首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Knowledge of parasite-mosquito interactions is essential to develop strategies that will reduce malaria transmission through the mosquito vector. In this study we investigated the development of two model malaria parasites, Plasmodium berghei and Plasmodium gallinaceum, in three mosquito species Anopheles stephensi, Anopheles gambiae and Aedes aegypti. New methods to study gamete production in vivo in combination with GFP-expressing ookinetes were employed to measure the large losses incurred by the parasites during infection of mosquitoes. All three mosquito species transmitted P. gallinaceum; P. berghei was only transmitted by Anopheles spp. Plasmodium gallinaceum initiates gamete production with high efficiency equally in the three mosquito species. By contrast P. berghei is less efficiently activated to produce gametes, and in Ae. aegypti microgamete formation is almost totally suppressed. In all parasite/vector combinations ookinete development is inefficient, 500-100,000-fold losses were encountered. Losses during ookinete-to-oocyst transformation range from fivefold in compatible vector parasite combinations (P. berghei/An. stephensi), through >100-fold in poor vector/parasite combinations (P. gallinaceum/An. stephensi), to complete blockade (>1,500 fold) in others (P. berghei/Ae. aegypti). Plasmodium berghei ookinetes survive poorly in the bloodmeal of Ae. aegypti and are unable to invade the midgut epithelium. Cultured mature ookinetes of P. berghei injected directly into the mosquito haemocoele produced salivary gland sporozoites in An. stephensi, but not in Ae. aegypti, suggesting that further species-specific incompatibilities occur downstream of the midgut epithelium in Ae. aegypti. These results show that in these parasite-mosquito combinations the susceptibility to malarial infection is regulated at multiple steps during the development of the parasites. Understanding these at the molecular level may contribute to the development of rational strategies to reduce the vector competence of malarial vectors.  相似文献   

3.
4.
The 3-hydroxykynurenine transaminase (3-HKT) gene plays a vital role in the development of malaria parasites by participating in the synthesis of xanthurenic acid, which is involved in the exflagellation of microgametocytes in the midgut of malaria vector species. The 3-HKT enzyme is involved in the tryptophan metabolism of Anophelines. The gene had been studied in the important global malaria vector, Anopheles gambiae. In this report, we have conducted a preliminary investigation to characterize this gene in the two important vector species of malaria in India, Anopheles culicifacies and Anopheles stephensi. The analysis of the genetic structure of this gene in these species revealed high homology with the An. gambiae gene. However, four non-synonymous mutations in An. stephensi and seven in An. culicifacies sequences were noted in the exons 1 and 2 of the gene; the implication of these mutations on enzyme structure remains to be explored.  相似文献   

5.
Molecular studies on the tissue-specific gene expression in the salivary glands of Anopheles gambiae may provide useful tools for the development of new strategies for the control of the most efficient malaria vector in the sub-Saharan Africa. We summarize here the results of a recent investigation focused on the isolation of secreted factors and putative receptors from the salivary glands of An. gambiae. Using the Signal Sequence Trap technique we have identified the first cDNAs specifically expressed in the An. gambiae salivary glands. Among these, four are exclusively expressed in female glands and encode factors presumably involved in blood-feeding, whereas two other cDNAs seem to be expressed both in male and in female glands and are likely implicated in sugar-feeding. Homologues of genes previously identified in the yellow fever mosquito Aedes aegypti, like the apyrase and D7, as well as novel salivary gland-specific cDNAs, were identified. The isolation and characterization of promoter sequences from the corresponding genes may prove useful for the expression of anti parasitic agents in the salivary glands of transgenic mosquitoes.  相似文献   

6.
To describe the set of mRNA and protein expressed in the salivary glands (sialome) of Aedes aegypti mosquitoes, we randomly sequenced a full-length cDNA library of this insect and performed Edman degradation of PVDF-transferred protein bands from salivary homogenates. We found 238 cDNA clusters which contained those coding for 10 of the 11 proteins found by aminoterminal degradation. All six previously described salivary proteins were found in this library. Full-length sequences of 32 novel cDNA sequences are reported, one of which is the product of a transposable element. Among the 31 novel protein sequences are 4 additional members of the D7 protein family; 4 novel members of the antigen 5 family (a protein family not reported in Aedes); a novel serpin; a novel member of the 30-kDa allergen of Ae. Aegypti; a secreted calreticulin; 2 proteins similar to mammalian angiopoietins; adenosine deaminase; purine hydrolase; lysozyme; a C-type lectin; 3 serine proteases, including one with high similarity to Bombyx prophenoloxidase activating enzyme; 2 proteins related to invertebrate immunity; and several sequences that have no significant matches to known proteins. The possible role of these proteins in blood and sugar feeding by the mosquito is discussed.  相似文献   

7.
8.
9.
10.
Lysozyme (E.C. 3.2.1.17) activity is reported from the malaria vector Anopheles stephensi. The activity was detected in the salivary gland and midgut using bacteriolytic radial diffusion assay. Spectrophotometric analysis indicated that higher level of lysozyme activity was maintained in both midgut and salivary gland tissues. The activity reached the highest level in 4-8 days old mosquitoes. Genomic PCR amplification revealed the presence of at least two putative lysozyme genes in the mosquito genome. Preliminary analysis of one of the 413 bp genomic fragments showed 56% identity to the lysozyme of mosquito A. gambiae. However, the nature and origin of the putative cloned lysozyme gene remains elusive.  相似文献   

11.
An isolate of Enterobacter sp. was obtained from the microbial community within the gut of the Anopheles gambiae mosquito, a major malaria vector in Africa. This genome was sequenced and annotated. The genome sequences will facilitate subsequent efforts to characterize the mosquito gut microbiome.  相似文献   

12.
13.
We describe the preliminary analysis of over 35,000 clones from a full-length enriched cDNA library from the malaria mosquito vector Anopheles gambiae. The clones define nearly 3,700 genes, of which around 2,600 significantly improve current gene definitions. An additional 17% of the genes were not previously annotated, suggesting that an equal percentage may be missing from the current Anopheles genome annotation.  相似文献   

14.
分离和研究疟疾感染蚊的差异表达基因 ,对阐明媒介与疟原虫之间相互作用及其分子机制尤为重要。利用已建立的斯氏按蚊感染约氏疟原虫的差减cDNA库的进行表达筛选 ,发现表达增高基因中有一个编码与黑腹果蝇泛素羧端水解酶高度同源蛋白的序列。相似性比较显示该编码序列在氨基酸水平与已知的冈比亚按蚊EST序列对应部位的同源性为 89% ,与果蝇和人类的同源性均为 63%。模拟Northern印迹的表达动态分析提示 ,感染后至少 1~ 7天内该基因在蚊体内的表达显著增高 ,与疟原虫发育动合子穿越蚊中肠壁和子孢子从卵囊向蚊眼涎腺移行等关键阶段相一致。目前对有关蚊天然免疫系统激活的泛素途径所知甚少 ,现有结果提示该基因与疟原虫感染相关 ,它的克隆和表达分析有可能推测其在疟原虫感染中所起的作用  相似文献   

15.
Avian and rodent malaria sporozoites selectively invade different vertebrate cell types, namely macrophages and hepatocytes, and develop in distantly related vector species. To investigate the role of the circumsporozoite (CS) protein in determining parasite survival in different vector species and vertebrate host cell types, we replaced the endogenous CS protein gene of the rodent malaria parasite Plasmodium berghei with that of the avian parasite P. gallinaceum and control rodent parasite P. yoelii. In anopheline mosquitoes, P. berghei parasites carrying P. gallinaceum and rodent parasite P. yoelii CS protein gene developed into oocysts and sporozoites. Plasmodium gallinaceum CS expressing transgenic sporozoites, although motile, failed to invade mosquito salivary glands and to infect mice, which suggests that motility alone is not sufficient for invasion. Notably, a percentage of infected Anopheles stephensi mosquitoes showed melanotic encapsulation of late stage oocysts. This was not observed in control infections or in A. gambiae infections. These findings shed new light on the role of the CS protein in the interaction of the parasite with both the mosquito vector and the rodent host.  相似文献   

16.
We describe a previously unrecognized protein family from Aedes and Anopheles mosquitoes, here named SGS proteins. There are no SGS homologues in Drosophila or other eukaryotes, but SGS presence in two mosquito genera suggests that the protein family is widespread among mosquitoes. Ae. aegypti aaSGS1 mRNA and protein are salivary gland specific, and protein is localized in the basal lamina covering the anatomical regions that are preferentially invaded by malaria sporozoites. Anti-aaSGS1 antibodies inhibited sporozoite invasion into the salivary glands in vivo, confirming aaSGS1 as a candidate sporozoite receptor. By homology to aaSGS1 we identified the complete complement of four SGS genes in An. gambiae, which were not recognized in the genome annotation. Two An. gambiae SGS genes display salivary gland specific expression like aaSGS1. Bioinformatic analysis predicts that SGS proteins possess heparin-binding domains, and have among the highest density of tyrosine sulphation sites of all An. gambiae proteins. The major sporozoite surface proteins (CS and TRAP) also bind heparin, and interact with sulphoconjugates during liver cell invasion. Thus, we speculate that sporozoite invasion of mosquito salivary glands and subsequently the vertebrate liver may share similar mechanisms based on sulphation. Phylogenomic analysis suggests that an SGS ancestor was involved in a lateral gene transfer.  相似文献   

17.
Genome projects and associated technologies are now being established for mosquito species that are vectors of human disease. The recent announcement of an award by the National Institute of Allergy and Infectious Diseases (NIAID) to Celera Genomics to sequence the Anopheles gambiae genome will further accelerate the completion of the sequencing of this genome. Completion of the An. gambiae sequence will mean that the genomes of all three organisms involved in the transmission of falciparum malaria--the mosquito, the parasite, and the human--will have been sequenced. This will greatly facilitate the identification of genes and pathways involved in the transmission of malaria. The recent genetic transformation of An. gambiae with the piggyBac transposable element and the transformation of another important malarial vector, Anopheles stephensi using the Minos element, now provide researchers with powerful tools with which to genetically manipulate these medically important vector species. Here we review the recent progress made in the extension of contemporary tools of modern genetics and genomics into these medically important insects.  相似文献   

18.
19.
Salivary proteins injected by blood feeding arthropods into their hosts evoke a saliva-specific humoral response which can be useful to evaluate exposure to bites of disease vectors. However, saliva of hematophagous arthropods is a complex cocktail of bioactive factors and its use in immunoassays can be misleading because of potential cross-reactivity to other antigens. Toward the development of a serological marker of exposure to Afrotropical malaria vectors we expressed the Anopheles gambiae gSG6, a small anopheline-specific salivary protein, and we measured the anti-gSG6 IgG response in individuals from a malaria hyperendemic area of Burkina Faso, West Africa. The gSG6 protein was immunogenic and anti-gSG6 IgG levels and/or prevalence increased in exposed individuals during the malaria transmission/rainy season. Moreover, this response dropped during the intervening low transmission/dry season, suggesting it is sensitive enough to detect variation in vector density. Members of the Fulani ethnic group showed higher anti-gSG6 IgG response as compared to Mossi, a result consistent with the stronger immune reactivity reported in this group. Remarkably, anti-gSG6 IgG levels among responders were high in children and gradually declined with age. This unusual pattern, opposite to the one observed with Plasmodium antigens, is compatible with a progressive desensitization to mosquito saliva and may be linked to the continued exposure to bites of anopheline mosquitoes. Overall, the humoral anti-gSG6 IgG response appears a reliable serological indicator of exposure to bites of the main African malaria vectors (An. gambiae, Anopheles arabiensis and, possibly, Anopheles funestus) and it may be exploited for malaria epidemiological studies, development of risk maps and evaluation of anti-vector measures. In addition, the gSG6 protein may represent a powerful model system to get a deeper understanding of molecular and cellular mechanisms underlying the immune tolerance and progressive desensitization to insect salivary allergens.  相似文献   

20.
In eukaryotic cells, ribosomal protein S6 (RPS6) is the major phosphorylated protein on the small ribosomal subunit. In the mosquitoes Aedes aegypti and Aedes albopictus, the cDNA encoding RPS6 contains 300 additional nucleotides, relative to the Drosophila homolog. The additional sequence encodes a 100-amino acid, lysine-rich C-terminal extension of the RPS6 protein with 42-49% identity to histone H1 proteins from the chicken and other multicellular organisms. Using mass spectrometry we now show that the C-terminal extension predicted by the cDNA is present on RPS6 protein isolated from ribosomal subunits purified from Ae. albopictus cells. To expand our analysis beyond the genus Aedes, we cloned the rpS6 cDNA from an Anopheles stephensi mosquito cell line. The cDNA also encoded a lysine-rich C-terminal extension. However, in An. stephensi rpS6 the extension was approximately 70 amino acids longer than that in Ae. albopictus, and at the nucleotide level, it most closely resembled histone H1 proteins from the unicellular eukaryotes Leishmania and Chlamydomonas, and the bacterium Bordetella pertussis. To examine how the histone-like C-terminal extension is encoded in the genome, we used PCR-based approaches to obtain the genomic DNA sequence encoding Ae. aegypti and Ae. albopictus rpS6. The sequence encoding the histone-like C-terminal extension was contiguous with upstream coding sequence within a single open reading frame in Exon 3, indicating that the lysine-rich extension in mosquito RPS6 is not the result of an aberrant splicing event. An in silico investigation of the Anopheles gambiae genome based on the cDNA sequence from An. stephensi allowed us to map the An. gambiae gene to chromosome 2R, to deduce its exon-intron organization, and to confirm that Exon 3 encodes a C-terminal histone-like extension. Because the C-terminal extension is absent from Drosophila melanogaster, we examined a partial cDNA clone from a Psychodid fly, which shares a relatively recent common ancestor with the mosquitoes. The absence of the C-terminal extension in the Psychodid rpS6 cDNA suggests that the unusual RPS6 structure is restricted to a relatively small group of flies in the Nematocera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号