: (1) specific molecular interactions at the carboxyl terminal ends of unipolar collagen fibrils; and (2) the insulator function of small proteoglycans to shield the surfaces of fibrils from inappropriate fusion reactions. The fusion of tips to shafts to produce branched networks of collagen fibrils is an elegant mechanism to increase the mechanical strength of tissues and provides an explanation for the paucity of fibril tips in older tissue.  相似文献   

2.
Collagen fibrils are the principal tensile element of vertebrate tissues where they occur in the extracellular matrix as spatially organised arrays. A major challenge is to understand how the mechanisms of nucleation, growth and remodelling yield fibrils of tissue-specific diameter and length. Here we have developed a seeding system whereby collagen fibrils were isolated from avian embryonic tendon and added to purified collagen solution, in order to characterise fibril surface nucleation and growth mechanisms. Fragmentation of tendon in liquid nitrogen followed by Dounce homogenisation generated fibril length fragments. Most (> 94%) of the fractured ends of fibrils, which show an abrupt square profile, were found to act as nucleation sites for further growth by molecular accretion. The mechanism of this nucleation and growth process was investigated by transmission electron microscopy, atomic force microscopy and scanning transmission electron microscopy mass mapping. Typically, a single growth spur occurred on the N-terminal end of seed fibrils whilst twin spurs frequently formed on the C-terminal end before merging into a single tip projection. The surface nucleation and growth process generated a smoothly tapered tip that achieved maximum diameter when the axial extension reached ∼ 13 μm. Lateral growth also occurred along the entire length of all seed fibrils that contained tip projections. The data support a model of collagen fibril growth in which the broken ends of fibrils are nucleation sites for propagation in opposite axial directions. The observed fibril growth behaviour has direct relevance to tendon matrix remodelling and repair processes that might involve rupture of collagen fibrils.  相似文献   

3.
The synthesis of an extracellular matrix containing long (approximately mm in length) collagen fibrils is fundamental to the normal morphogenesis of animal tissues. In this study we have direct evidence that fibroblasts synthesise transient early fibril intermediates (approximately 1 micrometer in length) that interact by tip-to-tip fusion to generate long fibrils seen in older tissues. Examination of early collagen fibrils from tendon showed that two types of early fibrils occur: unipolar fibrils (with carboxyl (C) and amino (N) ends) and bipolar fibrils (with two N-ends). End-to-end fusion requires the C-end of a unipolar fibril. Proteoglycans coated the shafts of the fibrils but not the tips. In the absence of proteoglycans the fibrils aggregated by side-to-side interactions. Therefore, proteoglycans promote tip-to-tip fusion and inhibit side-to-side fusion. This distribution of proteoglycan along the fibril required co-assembly of collagen and proteoglycan prior to fibril assembly. The study showed that collagen fibrillogenesis is a hierarchical process that depends on the unique structure of unipolar fibrils and a novel function of proteoglycans.  相似文献   

4.
Dentin collagen fibrils were studied in situ by atomic force microscopy (AFM). New data on size distribution and the axial repeat distance of hydrated and dehydrated collagen type I fibrils are presented. Polished dentin disks from third molars were partially demineralized with citric acid, leaving proteins and the collagen matrix. At this stage collagen fibrils were not resolved by AFM, but after exposure to NaOCl(aq) for 100-240 s, and presumably due to the removal of noncollagenous proteins, individual collagen fibrils and the fibril network of dentin connected to the mineralized substrate were revealed. High-aspect-ratio silicon tips in tapping mode were used to image the soft fibril network. Hydrated fibrils showed three distinct groups of diameters: 100, 91, and 83 nm and a narrow distribution of the axial repeat distance at 67 nm. Dehydration resulted in a broad distribution of the fibril diameters between 75 and 105 nm and a division of the axial repeat distance into three groups at 67, 62, and 57 nm. Subfibrillar features (4 nm) were observed on hydrated and dehydrated fibrils. The gap depth between the thick and thin repeating segments of the fibrils varied from 3 to 7 nm. Phase mode revealed mineral particles on the transition from the gap to the overlap zone of the fibrils. This method appears to be a powerful tool for the analysis of fibrillar collagen structures in calcified tissues and may aid in understanding the differences in collagen affected by chemical treatments or by diseases.  相似文献   

5.
Collagen fibrils in the corneal stroma have been recognised to have a high degree of uniformity of diameter and spatial arrangement compared with those in other mature connective tissues. The precision of this lateral size control has been determined in this study by mass per unit length measurements on fibrils isolated from adult bovine corneal stroma. At the molecular level, however, there are substantial variations in lateral size, both between fibrils and along individual fibrils. The mean mass per unit length was measured to be 304 kDa nm(-1), equivalent to 347 collagen molecules in transverse section and had a standard deviation of 8.3%. The variation of lateral size along individual fibrils was measured as a mass slope over approximately 7 microm lengths (100 D-periods) and had a mean mass slope equivalent to 0.56 molecules per D-period. Smoothly tapered tips of length approximately 7 microm were also observed with a mass slope of about approximately three molecules per D-period. The frequency of these tips was used to estimate a mean fibril length of approximately 940 microm in the sample tissue. Observations of molecular polarity within the fibril shafts and tips were used to consider possible models of fibril assembly.  相似文献   

6.
Growth of collagen fibrils was examined in a system in which collagen monomers are generated by specific enzymic cleavage of type IpCcollagen with procollagen C-proteinase. Fibrils formed at 37 degrees C had highly tapered and symmetrical pointed tips. The pattern of cross-striations in the pointed tips indicated that all the molecules were oriented so that the N-termini were directed towards the tip. At 29 degrees C and 32 degrees C, the fibrils formed were thicker. One end of fibrils formed at 29 degrees C was blunt, and the other was pointed. Growth of the fibrils was exclusively from pointed tips. Occasionally a spear-like projection appeared at a blunted end. The spear-like projection then became a new pointed tip for growth in the opposite direction. The results suggested a model for fibril growth with at least three distinct binding sites for monomers. In the model, the pointed tip is the site with the highest affinity for the binding of monomers and most probably defines the critical concentration for fibril assembly. The main shaft of the fibril is a site with very low affinity for binding. The blunted end defines a low-affinity binding site where monomers can bind in opposite orientation to produce growth from a new pointed end.  相似文献   

7.
8.
The proteoglycan decorin and its associated glycosaminoglycan (GAG), dermatan sulfate (DS), regulate collagen fibril formation, control fibril diameter, and have been suggested to contribute to the mechanical stability and material properties of connective tissues. The spatial distribution and orientation of DS within the tissue are relevant to these mechanical roles, but measurements of length and orientation from 2D transmission electron microscopy (TEM) are prone to errors from projection. The objectives of this study were to construct a 3D geometric model of DS GAGs and collagen fibrils, and to use the model to interpret TEM measurements of the spatial orientation and length of DS GAGs in the medial collateral ligament of the human knee. DS was distinguished from other sulfated GAGs by treating tissue with chondroitinase B, an enzyme that selectively degrades DS. An image processing pipeline was developed to analyze the TEM micrographs. The 3D model of collagen and GAGs quantified the projection error in the 2D TEM measurements. Model predictions of 3D GAG orientation were highly sensitive to the assumed GAG length distribution, with the baseline input distribution of 69+/-23 nm providing the best predictions of the angle measurements from TEM micrographs. The corresponding orientation distribution for DS GAGs was maximal at orientations orthogonal to the collagen fibrils, tapering to near zero with axial alignment. Sulfated GAGs that remained after chondroitinase B treatment were preferentially aligned along the collagen fibril. DS therefore appears more likely to bridge the interfibrillar gap than non-DS GAGs. In addition to providing quantitative data for DS GAG length and orientation in the human MCL, this study demonstrates how a 3D geometric model can be used to provide a priori information for interpretation of geometric measurements from 2D micrographs.  相似文献   

9.
We have characterized the primary structure of a new sea urchin fibrillar collagen, the 5alpha chain, including nine repeats of the sea urchin fibrillar module in its N-propeptide. By Western blot and immunofluorescence analyses, we have shown that 5alpha is co-localized in adult collagenous ligaments with the 2alpha fibrillar collagen chain and fibrosurfin, two other extracellular matrix proteins possessing sea urchin fibrillar modules. At the ultrastructural level, the 5alpha N-propeptide is detected at the surface of fibrils, suggesting the retention of this domain in mature collagen molecules. Biochemical characterization of pepsinized collagen molecules extracted from the test tissue (the endoskeleton) together with a matrix-assisted laser desorption ionization time-of-flight analysis allowed us to determine that 5alpha is a quantitatively minor fibrillar collagen chain in comparison with the 1alpha and 2alpha chains. Moreover, 5alpha forms heterotrimeric molecules with two 1alpha chains. Hence, as in vertebrates, sea urchin collagen fibrils are made up of quantitatively major and minor fibrillar molecules undergoing distinct maturation of their N-propeptide regions and participating in the formation of heterotypic fibrils.  相似文献   

10.
One of the mechanisms involved in the regulation of the fibril diameter is the retention of the N-propeptide. In sea urchin embryo, thin collagen fibrils harbor numerous extensions at their surface, which we have suggested correspond to the large N-propeptide of the 2alpha collagen chain. To investigate the function of the N-propeptide during fibrillogenesis, we engineered constructs coding for the globular region of the 2alpha N-propeptide. To obtain homotrimeric molecules, the N-telopeptide, the central triple helix and the C-propeptide of the 2alpha chain were replaced by human domains of the proalpha1(I) chain. A single restriction site allowed insertion of distinct versions of the minor triple helix of the N-propeptide. Several human cell lines were transfected, and with one of them we were able to produce intact homotrimeric procollagen molecules. Rotary shadowing of these purified molecules indicates the presence of three large 2alpha N-propeptides that are similar to the extensions present at the surface of the sea urchin thin fibrils. This cassette-vector will be useful in determining the respective contributions of the globular and minor triple helical domains of the N-propeptide in the regulation of fibril diameter.  相似文献   

11.
To better understand interstitial matrix remodeling during angiogenesis, we probed endogenous optical signatures of collagen fibrils and cells with multiphoton microscopy to noninvasively visualize, in real-time, changes to fibril organization around angiogenic sprouts and growing neovessels. From analyses of the second-harmonic generation signal from fibrillar collagen and two-photon excited fluorescence, as well as coherent transmitted light from vascular cells, we found that microvessel fragments interacting with the collagen matrix exhibited two key features: a strong association of fibrillar collagen around the parent vessel fragment during vessel construct reconstitution and a substantial collagen fibril reorganization by sprout and neovessel tips. Results indicate that angiogenic sprouts and growing neovessels actively and differentially remodel existing collagen fibrils. This imaging approach to assess local changes in matrix organization may have a broader impact on tissue biology and mechanics during angiogenesis and allow for new insights in cardiovascular, diabetes, and cancer research.  相似文献   

12.
It is proposed that radial growth of collagen fibrils, which takes place in all connective tissues to varying extents, according to the tensile stresses exerted on them, proceeds mainly by aggregation of protofibrils (approximately 10 nm) and existing fibrils. In young tissues, fibrils are prevented from making frequent intimate contacts which would lead to aggregation by abundant interfibrillar proteoglycan, that keeps the fibrils apart. Collagen fibrils are probably unable to fuse except when the molecules within them are packed in the same sense, i.e. fusing fibrils are parallel. The roughly equal numbers of parallel and antiparallel fibrils seen in several tissues must limit radial fibril growth in older tissues, where proteoglycan is usually less abundant. Possible origins of the balance of fibril polarities, which must be conserved after fibril nucleation on cell or non-cell templates, are analysed. The two controlling factors, ambient proteoglycan and fibril polarity, working against the tendency of fibrils to fuse, account for many features of the observed distributions of collagen fibril diameters in diverse tissues and at different ages.  相似文献   

13.
Collagen fibrils provide tensile reinforcement for extracellular matrix. In at least some tissues, the fibrils have a paraboloidal taper at their ends. The purpose of this paper is to determine the implications of this taper for the function of collagen fibrils. When a tissue is subjected to low mechanical forces, stress will be transferred to the fibrils elastically. This process was modelled using finite element analysis because there is no analytical theory for elastic stress transfer to a non-cylindrical fibril. When the tissue is subjected to higher mechanical forces, stress will be transferred plastically. This process was modelled analytically. For both elastic and plastic stress transfer, a paraboloidal taper leads to a more uniform distribution of axial tensile stress along the fibril than would be generated if it were cylindrical. The tapered fibril requires half the volume of collagen than a cylindrical fibril of the same length and the stress is shared more evenly along its length. It is also less likely to fracture than a cylindrical fibril of the same length in a tissue subjected to the same mechanical force.  相似文献   

14.
M F Paige  J K Rainey    M C Goh 《Biophysical journal》1998,74(6):3211-3216
Fibrous long spacing collagen (FLS) fibrils are collagen fibrils in which the periodicity is clearly greater than the 67-nm periodicity of native collagen. FLS fibrils were formed in vitro by the addition of alpha1-acid glycoprotein to an acidified solution of monomeric collagen and were imaged with atomic force microscopy. The fibrils formed were typically approximately 150 nm in diameter and had a distinct banding pattern with a 250-nm periodicity. At higher resolution, the mature FLS fibrils showed ultrastructure, both on the bands and in the interband region, which appears as protofibrils aligned along the main fibril axis. The alignment of protofibrils produced grooves along the main fibril, which were 2 nm deep and 20 nm in width. Examination of the tips of FLS fibrils suggests that they grow via the merging of protofibrils to the tip, followed by the entanglement and, ultimately, the tight packing of protofibrils. A comparison is made with native collagen in terms of structure and mechanism of assembly.  相似文献   

15.
Previous observations with type I collagen from a proband with lethal osteogenesis imperfecta demonstrated that type I collagen containing a substitution of cysteine for glycine alpha 1-748 copolymerized with normal type I collagen (Kadler, K. E., Torre-Blanco, A., Adachi, E., Vogel, B. E., Hojima, Y., and Prockop, D. J. (1991) Biochemistry 30, 5081-5088). Here, three preparations containing normal type I procollagen and type I procollagen with a substitution of cysteine for glycine alpha 1-175, glycine alpha 1-691, or glycine alpha 1-988 were purified from cultured skin fibroblasts from probands with osteogenesis imperfecta. The procollagens were then used as substrates in a system for assaying the self-assembly of type I collagen into fibrils. The cysteine-substituted collagens in all three preparations were incorporated into fibrils. The cysteine alpha 1-175 and cysteine alpha 1-691 collagens were shown to increase the lag time and decrease the propagation rate constant for fibril assembly. All three preparations containing cysteine-substituted collagens formed fibrils with diameters that were two to four times the diameter of fibrils formed under the same conditions by normal type I collagen. Also, the three preparations containing cysteine substituted collagens had higher solubilities than normal type I collagen. The results, therefore, demonstrated that the three cysteine-substituted collagens copolymerized with normal type I collagen. The effects of the mutated collagens on fibril assembly can be understood in terms of a recently proposed model of fibril growth from symmetrical tips by assuming that the mutated monomers partially inhibit tip growth but not lateral growth of the fibrils. Of special interest was the observation that the Cys alpha 1-175 collagen from a proband with a non-lethal variant of osteogenesis imperfecta had quantitatively less effect on several parameters of fibril assembly at 37 degrees C than cysteine-substituted collagens from three probands with lethal variants of the disease.  相似文献   

16.
Sea urchins and sea cucumbers, like other echinoderms, control the tensile properties of their connective tissues by regulating stress transfer between collagen fibrils. The collagen fibrils are spindle-shaped and up to 1 mm long with a constant aspect ratio of approx. 2000. They are organized into a tissue by an elastomeric network of fibrillin microfibrils. Interactions between the fibrils are regulated by soluble macromolecules that are secreted by local, neurally controlled, effector cells. We are characterizing the non-linear viscoelastic properties of sea cucumber dermis under different conditions, as well as the structures, molecules and molecular interactions that determine its properties. In addition, we are developing reagents that will bind covalently to fibril surfaces and reversibly form cross-links with other reagents, resulting in a chemically controlled stress-transfer capacity. The information being developed will lead to the design and construction of a synthetic analogue composed of fibres in an elastomeric matrix that contains photo- or electro-sensitive reagents that reversibly form interfibrillar cross-links.  相似文献   

17.
Structure of corneal scar tissue: an X-ray diffraction study.   总被引:2,自引:1,他引:1       下载免费PDF全文
Full-thickness corneal wounds (2 mm diameter) were produced in rabbits at the Schepens Eye Research Institute, Boston. These wounds were allowed to heal for periods ranging from 3 weeks to 21 months. The scar tissue was examined using low- and wide-angle x-ray diffraction from which average values were calculated for 1) the center-to-center collagen fibril spacing, 2) the fibril diameter, 3) the collagen axial periodicity D, and 4) the intermolecular spacing within the collagen fibrils. Selected samples were processed for transmission electron microscopy. The results showed that the average spacing between collagen fibrils within the healing tissue remained slightly elevated after 21 months and there was a small increase in the fibril diameter. The collagen D-periodicity was unchanged. There was a significant drop in the intermolecular spacing in the scar tissues up to 6 weeks, but thereafter the spacing returned to normal. The first-order equatorial reflection in the low-angle pattern was visible after 3 weeks and became sharper and more intense with time, suggesting that, as healing progressed, the number of nearest neighbor fibrils increased and the distribution of nearest neighbor spacings reduced. This corresponded to the fibrils becoming more ordered although, even after 21 months, normal packing was not achieved. Ultrastructural changes in collagen fibril density measured from electron micrographs were consistent with the increased order of fibril packing measured by x-ray diffraction. The results suggest that collagen molecules have a normal axial and lateral arrangement within the fibrils of scar tissue. The gradual reduction in the spread of interfibrillar spacings may be related to the progressive decrease in the light scattered from the tissue as the wound heals.  相似文献   

18.
Magnesium (Mg) biomaterials are a new generation of biodegradable materials and have promising potential for orthopedic applications. After implantation in bone tissues, these materials will directly interact with extracellular matrix (ECM) biomolecules and bone cells. Type I collagen, the major component of bone ECM, forms the architecture scaffold that provides physical support for bone cell attachment. However, it is still unknown how Mg substrate affects collagen assembly on top of it as well as subsequent cell attachment and growth. Here, we studied the effects of collagen monomer concentration, pH, assembly time, and surface roughness of two Mg materials (pure Mg and AZ31) on collagen fibril formation. Results showed that formation of fibrils would not initiate until the monomer concentration reached a certain level depending on the type of Mg material. The thickness of collagen fibril increased with the increase of assembly time. The structures of collagen fibrils formed on semi-rough surfaces of Mg materials have a high similarity to that of native bone collagen. Next, cell attachment and growth after collagen assembly were examined. Materials with rough surface showed higher collagen adsorption but compromised bone cell attachment. Interestingly, surface roughness and collagen structure did not affect cell growth on AZ31 for up to a week. Findings from this work provide some insightful information on Mg-tissue interaction at the interface and guidance for future surface modifications of Mg biomaterials.  相似文献   

19.
Insights into molecular mechanisms of collagen assembly are important for understanding countless biological processes and at the same time a prerequisite for many biotechnological and medical applications. In this work, the self-assembly of collagen type I molecules into fibrils could be directly observed using time-lapse atomic force microscopy (AFM). The smallest isolated fibrillar structures initiating fibril growth showed a thickness of approximately 1.5 nm corresponding to that of a single collagen molecule. Fibrils assembled in vitro established an axial D-periodicity of approximately 67 nm such as typically observed for in vivo assembled collagen fibrils from tendon. At given collagen concentrations of the buffer solution the fibrils showed constant lateral and longitudinal growth rates. Single fibrils continuously grew and fused with each other until the supporting surface was completely covered by a nanoscopically well-defined collagen matrix. Their thickness of approximately 3 nm suggests that the fibrils were build from laterally assembled collagen microfibrils. Laterally the fibrils grew in steps of approximately 4 nm, indicating microfibril formation and incorporation. Thus, we suggest collagen fibrils assembling in a two-step process. In a first step, collagen molecules assemble with each other. In the second step, these molecules then rearrange into microfibrils which form the building blocks of collagen fibrils. High-resolution AFM topographs revealed substructural details of the D-band architecture of the fibrils forming the collagen matrix. These substructures correlated well with those revealed from positively stained collagen fibers imaged by transmission electron microscopy.  相似文献   

20.
We have compared the axial structures of negatively stained heterotypic, type II collagen-containing fibrils with computer-generated staining patterns. Theoretical negative-staining patterns were created based upon the "bulkiness" of the individual amino acid side-chains in the primary sequence and the D-staggered arrangement of the triple-helices. The theoretical staining pattern of type II collagen was compared and cross-correlated with the experimental staining pattern of both reconstituted type II collagen fibrils, and fibrils isolated from adult and foetal cartilage and vitreous humour. The isolated fibrils differ markedly in both diameter and composition. Correlations were significantly improved when a degree of theoretical hydroxylysine glycosylation was applied, showing for the first time that this type of glycosylation influences the negative-staining pattern of collagen fibrils. Increased correlations were obtained when contributions from types V/XI and IX collagen were included in the simulation model. The N-propeptide of collagen type V/XI and the NC2 domain of type IX collagen both contribute to prominent stain-excluding peaks in the gap region. With decreasing fibril diameter, an increase of these two peaks was observed. Simulations of the fibril-derived staining patterns with theoretical patterns composed of proportions of types II, V/XI and IX collagen confirmed that the thinnest fibrils (i.e. vitreous humour collagen fibrils) have the highest minor collagen content. Comparison of the staining patterns showed that the organisation of collagen molecules within vitreous humour and cartilage fibrils is identical. The simulation model for vitreous humour, however, did not account for all stain-excluding mass observed in the staining pattern; this additional mass may be accounted for by collagen-associated macromolecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号