首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radial flow Rushton impellers were compared qualitatively with axial flow hydrofoil impellers (Maxflo T and A315) at the pilot scale. Six types of impellers were compared for qualitative differences in mass transfer. Measurements were conducted using three model systems: water, glycerol and Melojel (soluble starch). Power measurements were obtained using watt transducers, which although limited in accuracy and prone to interferences, were able to provide useful qualitative monitoring results. While there was little effect of impeller type on mass transfer as measured by the rapid pressure increase technique, significant qualitative differences were observed using the rapid temperature increase technique specifically for the Melojel and glycerol model systems. The Miller correlation, relating gassed-to-ungassed power, was used effectively to qualitatively evaluate the power drop upon gassing for both the model systems and a Streptomyces fermentation for the various impeller types. A high oxygen demand Streptomcyes fermentation then was conducted in fermenters possessing each type of impeller. Performance was not adequate with the A315 impellers pumping upwards and the small diameter Maxflo T impellers. Peak titers and profiles of the estimated apparent broth viscosity varied depending upon the impeller type. Mass transfer rates generally declined with higher viscosities when other fermentation operating conditions where held constant. Overall, values for OUR, k L a, P g /V L and other calculated mass transfer and power input quantities for the A315 pumping upwards and undersized Maxflo T (D T /D I ?=?2.3) impellers were at the lower end of the range obtained for the larger Maxflo T (D T /D I ?=?1.8–2.0) and A315 impellers pumping downwards. Rushton impellers generally behaved qualitatively similar to hydrofoil impellers based on these calculated quantities.  相似文献   

2.
Studies were conducted in three 19-m(3) fermentors (14 m(3) working volume, aspect ratio = 3:1), one fitted with four Rushton turbines (D/T = 0.35), one with three Lightnin' A315 hydrofoil impellers (D/T = 0.46). The power drawn under the same aerated conditions relative to the unaerated ones was always greater with the hydrofoils, which gives them the potential for enhanced mass transfer rates under practical operating conditions. However, the power draw was also sensitive to the magnitude of the unaerated power. Indeed, at low unaerated specific power ( approximately 0.6 W-kg) and high air flow rates ( approximately 1vvm), the relative power draw with the hydrofoils could be even greater than 1. The hold-up with each of the impellers was broadly similar at the same aeration rate and power input, though the later had a much smaller impact in these large vessels than has been reported in the literature based on smaller scale work. As usual, repressed coalescence caused increased hold-up, and, with the hydrofoils, this increase was associated with a lower power draw. Because of the greater mechanical vibration of the reactors with the hydrofoils, vibration characteristics of the vessels were measured and they were very similar. The results showed that provided care is taken in the mechanical design of the system, such impellers can operate reliably in large-scale fermentations with the potential for enhanced biological performance. (c) 1994 John Wiley & Sons, Inc.  相似文献   

3.
The rheological complexity of Xanthan fermentations presents an interesting problem from a mixing viewpoint, because the phenomena of poor bulk blending and low oxygen mass transfer rates inherent in highly viscous fermentations (and their consequences) can be systematically investigated, even at the pilot plant scale. This study in a 150 L fermentor compares the physical and biological performance of four pairs of impellers: a standard Rushton turbine, a large diameter Rushton turbine, a Prochem Maxflo T, and a Scaba 6SRGT. Accurate in-fermentor power measurements, essential for the comparison of impellers in relation to operating costs are also reported. It is demonstrated that the agitator performance in Xanthan fermentations is very specific and the choice of which impeller to use in bioreactors to obtain enhanced performance is dependant on the applied criterion. None of the criterion favored the use of the standard Rushton turbine, therefore suggesting that there are strong grounds for retrofitting these impellers with either large diameter impellers of similar design or with novel agitators. In addition, fluid dynamic modeling of cavern formation has clearly highlighted the importance of a well mixed and oxygenated region for providing the capacity for high microbial oxygen uptake rates which govern Xanthan productivity and quality. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

4.
The effectiveness of a range of impellers for “stirring as foam disruption” (SAFD) is assessed in a vessel of 0.72 m diameter and an aspect ratio of 2:1. Measurement of power drawn by the impeller achieving SAFD and of the three-dimensional flow field close to the dispersion surface are both used to explain the findings along with the global gas hold-up. A large radial flow Rushton turbine can disrupt foam at a great height but requires high power. Down-pumping hydrofoils are only effective when the ungassed liquid height is below the level of the impeller employed to disrupt foam. Up-pumping hydrofoils are the most effective because their flow pattern gives rise to high velocities across the dispersion surface, which are able to entrain foam in the downflow generated at the walls.  相似文献   

5.
Studies were conducted(1) in 19-m(3) fermentors (14-m(3) working volume) using four Rushton turbines, four Prochem Maxflo Ts, and three Lightnin' A315s and the results in water have been reported earlier. Here, a 1.7 wt/vol% Xanthan solution has been used as the working fluid, simulating viscous broths to give Reynolds numbers (Re) between 1800 and 4500. As predicted from small-scale studies, the power numbers at these values of Re were similar to those in water. The K factor (the ratio of power draw under aerated conditions compared to non-aerated) was the same as in water at the higher values of Re, but at the lower values it fell more rapidly with increasing aeration rate and to a lower value than in water. At all times, K was higher than with Rushton turbines. Vibration characteristics were also measured. Under aerated conditions, the fermentors vibrated with an amplitude 75% to 100% less than in water due to viscous damping. With increasing air flow, the amplitude increased steadily due to the presence of very large and rapidly rising bubbles in such fluids to give values 2.5 to 3 times those in water. Nevertheless, these mechanical problems can be overcome, allowing such agitators to be used successfully in high viscosity mycelial fermentations. (c) 1996 John Wiley & Sons, Inc.  相似文献   

6.
Foam disruption by agitation—the stirring as foam disruption (SAFD) technique—was scaled up to pilot and production scale using Rushton turbines and an up-pumping hydrofoil impeller, the Scaba 3SHP1. The dominating mechanism behind SAFD—foam entrainment—was also demonstrated at production scale. The mechanistic model for SAFD defines a fictitious liquid velocity generated by the (upper) impeller near the dispersion surface, which is correlated with complete foam disruption. This model proved to be scalable, thus enabling the model to be used for the design of SAFD applications. Axial upward pumping impellers appeared to be more effective with respect to SAFD than Rushton turbines, as demonstrated by retrofitting a 12,000 l bioreactor, i.e. the triple Rushton configuration was compared with a mixed impeller configuration from Scaba with a 20% lower ungassed power draw. The retrofitted impeller configuration allowed 10% more broth without risking excessive foaming. In this way a substantial increase in the volumetric productivity of the bioreactor was achieved. Design recommendations for the application of SAFD are given in this paper. Using these recommendations for the design of a 30,000 l scale bioreactor, almost foamless Escherichia coli fermentations were realised. Electronic Publication  相似文献   

7.
Summary Power input measurements are carried out in a production bioreactor with a liquid volume up to 25 m3. The results show that the cavity formation principle is applicable to reactors at this scale. It can also be observed that empirical correlations are not useful to predict gassed power input accurately. It is found that at gas flow rates for normal production conditions (NQ =0.1), the gassed power input is about 30–40 % of the non gassed power input.Nomenclature Cp specific heat J/kgK - D impeller diameter m - Db1 impeller blade diameter m - d baffle diameter m - Fr Froude number - - g gravitation m/s2 - h impeller clearance m - H liquid height m - N stirrer speed s-1 - Np power number - - NQ gas flow (aeration) number - - NQ * critical gasflow number for 3 cavity formation - - Po ungassed power consumption W - Pg gassed power consumption W - Q gas flow rate (273 K, 105 N/m2) m3/s - Re Reynolds number - - T tankdiameter m temperature K - t time s - V liquid volume m3 - Vtip impeller tip speed m/s - Vs impeller correlated superficial gas flow rate m/s - W impeller blade width m - density kg/m3  相似文献   

8.
For viscous mycelial fermentations it was demonstrated at the pilot-plant scale that the replacement of standard radial flow Rushton turbines with larger diameter axial-flow Prochem hydrofoil impellers significantly improved oxygen transfer efficiency. It was also determined that the Streptomyces broth under evaluation is highly shear thinning. Separate experiments using a Norcardia broth with similar Theological properties demonstrated that the oxygen transfer coefficient, K(L)a, can be greatly increased by use of water additions to reduce broth viscosity. These observations are consistent with the hypothesis that the improvement in oxygen transfer by changing agitator types is primarily due to an improvement in bulk mixing. A model is presented, based on the concepts of Bajpai and Reuss, which explains this improvement in performance in terms of enlargement of the well mixed micromixer region for viscous mycelial broths.  相似文献   

9.
The effect of one and two four-flat-bladed turbine impellers on the surface aeration intensity in a laboratory tormentor was investigated at different agitation speeds and sparge rates. The surface aeration was found to be generally more intensive with two impellers for the same other operating conditions because of higher power consumption and the position of the upper impeller closer to the free liquid surface. The surface aeration intensity was successfully correlated in terms of power consumption and sparge rate. The aeration number alone cannot be used for general predicting surface aeration intensities.  相似文献   

10.
One of the major process bottlenecks for viable industrial production of second generation ethanol is related with technical–economic difficulties in the hydrolysis step. The development of a methodology to choose the best configuration of impellers towards improving mass transfer and hydrolysis yield together with a low power consumption is important to make the process cost-effective. In this work, four dual impeller configurations (DICs) were evaluated during hydrolysis of sugarcane bagasse (SCB) experiments in a stirred tank reactor (3 L). The systems tested were dual Rushton turbine impellers (DIC1), Rushton and elephant ear (down-pumping) turbines (DIC2), Rushton and elephant ear (up-pumping) turbines (DIC3), and down-pumping and up-pumping elephant ear turbines (DIC4). The experiments were conducted during 96 h, using 10 % (m/v) SCB, pH 4.8, 50 °C, 10 FPU/gbiomass, 470 rpm. The mixing time was successfully used as the characteristic parameter to select the best impeller configuration. Rheological parameters were determined using a rotational rheometer, and the power consumptions of the four DICs were on-line measured with a dynamometer. The values obtained for the energetic efficiency (the ratio between the cellulose to glucose conversion and the total energy) showed that the proposed methodology was successful in choosing a suitable configuration of impellers, wherein the DIC4 obtained approximately three times higher energetic efficiency than DIC1. Furthermore a scale-up protocol (factor scale-up 1000) for the enzymatic hydrolysis reactor was proposed.  相似文献   

11.
Large scale production of monoclonal antibodies has been accomplished using bioreactors with different length to diameter ratios, and diverse impeller and sparger designs. The differences in these physical attributes often result in dissimilar mass transfer, mechanical stresses due to turbulence and mixing inside the bioreactor that may lead to disparities in cell growth and antibody production. A rational analysis of impeller design parameters on cell growth, protein expression levels and subsequent antibody production is needed to understand such differences. The purpose of this study was to examine the impact of Rushton turbine and marine impeller designs on Chinese hamster ovary (CHO) cell growth and metabolism, and antibody production and quality. Experiments to evaluate mass transfer and mixing characteristics were conducted to determine if the nutrient requirements of the culture would be met. The analysis of mixing times indicated significant differences between marine and Rushton turbine impellers at the same power input per unit volume of liquid (P/V). However, no significant differences were observed between the two impellers at constant P/V with respect to oxygen and carbon dioxide mass transfer properties. Experiments were conducted with CHO cells to determine the impact of different flow patterns arising from the use of different impellers on cell growth, metabolism and antibody production. The analysis of cell culture data did not indicate any significant differences in any of the measured or calculated variables between marine and Rushton turbine impellers. More importantly, this study was able to demonstrate that the quality of the antibody was not altered with a change in the impeller geometry.  相似文献   

12.
Pleurotus ostreatus was cultured in a bioreactor equipped with different impeller geometries under non-limiting nutrient conditions. With a Rushton turbine impeller the specific growth rate decreased 30% and pellet diameter was reduced 15% when the aeration rate was increased from 1 to 1.5 vvm. Agitation rate reduced the pellet diameter from 5.1 mm to 2.8 mm using 200 rpm and 400 rpm of agitation, respectively. Specific growth rates of 0.036, 0.020 and 0.041 h–1 were obtained with Roshton (disc turbine), Helical Ribbon and InterMIG impellers, respectively. Impeller geometry is important to control the pellet size and consequently growth rate of P. ostreatus.  相似文献   

13.
Xanthan gum fermentation represents a good model for the study of the mixing of rheologically complex culture broths. Most of the previous work on power consumption dealt with ‘standard’, single impellers and used model fluids to simulate xanthan broths. This work describes the characterization of three dual-impeller combinations (D/T = 0·53) for the mixing of dehydrated—reconstituted fermentation broths of Xanthomonas campestris that had matched rheology to the actual broths. The bottom impeller was a Rushton turbine (RT) and the top impeller was another RT, a 45° pitched blade turbine (PT) or an A-310 Lightnin mixer (A310). The experiments were carried out in a tank of 0·0094 m3 working volume equipped with an air bearing dynamometer. The power was measured in a wide range of xanthan concentrations (5–40 kg m−3) in aerated (0·25, 0·5 and 1·0 vvm) and unaerated conditions. Unaerated power number (Po) vs. Reynolds number (Re) curves showed similar trends for the three combinations. Exponents close to −1 were obtained in the laminar region. A minimum in Po (Pomin) occurred at Re = 30–40, then increasing to a plateau value which was evident at Re> 200. In the transition region Pomin values were 4·3 (RT and RT), 3·6 (RT and PT) and 2·4 (RT and A310). The aerated power data for (RT and PT) and (RT and A-310) showed higher torque instabilities than the dual RT combinations at higher xanthan concentrations. The higher the xanthan concentrations, the higher the drop in power and the less important the effect of the aeration rate. Among the combinations tested, when using Rushton turbines, the well-mixed ‘cavern’ reached the tank wall (i.e., fluid motion was observed) at the lowest volumetric power input. High  相似文献   

14.
A combined computational fluid dynamics (CFD) and population balance model (PBM) approach has been applied to simulate hydrodynamics and mass transfer in a 0.18 m3 gas–liquid stirred bioreactor agitated by (1) a Rushton turbine, and (2) a new pitched blade geometry with rotating cartridges. The operating conditions chosen were motivated by typical settings used for culturing mammalian cells. The effects of turbulence, rotating flow, bubbles breakage and coalescence were simulated using the k–ε, multiple reference frame (MRF), Sliding mesh (SM) and PBM approaches, respectively. Considering the new pitched blade geometry with rotating aeration microspargers, $k_{\text{L}} a$ mass transfer was estimated to be 34 times higher than the conventional Rushton turbine set-up. Notably, the impeller power consumption was modeled to be about 50 % lower. Independent $k_{\text{L}} a$ measurements applying the same operational conditions confirmed this finding. Motivated by these simulated and experimental results, the new aeration and stirring device is qualified as a very promising tool especially useful for cell culture applications which are characterized by the challenging problem of achieving relatively high mass transfer conditions while inserting only low stirrer energy.  相似文献   

15.
A torque meter has been developed for determining the power consumption in a bench stirred tank. The device has been bonded in the stirrer shaft inside a commercial bench fermentor, in order to avoid frictional losses in the mechanical seal. Power consumption measurements in ungassed and gassed systems were obtained at different agitation and aeration conditions, for Newtonian and non-Newtonian fluids. Also, a "simple modified sulfite method" for volumetric oxygen transfer coefficient (kLa) determination was developed and the experimental data were correlated with the gassed power (Pg) by using well-known correlations presented in the literature.  相似文献   

16.
The work presents the effect of solid particles having a mean diameter between 15–1000?μm, on the gas dispersion in a mechanically agitated vessel with standard and modified Rushton turbine agitators positioned singly or doubly on same shaft. For the dispersing and uniform distribution of the three phase (gas-liquid-solid) through the entire vessel section, the modified blade turbines, with the surface fraction of the perforations equal to 0.353, were found to be more efficient, the power consumption being reduced by approximately 50%in comparison with the standard Rushton turbines. The power number in the turbulent mixing of the three phase system is dependent on the aeration rate, the surface fraction of the perforations, the turbine number and the physical and rheological properties of the suspensions.  相似文献   

17.
In this study, the biohydrogen (bioH2) production of a microbial consortium was optimized by adjusting the type and configuration of two impellers, the mixing regimen and the mass transfer process (KLa coefficients). A continuous stirred-tank reactor (CSTR) system, with a nonstandard geometry, was characterized. Two different mixing configurations with either predominant axial (PB4 impeller) or radial pumping (Rushton impeller) were assessed and four different impeller configurations to produce bioH2. The best configuration for an adequate mixing time was determined by an ANOVA analysis. A response surface methodology was also used to fully elucidate the optimal configuration. When the PB4 impellers were placed in best configuration, c/Dt?=?0.5, s/Di?=?1, the maximum bioH2 productivity obtained was 440?mL?L?1?hr?1, with a bioH2 molar yield of 1.8. The second best configuration obtained with the PB4 impellers presented a bioH2 productivity of 407.94?mL?L?1?hr?1. The configurations based on Rushton impellers showed a lower bioH2 productivity and bioH2 molar yield of 177.065?mL?L?1?hr?1 and 0.71, respectively. The experiments with axial impellers (PB4) showed the lowest KLa coefficient and the highest bioH2 production, suggesting that mixing is more important than KLa for the enhanced production of bioH2.  相似文献   

18.
Scale-up on basis of structured mixing models: A new concept   总被引:1,自引:0,他引:1  
A new scale-up concept based upon mixing models for bioreactors equipped with Rushton turbines using the tanks-in-series concept is presented. The physical mixing model includes four adjustable parameters, i.e., radial and axial circulation time, number of ideally mixed elements in one cascade, and the volume of the ideally mixed turbine region. The values of the model parameters were adjusted with the application of a modified Monte-Carlo optimization method, which fitted the simulated response function to the experimental curve. The number of cascade elements turned out to be constant (N = 4). The model parameter radial circulation time is in good agreement with the one obtained by the pumping capacity. In case of remaining parameters a first or second order formal equation was developed, including four operational parameters (stirring and aeration intensity, scale, viscosity). This concept can be extended to several other types of bioreactors as well, and it seems to be a suitable tool to compare the bioprocess performance of different types of bioreactors. (c) 1994 John Wiley & Sons, Inc.  相似文献   

19.
A computational fluid dynamics (CFD) model that simulates mechanical mixing for high-solids anaerobic digestion was developed. Numerical simulations of mixing manure slurry which exhibits non-Newtonian pseudo-plastic fluid behavior were performed for six designs: (i) one helical ribbon impeller; (ii) one anchor impeller; (iii) one curtain-type impeller; (iv) three counterflow (CF-2) impellers; (v) two modified high solidity (MHS 3/39°) impellers; and (vi) two pitched blade turbine impellers. The CFD model was validated against measurements for mixing a Herschel-Bulkley fluid by ribbon and anchor impellers. Based on mixing time with respect to mixing energy level, three impeller types (ribbon, CF-2, and MHS 3/39°) stand out when agitating highly viscous fluids, of these mixing with two MHS 3/39° impellers requires the lowest power input to homogenize the manure slurry. A comparison of digestion material demonstrates that the mixing energy varies with manure type and total solids concentration to obtain a given mixing time. Moreover, an in-depth discussion about the CFD strategy, the influences of flow regime and impeller type on mixing characteristics, and the intrinsic relation between mixing and flow field is included.  相似文献   

20.
By means of improved feedback control kLa measurements become possible at a precision and reproducibility that now allow a closer look at the influences of power input and aeration rate on the oxygen mass transfer. These measurements are performed online during running fermentations without a notable impact on the biochemical conversion processes. A closer inspection of the mass transfer during cultivations showed that at least the number of impellers influences mass transfer and mixing: On the laboratory scale, two hollow blade impellers clearly showed a larger kLa than the usually employed three impeller versions when operated at the same agitation power and aeration rate. Hollow blade impellers are preferable under most operational conditions because of their perfect gas handling capacity. Mixing time studies showed that these two impeller systems are also preferable with respect to mixing. Furthermore the widths of the baffle bars depict a significant influence on the kLa. All this clearly supports the fact that it is not only the integral power density that finally determines kLa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号