首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cyclobutane pyrimidine dimer (CPD) is a major type of DNA damage induced by ultraviolet B (UVB) radiation. CPD photolyase, which absorbs blue/UVA light as an energy source to monomerize dimers, is a crucial factor for determining the sensitivity of rice (Oryza sativa) to UVB radiation. Here, we purified native class II CPD photolyase from rice leaves. As the final purification step, CPD photolyase was bound to CPD-containing DNA conjugated to magnetic beads and then released by blue-light irradiation. The final purified fraction contained 54- and 56-kD proteins, whereas rice CPD photolyase expressed from Escherichia coli was a single 55-kD protein. Western-blot analysis using anti-rice CPD photolyase antiserum suggested that both the 54- and 56-kD proteins were the CPD photolyase. Treatment with protein phosphatase revealed that the 56-kD native rice CPD photolyase was phosphorylated, whereas the E. coli-expressed rice CPD photolyase was not. The purified native rice CPD photolyase also had significantly higher CPD photorepair activity than the E. coli-expressed CPD photolyase. According to the absorption, emission, and excitation spectra, the purified native rice CPD photolyase possesses both a pterin-like chromophore and an FAD chromophore. The binding activity of the native rice CPD photolyase to thymine dimers was higher than that of the E. coli-expressed CPD photolyase. These results suggest that the structure of the native rice CPD photolyase differs significantly from that of the E. coli-expressed rice CPD photolyase, and the structural modification of the native CPD photolyase leads to higher activity in rice.  相似文献   

2.
DNA photolyases are enzymes which mediate the light-dependent repair (photoreactivation) of UV-induced damage products in DNA by direct reversal of base damage rather than via excision repair pathways. Arabidopsis thaliana contains two photolyases specific for photoreactivation of either cyclobutane pyrimidine dimers (CPDs) or pyrimidine (6-4)pyrimidones (6-4PPs), the two major UV-B-induced photoproducts in DNA. Reduced FADH and a reduced pterin were identified as cofactors of the native Arabidopsis CPD photolyase protein. This is the first report of the chromophore composition of any native class II CPD photolyase protein to our knowledge. CPD photolyase protein levels vary between tissues and with leaf age and are highest in flowers and leaves of 3-5-week-old Arabidopsis plants. White light or UV-B irradiation induces CPD photolyase expression in Arabidopsis tissues. This contrasts with the 6-4PP photolyase protein which is constitutively expressed and not regulated by either white or UV-B light. Arabidopsis CPD and 6-4PP photolyase enzymes can remove UV-B-induced photoproducts from DNA in planta even when plants are grown under enhanced levels of UV-B irradiation and at elevated temperatures although the rate of removal of CPDs is slower at high growth temperatures. These studies indicate that Arabidopsis possesses the photorepair capacity to respond effectively to increased UV-B-induced DNA damage under conditions predicted to be representative of increases in UV-B irradiation levels at the Earth's surface and global warming in the twenty-first century.  相似文献   

3.
Cyclobutane pyrimidine dimer (CPD) photolyases use light to repair CPDs. For efficient light absorption, CPD photolyases use a second chromophore. We purified Thermus thermophilus CPD photolyase with its second chromophore. UV-visible absorption spectra, reverse-phase HPLC, and NMR analyses of the chromophores revealed that the second chromophore of the enzyme is flavin mononucleotide (FMN). To clarify the role of FMN in the CPD repair reaction, the enzyme without FMN (Enz-FMN(-) and that with a stoichiometric amount of FMN (Enz-FMN(+)) were both successfully obtained. The CPD repair activity of Enz-FMN(+) was higher than that of Enz-FMN(-), and the CPD repair activity ratio of Enz-FMN(+) and Enz-FMN(-) was dependent on the wavelength of light. These results suggest that FMN increases the light absorption efficiency of the enzyme. NMR analyses of Enz-FMN(+) and Enz-FMN(-) revealed that the binding mode of FMN is similar to that of 7,8-didemethyl-8-hydroxy-5-deazariboflavin in Anacystis nidulans CPD photolyase, and thus a direct electron transfer between FMN and CPD is not likely to occur. Based on these results, we concluded that FMN acts as a highly efficient light harvester that gathers light and transfers the energy to FAD.  相似文献   

4.
Selby CP  Sancar A 《Biochemistry》2012,51(1):167-171
The photolyase/cryptochrome family of proteins are FAD-containing flavoproteins which carry out blue-light-dependent functions including DNA repair, plant growth and development, and regulation of the circadian clock. In addition to FAD, many members of the family contain a second chromophore which functions as a photo-antenna, harvesting light and transferring the excitation energy to FAD and thus increasing the efficiency of the system. The second chromophore is methenyltetrahydrofolate (MTHF) in most photolyases characterized to date and FAD, FMN, or 5-deazariboflavin in others. To date, no second chromophore has been identified in cryptochromes. Drosophila contains three members of the cryptochrome/photolyase family: cyclobutane pyrimidine dimer (CPD) photolyase, (6-4) photoproduct photolyase, and cryptochrome. We developed an expression system capable of incorporating all known second chromophores into the cognate cryptochrome/photolyase family members. Using this system, we demonstrate that Drosophila CPD photolyase and (6-4) photolyase employ 5-deazariboflavin as their second chromophore, but Drosophila cryptochrome, which is evolutionarily closer to (6-4) photolyase than the CPD photolyase, lacks a second chromophore.  相似文献   

5.
6.
Two types of enzyme utilizing light from the blue and near-UV spectral range (320-520 nm) are known to have related primary structures: DNA photolyase, which repairs UV-induced DNA damage in a light-dependent manner, and the blue light photoreceptor of plants, which mediates light-dependent regulation of seedling development. Cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts [(6-4)photoproducts] are the two major photoproducts produced in DNA by UV irradiation. Two types of photolyases have been identified, one specific for CPDs (CPD photolyase) and another specific for (6-4)photoproducts [(6-4)photolyase]. (6-4)Photolyase activity was first found in Drosophila melanogaster and to date this gene has been cloned only from this organism. The deduced amino acid sequence of the cloned gene shows that (6-4)photolyase is a member of the CPD photolyase/blue light photoreceptor family. Both CPD photolyase and blue light photoreceptor are flavoproteins and bound flavin adenine dinucleotides (FADs) are essential for their catalytic activity. Here we report isolation of a Xenopus laevis(6-4)photolyase gene and show that the (6-4)photolyase binds non- covalently to stoichiometric amounts of FAD. This is the first indication of FAD as the chromophore of (6-4)photolyase.  相似文献   

7.
8.
UV exposure of DNA molecules induces serious DNA lesions. The cyclobutane pyrimidine dimer (CPD) photolyase repairs CPD-type - lesions by using the energy of visible light. Two chromophores for different roles have been found in this enzyme family; one catalyzes the CPD repair reaction and the other works as an antenna pigment that harvests photon energy. The catalytic cofactor of all known photolyases is FAD, whereas several light-harvesting cofactors are found. Currently, 5,10-methenyltetrahydrofolate (MTHF), 8-hydroxy-5-deaza-riboflavin (8-HDF) and FMN are the known light-harvesting cofactors, and some photolyases lack the chromophore. Three crystal structures of photolyases from Escherichia coli (Ec-photolyase), Anacystis nidulans (An-photolyase), and Thermus thermophilus (Tt-photolyase) have been determined; however, no archaeal photolyase structure is available. A similarity search of archaeal genomic data indicated the presence of a homologous gene, ST0889, on Sulfolobus tokodaii strain7. An enzymatic assay reveals that ST0889 encodes photolyase from S. tokodaii (St-photolyase). We have determined the crystal structure of the St-photolyase protein to confirm its structural features and to investigate the mechanism of the archaeal DNA repair system with light energy. The crystal structure of the St-photolyase is superimposed very well on the three known photolyases including the catalytic cofactor FAD. Surprisingly, another FAD molecule is found at the position of the light-harvesting cofactor. This second FAD molecule is well accommodated in the crystal structure, suggesting that FAD works as a novel light-harvesting cofactor of photolyase. In addition, two of the four CPD recognition residues in the crystal structure of An-photolyase are not found in St-photolyase, which might utilize a different mechanism to recognize the CPD from that of An-photolyase.  相似文献   

9.
DNA photolyase from the cyanobacterium Anacystis nidulans contains two chromophores, flavin adenine dinucleotide (FADH2) and 8-hydroxy-5-deazaflavin (8-HDF) (Eker, A. P. M., Kooiman, P., Hessels, J. K. C., and Yasui, A. (1990) J. Biol. Chem. 265, 8009-8015). While evidence exists that the flavin chromophore (in FADH2 form) can catalyze photorepair directly and that the 8-HDF chromophore is the major photosensitizer in photoreactivation it was not known whether 8-HDF splits pyrimidine dimer directly or indirectly through energy transfer to FADH2 at the catalytic center. We constructed a plasmid which over-produces the A. nidulans photolyase in Escherichia coli and purified the enzyme from this organism. Apoenzyme was prepared and enzyme containing stoichiometric amounts of either or both chromophores was reconstituted. The substrate binding and catalytic activities of the apoenzyme (apoE), E-FADH2, E-8-HDF, E-FAD(ox)-8-HDF, and E-FADH2-8-HDF were investigated. We found that FAD is required for substrate binding and catalysis and that 8-HDF is not essential for binding DNA, and participates in catalysis only through energy transfer to FADH2. The quantum yields of energy transfer from 8-HDF to FADH2 and of electron transfer from FADH2 to thymine dimer are near unity.  相似文献   

10.
Xu L  Mu W  Ding Y  Luo Z  Han Q  Bi F  Wang Y  Song Q 《Biochemistry》2008,47(33):8736-8743
Escherichia coli DNA photolyase repairs cyclobutane pyrimidine dimer (CPD) in UV-damaged DNA through a photoinduced electron transfer mechanism. The catalytic activity of the enzyme requires fully reduced FAD (FADH (-)). After purification in vitro, the cofactor FADH (-) in photolyase is oxidized into the neutral radical form FADH (*) under aerobic conditions and the enzyme loses its repair function. We have constructed a mutant photolyase in which asparagine 378 (N378) is replaced with serine (S). In comparison with wild-type photolyase, we found N378S mutant photolyase containing oxidized FAD (FAD ox) but not FADH (*) after routine purification procedures, but evidence shows that the mutant protein contains FADH (-) in vivo as the wild type. Although N378S mutant photolyase is photoreducable and capable of binding CPD in DNA, the activity assays indicate the mutant protein is catalytically inert. We conclude that the Asn378 residue of E. coli photolyase is crucial both for stabilizing the neutral flavin radical cofactor and for catalysis.  相似文献   

11.
The cyclobutane pyrimidine dimer (CPD) is one of the major forms of DNA damage caused by irradiation with ultraviolet (UV) light. CPD photolyases recognize and repair UV-damaged DNA. The DNA recognition mechanism of the CPD photolyase has remained obscure because of a lack of structural information about DNA-CPD photolyase complexes. In order to elucidate the CPD photolyase DNA binding mode, we performed NMR analyses of the DNA-CPD photolyase complex. Based upon results from (31)P NMR measurements, in combination with site-directed mutagenesis, we have demonstrated the orientation of CPD-containing single-stranded DNA (ssDNA) on the CPD photolyase. In addition, chemical shift perturbation analyses, using stable isotope-labeled DNA, revealed that the CPD is buried in a cavity within CPD photolyase. Finally, NMR analyses of a double-stranded DNA (dsDNA)-CPD photolyase complex indicated that the CPD is flipped out of the dsDNA by the enzyme, to gain access to the active site.  相似文献   

12.
DNA photolyase repairs pyrimidine dimers in DNA in a reaction that requires visible light. Photolyase from Escherichia coli is normally isolated as a blue protein and contains 2 chromophores: a blue FAD radical plus a second chromophore that exhibits an absorption maximum at 360 nm when free in solution. Oxidation of the FAD radical is accompanied by a reversible loss of activity which is proportional to the fraction of the enzyme flavin converted to FADox. Quantitative reduction of the radical to fully reduced FAD causes a 3-fold increase in activity. The results show that a reduced flavin is required for activity and suggest that flavin may act as an electron donor in catalysis. Comparison of the absorption spectrum calculated for the protein-bound second chromophore (lambda max = 390 nm) with fluorescence data and with the relative action spectrum for dimer repair indicates that the second chromophore is the fluorophore in photolyase and that it does act as a sensitizer in catalysis. On the other hand, enzyme preparations containing diminished amounts of the second chromophore do not exhibit correspondingly lower activity. This suggests that reduced flavin may also act as a sensitizer in catalysis. The blue color of the enzyme is lost upon reduction of the FAD radical. The fully reduced E. coli enzyme exhibits absorption and fluorescence properties very similar to yeast photolyase. This indicates that the two enzymes probably contain similar chromophores but are isolated in different forms with respect to the redox state of the flavin.  相似文献   

13.
Ultraviolet radiation induces the formation of two classes of photoproducts in DNA-the cyclobutane pyrimidine dimer (CPD) and the pyrimidine [6-4] pyrimidone photoproduct (6-4 product). Many organisms produce enzymes, termed photolyases, which specifically bind to these lesions and split them via a UV-A/blue light-dependent mechanism, thereby reversing the damage. These photolyases are specific for either CPDs or 6-4 products. Two classes of photolyases (class I and class II) repair CPDs. A gene that encodes a protein with class II CPD photolyase activity in vitro has been cloned from several plants including Arabidopsis thaliana, Cucumis sativus and Chlamydomonas reinhardtii. We report here the isolation of a homolog of this gene from rice (Oryza sativa), which was cloned on the basis of sequence similarity and PCR-based dilution-amplification. The cDNA comprises a very GC-rich (75%) 5; region, while the 3; portion has a GC content of 50%. This gene encodes a protein with CPD photolyase activity when expressed in E. coli. The CPD photolyase gene encodes at least two types of mRNA, formed by alternative splicing of exon 5. One of the mRNAs encodes an ORF for 506 amino acid residues, while the other is predicted to code for 364 amino acid residues. The two RNAs occur in about equal amounts in O. sativa cells.  相似文献   

14.
The photolyase gene from Thermus thermophilus was cloned and sequenced. The characteristic absorption and fluorescence spectra of the purified T. thermophilus photolyase suggested that the protein has flavin adenine dinucleotide as a chromophore. The second chromophore binding site was not conserved in T. thermophilus photolyase. The purified enzyme showed light-dependent photoreactivation activity in vitro at 35 and 65 degrees C and was stable when subjected to heat and acidic pH.  相似文献   

15.
P F Heelis  G Payne  A Sancar 《Biochemistry》1987,26(15):4634-4640
Escherichia coli DNA photolyase contains a stable flavin radical and a second chromophore (SC) of unknown structure. The effects of flash (both conventional and laser) excitation of either the radical alone or both the radical and the second chromophore have been investigated by variation of the excitation wavelengths. Radical excitation leads to an electron abstraction by the lowest excited doublet state of the radical from an amino acid residue, probably a cysteine or tyrosine. On a longer time scale, a back-reaction occurs that can be prevented by the presence of certain electron donors, e.g., thiols, NADH, or tyrosine, but not pyrimidine dimers. Excitation of the second chromophore leads to electronic energy transfer from second chromophore excited states to the ground-state flavin radical doublet state, thus increasing the population of the lowest excited doublet state. Repetitive excitation of the enzyme with white light leads to photodecomposition of the second chromophore but not of the flavin adenine dinucleotide cofactor. Enzyme with photodecomposed SC retains full activity.  相似文献   

16.
Photolyase is a light-dependent enzyme that repairs pyrimidine dimers in DNA. Two types of photolyases have been found in frog Xenopus laevis, one for repairing cyclobutane pyrimidine dimers (CPD photolyase) and the other for pyrimidine-pyrimidone (6-4)photoproduct [(6-4)photolyase]. However, little is known about the former type of the Xenopus photolyases. To characterize this enzyme and its expression profiles, we isolated the entire coding region of a putative CPD photolyase cDNA by extending an EST (expressed sequence tag) sequence obtained from the Xenopus database. Nucleotide sequence analysis of the cDNA revealed a protein of 557 amino acids with close similarity to CPD photolyase of rat kangaroo. The identity of this cDNA was further established by the molecular mass (65 kDa) and the partial amino acid sequences of the major CPD photolyase that we purified from Xenopus ovaries. The gene of this enzyme is expressed in various tissues of Xenopus. Even internal organs like heart express relatively high levels of mRNA. A much smaller amount was found in skin, although UV damage is thought to occur most frequently in this tissue. Such expression profiles suggest that CPD photolyase may have roles in addition to the photorepair function.  相似文献   

17.
Photolyases are proteins with an FAD chromophore that repair UV-induced pyrimidine dimers on the DNA in a light-dependent manner. The cyclobutane pyrimidine dimer class III photolyases are structurally unknown but closely related to plant cryptochromes, which serve as blue-light photoreceptors. Here we present the crystal structure of a class III photolyase termed photolyase-related protein A (PhrA) of Agrobacterium tumefaciens at 1.67-Å resolution. PhrA contains 5,10-methenyltetrahydrofolate (MTHF) as an antenna chromophore with a unique binding site and mode. Two Trp residues play pivotal roles for stabilizing MTHF by a double π-stacking sandwich. Plant cryptochrome I forms a pocket at the same site that could accommodate MTHF or a similar molecule. The PhrA structure and mutant studies showed that electrons flow during FAD photoreduction proceeds via two Trp triads. The structural studies on PhrA give a clearer picture on the evolutionary transition from photolyase to photoreceptor.  相似文献   

18.
Spinach cyclobutane pyrimidine dimer (CPD)-specific DNA photolyase was successfully detected in leaf extracts by an assay system for plant photolyase using an improved enzyme-linked immunosorbent assay (ELISA) which was newly introduced by novel horseradish peroxidase (HRP)-linked CPD specific monoclonal antibodies. The assay system includes two main steps: a photorepair reaction of CPD introduced in substrate DNA and measurement of CPD remained after the photorepair by the improved ELISA. When CPD- induced salmon sperm DNA was used as a substrate, high CPD-photolyase activities were observed in the enzyme fraction prepared from whole spinach leaf extracts, but not from chloroplast extracts. This strongly suggests that spinach CPD-specific photolyases are localized in cell compartments other than chloroplasts.  相似文献   

19.
Spinach cyclobutane pyrimidine dimer (CPD)-specific DNA photolyase was successfully detected in leaf extracts by an assay system for plant photolyase using an improved enzyme-linked immunosorbent assay (ELISA) which was newly introduced by novel horseradish peroxidase (HRP)-linked CPD specific monoclonal antibodies. The assay system includes two main steps: a photorepair reaction of CPD introduced in substrate DNA and measurement of CPD remained after the photorepair by the improved ELISA. When CPD- induced salmon sperm DNA was used as a substrate, high CPD-photolyase activities were observed in the enzyme fraction prepared from whole spinach leaf extracts, but not from chloroplast extracts. This strongly suggests that spinach CPD-specific photolyases are localized in cell compartments other than chloroplasts.  相似文献   

20.
Rice cultivars vary widely in their sensitivity to ultraviolet B (UVB) and this has been correlated with cyclobutane pyrimidine dimer (CPD) photolyase mutations that alter the structure/function of this photorepair enzyme. Here, we tested whether CPD photolyase function determines the UVB sensitivity of rice (Oryza sativa) by generating transgenic rice plants bearing the CPD photolyase gene of the UV-resistant rice cultivar Sasanishiki in the sense orientation (S-B and S-C lines) or the antisense orientation (AS-D line). The S-B and S-C plants had 5.1- and 45.7-fold higher CPD photolyase activities than the wild-type, respectively, were significantly more resistant to UVB-induced growth damage, and maintained significantly lower CPD levels in their leaves during growth under elevated UVB radiation. Conversely, the AS-D plant had little photolyase activity, was severely damaged by elevated UVB radiation, and maintained higher CPD levels in its leaves during growth under UVB radiation. Notably, the S-C plant was not more resistant to UVB-induced growth inhibition than the S-B plant, even though it had much higher CPD photolyase activity. These results strongly indicate that UVB-induced CPDs are one of principal causes of UVB-induced growth inhibition in rice plants grown under supplementary UVB radiation, and that increasing CPD photolyase activity can significantly alleviate UVB-caused growth inhibition in rice. However, further protection from UVB-induced damage may require the genetic enhancement of other systems as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号