首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The turning point between apoptosis and necrosis induced by hydrogen peroxide (H2O2) have been investigated using human T-lymphoma Jurkat cells. Cells treated with 50 μM H2O2 exhibited caspase-9 and caspase-3 activation, finally leading to apoptotic cell death. Treatment with 500 μM H2O2 did not exhibit caspase activation and changed the mode of death to necrosis. On the other hand, the release of cytochrome c from the mitochondria was observed under both conditions. Treatment with 500 μM H2O2, but not with 50 μM H2O2, caused a marked decrease in the intracellular ATP level; this is essential for apoptosome formation. H2O2-reducing enzymes such as cellular glutathione peroxidase (cGPx) and catalase, which are important for the activation of caspases, were active under the 500 μM H2O2 condition. Prevention of intracellular ATP loss, which did not influence cytochrome c release, significantly activated caspases, changing the mode of cell death from necrosis to apoptosis. These results suggest that ATP-dependent apoptosome formation determines whether H2O2-induced cell death is due to apoptosis or necrosis.  相似文献   

2.
Tea (Camellia sinensis) catechins have been studied for disease prevention. These compounds undergo oxidation and produce H2O2. We have previously shown that holding tea solution or chewing tea leaves generates high salivary catechin levels. Herein, we examined the generation of H2O2 in the oral cavity by green tea solution or leaves. Human volunteers holding green tea solution (0.1-0.6%) developed salivary H2O2 with Cmax = 2.9-9.6 μM and AUC0 → ∞ = 8.5-285.3 μM min. Chewing 2 g green tea leaves produced higher levels of H2O2 (Cmax = 31.2 μM, AUC0 → ∞ = 1290.9 μM min). Salivary H2O2 correlated with catechin levels and with predicted levels of H2O2 (Cmax(expected) = 36 μM vs Cmax(determined) = 31.2 μM). Salivary H2O2 and catechin concentrations were similar to those that are biologically active in vitro. Catechin-generated H2O2 may, therefore, have a role in disease prevention by green tea.  相似文献   

3.
Regulation of the increase in inositol phosphate (IP) production and intracellular Ca2+ concentration ([Ca2+]i by protein kinase C (PKC) was investigated in cultured rat vascular smooth muscle cells (VSMCs). Pretreatment of VSMCs with phorbol 12-myristate 14-acetate (PMA, 1 μM) for 30 min almost abolished the BK-induced IP formation and Ca2+ mobilisation. This inhibition was reduced after incubating the cells with PMA for 4 h, and within 24 h the BK-induced responses were greater than those of control cells. The concentrations of PMA giving a half-maximal (pEC50) and maximal inhibition of BK induced an increase in [Ca2+]i, were 7.8 ± 0.3 M and 1 μM, n = 8, respectively. Prior treatment of VSMCs with staurosporine (1 μM), a PKC inhibitor, inhibited the ability of PMA to attenuate BK-induced responses, suggesting that the inhibitory effect of PMA is mediated through the activation of PKC. Paralleling the effect of PMA on the BK-induced IP formation and Ca2+ mobilisation, the translocation and downregulation of PKC isozymes were determined by Western blotting with antibodies against different PKC isozymes. The results revealed that treatment of the cells with PMA for various times, translocation of PKC-, βI, βII, δ, ε, and ζ isozymes from the cytosol to the membrane were seen after 5 min, 30 min, 2 h, and 4 h of treatment. However, 24-h treatment caused a partial downregulation of these PKC isozymes in both fractions. Treatment of VSMCs with 1 μM PMA for either 1 or 24 h did not significantly change the KD and Bmax of the BK receptor for binding (control: KD = 1.7 ± 0.2 nM; Bmax = 47.3 ± 4.4 fmol/mg protein), indicating that BK receptors are not a site for the inhibitory effect of PMA on BK-induced responses. In conclusion, these resuts demonstrate that translocation of PKC-, βI, βII, δ, ε, and ζ induced by PMA caused an attenuation of BK-induced IPs accumulation and Ca2+ mobilisation in VSMCs.  相似文献   

4.
Hydrogen peroxide (H2O2) is known to both induce and inhibit apoptosis, however the mechanisms are unclear. We found that H2O2 inhibited the activity of recombinant caspase-3 and caspase-8, half-inhibition occurring at about 17 μM H2O2. This inhibition was both prevented and reversed by dithiothreitol while glutathione had little protective effect. 100–200 μM H2O2 added to macrophages after induction of caspase activation by nitric oxide or serum withdrawal substantially inhibited caspase activity. Activation of H2O2-producing NADPH oxidase in macrophages also caused catalase-sensitive inactivation of cellular caspases. The data suggest that the activity of caspases in cells can be directly but reversibly inhibited by H2O2.  相似文献   

5.
Methylmercury (MeHg) is a neurotoxic agent acting via diverse mechanisms, including oxidative stress. MeHg also induces astrocytic dysfunction, which can contribute to neuronal damage. The cellular effects of MeHg were investigated in human astrocytoma D384 cells, with special reference to the induction of oxidative-stress-related events. Lysosomal rupture was detected after short MeHg-exposure (1 μM, 1 h) in cells maintaining plasma membrane integrity. Disruption of lysosomes was also observed after hydrogen peroxide (H2O2) exposure (100 μM, 1 h), supporting the hypothesis that lysosomal membranes represent a possible target of agents causing oxidative stress. The lysosomal alterations induced by MeHg and H2O2 preceded a decrease of the mitochondrial potential. At later time points, both toxic agents caused the appearance of cells with apoptotic morphology, chromatin condensation, and regular DNA fragmentation. However, MeHg and H2O2 stimulated divergent pathways, with caspases being activated only by H2O2. The caspase inhibitor z-VAD-fmk did not prevent DNA fragmentation induced by H2O2, suggesting that the formation of high-molecular-weight DNA fragments was caspase independent with both MeHg and H2O2. The data point to the possibility that lysosomal hydrolytic enzymes act as executor factors in D384 cell death induced by oxidative stress.  相似文献   

6.
Cho ES  Lee KW  Lee HJ 《Mutation research》2008,640(1-2):123-130
Oxidative stress induced by reactive oxygen species has been strongly associated with the pathogenesis of neurodegenerative disorders, including Alzheimer's disease. In this study, we investigated the possible protective effects of a cocoa procyanidin fraction (CPF) and procyanidin B2 (epicatechin-(4β-8)-epicatechin) – a major polyphenol in cocoa – against apoptosis of PC12 rat pheochromocytoma (PC12) cells induced by hydrogen peroxide (H2O2). CPF (1 and 5 μg/ml) and procyanidin B2 (1 and 5 μM) reduced PC12 cell death caused by H2O2, as determined by MTT and trypan blue exclusion assays. CPF and procyanidin B2 attenuated the H2O2-induced fragmentation of nucleus and DNA in PC12 cells. Western blot data demonstrated that H2O2 induced cleavage of poly(ADP-ribose)polymerase (PARP), downregulated Bcl-XL and Bcl-2 in PC12 cells. Pretreatment with CPF or procyanidin B2 before H2O2 treatment diminished PARP cleavage and increased Bcl-XL and Bcl-2 expression compared with those only treated with H2O2. Activation of caspase-3 by H2O2 was inhibited by pretreatment with CPF or procyanidin B2. Furthermore, H2O2-induced rapid and significant phosphorylation of c-Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), and both of these effects were attenuated by CPF or procyanidin B2 treatment. These results suggest that the protective effects of CPF and procyanidin B2 against H2O2-induced apoptosis involve inhibiting the downregulation of Bcl-XL and Bcl-2 expression through blocking the activation of JNK and p38 MAPK.  相似文献   

7.
Enhancement of radiation-induced apoptosis by 6-formylpterin   总被引:7,自引:0,他引:7  
Radiation-induced apoptosis and its possible enhancement in the presence of 6-formylpterin (6-FP), a metabolite of folic acid, were examined in human myelomonocytic lymphoma U937 cells. When cells were treated with 6-FP at a nontoxic concentration of 300 μM, and then exposed to X-rays at a dose of 10 Gy, significant enhancement of radiation-induced apoptosis as determined by nuclear morphological change, phosphatidylserine (PS) externalization and DNA fragmentation were observed. Flow cytometry for the detection of intracellular hydrogen peroxide (H2O2) revealed that 6-FP increased the formation of intracellular H2O2, which further increased when the cells were irradiated. Decrease of mitochondria trans-membrane potential (MMP), release of cytochrome c from mitochondria, and activation of caspase-3 were enhanced after the combined treatment. Remarkable activation of protein kinase C δ (PKC δ) and its translocation from cytosol to mitochondria were detected in combined treatment. Increase of intracellular Ca2+ concentrations ([Ca2+]i) was also observed, however, neither calpain I nor calpain II could inhibit the apoptosis. In addition, c-Jun NH2-terminal kinase ( JNK) activation was not enhanced in the combined treatment. A protein involved in a caspase-independent apoptosis pathway, apoptosis inducing factor (AIF), remained unchanged even 3 h after treatment. These results indicate that intracellular H2O2 generated by 6-FP enhances radiation-induced apoptosis via the mitochondria-mediated caspase-dependent pathway, with the active involvement of PKC δ.  相似文献   

8.
Reactive oxygen species released during the respiratory burst are known to participate in cell signaling. Here we demonstrate that hydrogen peroxide produced by the respiratory burst activates AP-1 binding. Stimulation of the macrophage cell line NR8383 with respiratory burst agonists ADP and C5a increased AP-1 binding activity. Importantly, this increase in binding was blocked by catalase, confirming mediation by endogenous H2O2. Moreover, exogenously added H2O2 mimicked the agonists, and also activated AP-1. Antibodies revealed that the activated AP-1 complex is composed predominantly of c-Fos/c-Jun heterodimers. Treatment of the cells with ADP, C5a and H2O2 (100 μM) all increased the phosphorylation of c-Jun. c-Fos protein was increased in cells treated with C5a or high dose (200 μM) H2O2, but not in cells treated with ADP. The MEK inhibitor, PD98059, partially blocked the C5a-mediated increase in AP-1 binding. A novel membrane-permeable peptide inhibitor of JNK, JNKi, also inhibited AP-1 activation. Together these data suggest that C5a-mediated AP-1 activation requires both the activation of the ERK and JNK pathways, whereas activation of the JNK pathway is sufficient to increase AP-1 binding with ADP. Thus, AP-1 activation joins the list of pathways for which the respiratory burst signals downstream events in the macrophage.  相似文献   

9.
The ability of several beverages to generate hydrogen peroxide was demonstrated by direct measurement using the ferrous ion oxidation-xylenol orange (FOX) assay. Tea and coffee could generate H2O2 to achieve levels over 100 μM, but cocoa did not. Milk decreased net H2O2 production by beverages and showed some ability to remove H2O2 itself, apparently not because of catalase activity. Hence several of the beverages commonly drunk by humans show a complex mixture of anti- and pro-oxidant abilities.  相似文献   

10.
Free radical formation and subsequent lipid peroxidation may participate in the pathogenesis of tissue injury, including the brain injury induced by hypoxia or trauma and cardiac injury arising from ischemia and reperfusion. However, the exact cellular mechanisms by which the initial oxidative insult leads to the ultimate tissue damage are not known. A number of reports have indicated that protein kinase C (PKC) may be activated following oxidative stress and that this enzyme may play an important role in the steps leading to cellular damage. In this work, we have examined in a cell model whether PKC is activated following oxidative exposure. UC11MG cells, a human astrocytoma cell line, were treated with H2O2. Incubation with 0.5 mM H2O2 increased malondialdehyde levels by as early as 15 minutes. To assess the effects of H2O2 treatment on PKC activation, we measured phosphorylation of an endogenous PKC substrate, the MARCKS (myristoylated alanine-rich C kinase substrate) protein. Treatment of cells with 0.2-1.0 mM H2O2 resulted in a rapid increase in MARCKS phosphorylation. Phosphorylation was stimulated approximately 2.5-fold following treatment with 0.5 mM H2O2 for ten minutes. Treatment with phorbol 12-myristate 13-acetate, a PKC activator, increased MARCKS phosphorylation approximately 4-fold. The H2O2-induced MARCKS phosphorylation was inhibited by the addition of the kinase inhibitors H-7 and staurosporine. Furthermore, specific down-regulation of PKC by phorbol ester also inhibited H2O2-induced MARCKS phosphorylation. These results indicate that PKC is rapidly activated in cells following an oxidative exposure and that this cell system may be a good model to further investigate the role of PKC in regulating oxidative damage in the cell.  相似文献   

11.
Carbohydrate-bearing polymers of biologically inert design are versatile tools to delineate functional aspects of oligosaccharides. Binding of synthetic N-substituted polyacrylamide (PAA) conjugates of histo-blood group (Adi, Atri, Bdi, Btri, Hdi, SiaLea, and SiaLex) to human polymorphonuclear leukocytes (PMNs), and effects on H2O2 generation elicited by different agonists such as digitonin, N-formyl-Met-Leu-Phe (FMLP) and the galactoside-specific lectin from Viscum album L. (VAA) were assessed. PMNs expressed binding sites for blood group-related neoglycoconjugates in the range of N106–107/cell with KD-values in the μM range. Treatment of PMNs (2×106 cells/ml) with PAA-probes (50 μg/ml) for 5 min did not activate the “respiratory burst”. However, it led to suppression (range 20–70%) of H2O2 generation of cells in the presence of elicitors. In detail, the FMLP-induced response was significantly decreased by Adi, Atri, Btri, Hdi, SiaLea, and SiaLex conjugates, whereas for digitonin one only by Adi, Atri, Btri. All the seven tested PAA-probes were found to inhibit significantly VAA-mediated release of H2O2 from PMNs. In this case, interference can take place already, at the stage of initial binding, especially for B- and H-epitopes, but less prominently for A- and SiaLe-epitopes. These results support the notion that PAA-immobilized histo-blood group oligosaccharides can serve as effector molecules with the ability to reduce the H2O2-generation of PMNs, warranting further studies on the involved reaction pathway.  相似文献   

12.
Hydrogen peroxide, produced by inflammatory and vascular cells, induces oxidative stress that may contribute to endothelial dysfunction. In smooth muscle cells, H2O2 induces production of O2 by activating NADPH oxidase. However, the mechanisms whereby H2O2 induces oxidative stress in endothelial cells are poorly understood. We examined the effects of H2O2 on O2 levels on porcine aortic endothelial cells (PAEC). Treatment with 60 μmol/L H2O2 markedly increased intracellular O2 levels (determined by conversion of dihydroethidium to hydroxyethidium) and produced cytotoxicity (determined by propidium iodide staining) in PAEC. Overexpression of human manganese superoxide dismutase in PAEC reduced O2 levels and attenuated cytotoxicity resulting from treatment with H2O2. L-NAME, an inhibitor of nitric oxide synthase (NOS), and apocynin, an inhibitor of NADPH oxidase, reduced O2 levels in PAEC treated with H2O2, suggesting that both NOS and NADPH oxidase contribute to H2O2-induced O2 in PAEC. Inhibition of NADPH oxidase using apocynin and NOS rescue with L-sepiapterin together reduced O2 levels in PAEC treated with H2O2 to control levels. This suggests interaction-distinct NOS and NADPH oxidase pathways to superoxide. We conclude that H2O2 produces oxidative stress in endothelial cells by increasing intracellular O2 levels through NOS and NADPH oxidase. These findings suggest a complex interaction between H2O2 and oxidant-generating enzymes that may contribute to endothelial dysfunction.  相似文献   

13.
Human neutrophils (PMN) activated by N-formyl-methionyl-leucyl-phenylalanine (fMLP) simultaneously release nitric oxide (.NO), superoxide anion (O2-) and its dismutation product, hydrogen peroxide (H2O2). To assess whether NO production shares common steps with the activation of the NADPH oxidase, PMN were treated with inhibitors and antagonists of intracellular signaling pathways and subsequently stimulated either with fMLP or with a phorbol ester (PMA). The G-protein inhibitor, pertussis toxin (1-10 μg/ml) decreased H2O2 yield without significantly changing. NO production in fMLP-stimulated neutrophils; no effects were observed in PMA-activated cells. The inhibition of tyrosine kinases by genistein (1-25 μg/ml) completely abolished H2O2 release by fMLP-activated neutrophils; conversely, NO production increased about 1.5- and 3-fold with fMLP and PMA, respectively. Accordingly, orthovanadate, an inhibitor of phosphotyrosine phosphatase, markedly decreased -NO production and increased O2;- release. On the other hand, inhibition of protein kinase C with staurosporine and the use of burst antagonists like adenosine, cholera toxin or dibutyryl-cAMP diminished both H2O2 and NO production. The results suggest that the activation of the tyrosine kinase pathway in stimulated human neutrophils controls positively O2- and H2O2 generation and simultaneously maintains -NO production in low levels. In contrast, activation of protein kinase C is a positive modulator for O2;-and *NO production.  相似文献   

14.
Intracellular levels of H2O2 in BHK-21 cells are not static but decline progressively with cell growth. Exposure of cells to inhibitors of catalase, or glutathione peroxidase, not only diminishes this decline but also depresses rates of cell proliferation, suggesting important growth regulatory roles for those antioxidant enzymes. Other agents which also diminish the growth-associated decline in intracellular levels of H2O2, such as the superoxide dismutase mimic, copper II—(3,5-diisopropylsalicylate)2, or docosahexaenoic acid, also reduced cell proliferation. In contrast, proliferation can be stimulated by the addition of 1 μM exogenous H2O2 to the culture medium. Under these conditions, however, intracellular levels of H2O2 are unaffected, whereas there is a reduction in intracellular levels of glutathione. It is argued that critical balances between intracellular levels of both H2O2 and glutathione are of significance in relation both to growth stimulation and inhibition. In addition growth stimulatory concentrations of H2O2, whilst initially leading to increased intracellular levels of lipid peroxidation breakdown products, appear to “trigger” their metabolism, possibly through aldehyde dehydrogenase, whose activity is also stimulated by H2O2  相似文献   

15.
Introduction Excess of intracellular reactive oxygen species in relation to antioxidative systems results in an oxidative environment which may modulate gene expression or damage cellular molecules. These events are expected to greatly contribute to processes of carcinogenesis. Only few studies are available on the oxidative/reductive conditions in the colon, an important tumour target tissue. It was the objective of this work to further develop methods to assess intracellular oxidative stress within human colon cells as a tool to study such associations in nutritional toxicology.

Methods We have measured H2O2-induced oxidative stress in different colon cell lines, in freshly isolated human colon crypts, and, for comparative purposes, in NIH3T3 mouse embryo fibroblasts. Detection was performed by loading the cells with the fluorigenic peroxide-sensitive dye 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate (diacetoxymethyl ester), followed by in vitro treatment with H2O2 and fluorescence detection with confocal laser scanning microscopy (CLSM). Using the microgel electrophoresis (“Comet”) Assay, we also examined HT29 stem and clone 19A cells and freshly isolated primary colon cells for their relative sensitivity toward H2O2-induced DNA damage and for steady-state levels of endogenous oxidative DNA damage.

Results A dose-response relationship was found for the H2O2-induced dye decomposition in NIH3T3 cells (7.8-125 μM H2O2) whereas no effect occurred in the human colon tumour cell lines HT29 stem and HT29 clone 19A (62-1000 μM H2O2). Fluorescence was significantly increased at 62 μM H2O2 in the human colon adenocarcinoma cell line Caco-2. In isolated human colon crypts, the lower crypt cells (targets of colon cancer) were more sensitive towards H2O2 than the more differentiated upper crypt cells. In contrast to the CLSM results, oxidative DNA damage was detected in both cell lines using the Comet Assay. Endogenous oxidative DNA damage was highest in HT29 clone 19A, followed by the primary colon cells and HT29 stem cells.

Conclusions Oxidative stress in colon cells leads to damage of macromolecules which is sensitively detected in the Comet Assay. The lacking response of the CLSM-approach in colon tumour cells is probably due to intrinsic modes of protective activities of these cells. In general, however, the CLSM method is a sensitive technique to detect very low concentrations of H2O2-induced oxidative stress in NIH3T3 cells. Moreover, by using colon crypts it provides the unique possibility of assessing cell specific levels of oxidative stress in explanted human tissues. Our results demonstrate that the actual target cells of colon cancer induction are indeed susceptible to the oxidative activity of H2O2.  相似文献   

16.
This paper suggests a simple modification of the Ellman procedure when used to measure accurate changes in sulfhydryl (-SH) content induced by reactive oxygen intermediates (ROI). This modification became necessary when we found that the standard technique did not produce time invariant results in the presence of ROI-generating systems. Cysteine (cys; 20–100 μM) in 20 mM imidazole buffer (pH 7.0) containing 1.0 mM EDTA was reacted with excess (0.2 mM) 5,5′-dithiobis(2-nitrobenzoic acid), DTNB. The absorbance of the product (p-nitrothiophenol anion) was recorded at 412 nm (A412). This A412 was stable for 60 min and gave a linear relationship with cys concentrations used. ROI were generated either by 0.01 U xanthine oxidase (XO) + 0.01–1.0 mM hypoxanthine (HX), 0.01–1.0 mM H2O2, or H2O2 + 100 μM FeSO4. In the presence of ROI, A412 decreased with time and its rate of decrease was dependent upon the concentration of components of the ROI-generating system. This time-dependent decrease in A412 was prevented completely by the addition of 100 U of catalase (CAT). Therefore, we modified the DTNB method as follows: -SH groups were reacted with ROI for 30 min; this was followed by the addition of 100 U of CAT to scavenge the excess unreacted ROI before the addition of DTNB to generate the product. Using this modification the ROI-induced decrease in A412 was stable with time and was linearly related to the cys concentration. We further tested the modified procedure using metallothionein (MT) as a substrate for the ROI-induced changes in -SH content. MT, at concentrations of 2.5, 5.0, and 7.5 μM, was treated with XO + 100 μM HX. Using the modified procedure, an average decrease (as compared to the untreated control) of 15, 22, and 33 μM in -SH content was observed consistently at the respective MT concentrations. However, without the modification in the procedure, these average decrease were 20, 38, and 51 μM, respectively and continued to further increase with time. These discrepancies could give rise to errors ranging from 28 to 35% or higher in determination of the ROI-induced decrease in the -SH groups of MT. This data suggests that scavenging the unreacted H2O2 with C prior to the addition of DTNB to the assay mixture gives a stable and accurate estimate of the ROI-induced oxidative damage to -SH groups.  相似文献   

17.
We examined the mechanism through which leptin increases Na+, K+-ATPase activity in the rat kidney. Leptin was infused under anaesthesia into the abdominal aorta proximally to the renal arteries and then Na+, K+-ATPase activity was measured in the renal cortex and medulla. Leptin (1 μg/kg min) increased Na+, K+-ATPase activity after 3 h of infusion, which was accompanied by the increase in urinary H2O2 excretion and phosphorylation level of extracellular signal regulated kinase (ERK). The effect of leptin on ERK and Na+, K+-ATPase was abolished by catalase, specific inhibitors of epidermal growth factor (EGF) receptor, AG1478 and PD158780, as well as by ERK inhibitor, PD98059, and was mimicked by both exogenous H2O2 and EGF. The effect of leptin was also prevented by the inhibitor of Src tyrosine kinase, PP2. Leptin and H2O2 increased Src phosphorylation at Tyr418. We conclude that leptin-induced stimulation of renal Na+, K+-ATPase involves H2O2 generation, Src kinase, transactivation of the EGF receptor, and stimulation of ERK.  相似文献   

18.
Heme catalases are considered to degrade two molecules of H2O2 to two molecules of H2O and one molecule of O2 employing the catalatic cycle. We here studied the catalytic behaviour of bovine liver catalase at low fluxes of H2O2 (relative to catalase concentration), adjusted by H2O2-generating systems. At a ratio of a H2O2 flux (given in μM/min- 1) to catalase concentration (given in μM) of 10 min- 1 and above, H2O2 degradation occurred via the catalatic cycle. At lower ratios, however, H2O2 degradation proceeded with increasingly diminished production of O2. At a ratio of 1 min- 1, O2 formation could no longer be observed, although the enzyme still degraded H2O2. These results strongly suggest that at low physiological H2O2 fluxes H2O2 is preferentially metabolised reductively to H2O, without release of O2. The pathways involved in the reductive metabolism of H2O2 are presumably those previously reported as inactivation and reactivation pathways. They start from compound I and are operative at low and high H2O2 fluxes but kinetically outcompete the reaction of compound I with H2O2 at low H2O2 production rates. In the absence of NADPH, the reducing equivalents for the reductive metabolism of H2O2 are most likely provided by the protein moiety of the enzyme. In the presence of NADPH, they are at least in part provided by the coenzyme.  相似文献   

19.
Oxidative stress-induced apoptosis prevented by trolox   总被引:45,自引:0,他引:45  
The ability of oxidative stress to induce apoptosis (programmed cell death), and the effect of Trolox, a water soluble vitamin E analog, on this induction were studied in vitro in mouse thymocytes. Cells were exposed to oxidative stress by treating them with 0.5–10 μM hydrogen peroxide (H2O2) for 10 min, in phosphate-buffered saline supplemented with 0.1 mM ferrous sulfate. Cells were resuspended in RPMI 1640 medium with 10% serum and incubated at 37°C under 5% CO2 in air. Electron microscopic studies revealed morphological changes characteritic of apoptosis in H2O2-treated fragmented the DNA in a manner typical of apoptotic cells, producing a ladder pattern of 200 base pair increments upon agarose gel electrophoresis. The percentage of DNA fragmentation (determined fluorometrically) increased with increasing doses of H2O2 and postexposure incubation times. Pre- or posttreatment of cells with Trolox reduced H2O2-induced DNA fragmentation to control levels and below. The results indicate that oxidative stress induces apoptosis in thymocytes, and this induction can be prevented by Trolox, a powerful inhibitor of membrane damage.  相似文献   

20.
Wu LT  Chu CC  Chung JG  Chen CH  Hsu LS  Liu JK  Chen SC 《Mutation research》2004,556(1-2):75-82
The effect of tannic acid (TA), gallic acid (GA), propyl gallate (PA) and ellagic acid (EA) on DNA damage in human lymphocytes induced by food mutagens [3-amino-1-methyl-5H-pyrido (4,3-b) indole (Trp-P-2) and 2-amino-1-methyl-6-phenylimadazo (4,5-b) pyridine (PhIP) or H2O2 was evaluated by using single-cell electrophoresis (comet assay). The toxicity of these tested compounds (0.1–100 μg/ml) on lymphocytes was not found. These compounds did not cause DNA strand breaks at lower concentrations of 0.1–10 μg/ml. At a concentration of 100 μg/ml, TA and GA exhibited slight DNA damage, whereas PA and EA showed no DNA strand breaks. TA and its related compounds decreased the DNA strand breaks induced by Trp-P-2, PhIP or H2O2 at concentrations of 0.1–10 μg/ml. DNA repair enzymes endonuclease III (Endo III) and formamidopyrimidine-DNA glycoslase (FPG)] were used to examine the levels of oxidised pyrimidines and purines in human lymphocytes induced by H2O2. All the compounds at 10 μg/ml can reduce the level of FPG sensitive sites. However, only EA inhibited the formation of EndoIII sensitive sites. The results indicated that these compounds can enhance lymphocytes resistance towards DNA strand breaks induced by food mutagens or H2O2 in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号