首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Group B streptococcus (GBS) is a major cause of neonatal pneumonia. The early interactions between innate airway defenses and this pathogen are likely to be a critical factor in determining the outcome for the host. The surface-localized penicillin-binding protein (PBP)1a, encoded by ponA, is known to be an important virulence trait in a sepsis model of GBS infection that promotes resistance to neutrophil killing and more specifically to neutrophil antimicrobial peptides (AMPs). In this study, we used an aerosolization model to explore the role of PBP1a in evasion of innate immune defenses in the neonatal lung. The ponA mutant strain was cleared more rapidly from the lungs of neonatal rat pups compared with the wild-type strain, which could be linked to a survival defect in the presence of alveolar macrophages (AM). Rat AM were found to secrete beta-defensin and cathelicidin AMP homologues, and the GBS ponA mutant was more susceptible than the wild-type strain to killing by these peptides in vitro. Collectively, our observations suggest that PBP1a-mediated resistance to AM AMPs promotes the survival of GBS in the neonatal lung. Additionally, AM are traditionally thought to clear bacteria through phagocytic uptake; our data indicate that secretion of AMPs may also participate in limiting bacterial replication in the airway.  相似文献   

2.
Group B Streptococcus (GBS) is the foremost cause of neonatal sepsis and meningitis in the United States. A major virulence factor for GBS is its capsular polysaccharide, a high molecular weight polymer of branched oligosaccharide subunits. N -acetylneuraminic acid (Neu5Ac or sialic acid), at the end of the polysaccharide side chains, is critical to the virulence function of the capsular polysaccharide. Neu5Ac must be activated by CMP-Neu5Ac synthetase before it is incorporated into the polymer. We showed previously that a transposon mutant of a serotype III GBS strain which had no detectable capsular Neu5Ac was deficient in CMP-Neu5Ac-synthetase activity (Wessels et al ., 1992). In this paper, we report the identification and characterization of cpsF , a gene interrupted by transposon insertion in the previously described Neu5Ac-deficient mutant. The predicted amino acid sequence of the cpsF gene product shares 57% similarity and 37% identity with CMP-Neu5Ac synthetase encoded by the Escherichia coli K1 gene, neuA . The enzymatic function of the protein encoded by cpsF was established by cloning the gene in E. coli under the control of the T7 polymerase/promoter. Lysates of E. coli in which the cpsF gene product was expressed, catalysed the condensation of CTP with Neu5Ac to form CMP-Neu5Ac. In addition, when a CMP-Neu5Ac synthetase-deficient mutant of E. coli K1 was transformed with cpsF , K1 antigen expression was restored. We conclude that cpsF encodes CMP-Neu5Ac synthetase in type III GBS, and that the GBS enzyme can function in the capsule-synthesis of a heterologous bacterial species.  相似文献   

3.
We showed previously that a mutant strain of group B Streptococcus (GBS) defective in capsule production was avirulent. This study describes the derivation of an unencapsulated mutant from a highly encapsulated wild-type strain of type III GBS, COH1, by transposon mutagenesis with Tn916ΔE. The mutant, COH1-13, was sensitive to phagocytic killing by human leukocytes in vitro and was relatively avirulent in a neonatal rat sepsis model compared with the wild-type strain. No capsular polysaccharide was evident in the cytoplasm or on the cell surface of the mutant strain. The Tn916ΔE insertion site in COH1-13 was mapped to the same chromosomal location as the Tn916 insertion site in the unencapsulated type III mutant COH31-15 reported previously. Nucleotide sequencing of DNA flanking the insertion site in COH1-13 revealed an open reading frame, designated cpsD, with significant homology to the rfbP gene of Salmonella typhimurium. RfbP encodes a galactosyl transferase enzyme that catalyses the transfer of galactose to undecaprenol phosphate, the initial step in O-polysaccharide synthesis. A particulate fraction of a lysate of wild-type strain GBS COH1 mediated the transfer of galactose from UDP-galactose to an endogenous acceptor. The galactose–acceptor complex partitioned into organic solvents, suggesting it is lipid in nature or membrane-associated. Galactosyl transferase activity was significantly reduced in the unencapsulated mutant strain COH1-13. These results, together with the similarity in deduced amino acid sequence between cpsD and rfbP suggest that cpsD encodes a galactosyl transferase essential for assembly of the GBS type III capsular polysaccharide.  相似文献   

4.
Group B streptococcal (GBS) infections are the most common cause of bacterial sepsis in the immediate newborn period. Apart from the capsule, the factors required for survival of GBS in the host are not well defined. In this study, signature-tagged transposon mutagenesis (STM) was used to identify genes required for growth and survival of GBS in a neonatal rat sepsis infection model. Approximately 1600 transposon mutants were screened in pools of 80 mutants, and approximately 120 mutants defective for survival in the animal host were identified. We successfully cloned and sequenced DNA flanking the transposon insertions from 92 of the mutants. Fifty per cent of the mutants had transposon insertions in genes with homologues in the public databases, whereas the remaining 50% had transposon insertions in genes with unknown function. A significant proportion of the avirulent mutants had transposon insertions in genes encoding transport-associated or regulatory proteins or in genes involved in cell surface metabolism, emphasizing the significance of these functions for in vivo survival of GBS. Overall, STM analysis revealed GBS genomic loci that encode a wide variety of functional gene classes, underscoring the diversity of bacterial processes required for the infection process. Currently, the function of the genes identified during the screening can only be inferred by homology to previously described genes. However, a number of the genes identified in this study have been shown to correlate with virulence in other pathogens. A virulence of a subset of mutants identified during the screening was confirmed by performing competitive index assays and lethal dose assays. This represents the first report of a genome-wide scan for virulence factors in GBS. The identified genes will further our understanding of the pathogenesis of GBS infections and may represent targets for intervention or lead to the development of novel therapies.  相似文献   

5.
6.
Previous studies have shown that Bacillus subtilis cells lacking penicillin-binding protein 1 (PBP1), encoded by ponA, have a reduced growth rate in a variety of growth media and are longer, thinner, and more bent than wild-type cells. It was also recently shown that cells lacking PBP1 require increased levels of divalent cations for growth and are either unable to grow or grow as filaments in media low in Mg2+, suggesting a possible involvement of PBP1 in septum formation under these conditions. Using epitope-tagging and immunofluorescence microscopy, we have now shown that PBP1 is localized at division sites in vegetative cells of B. subtilis. In addition, we have used fluorescence and electron microscopy to show that growing ponA mutant cells display a significant septation defect, and finally by immunofluorescence microscopy we have found that while FtsZ localizes normally in most ponA mutant cells, a significant proportion of ponA mutant cells display FtsZ rings with aberrant structure or improper localization, suggesting that lack of PBP1 affects FtsZ ring stability or assembly. These results provide strong evidence that PBP1 is localized to and has an important function in the division septum in B. subtilis. This is the first example of a high-molecular-weight class A PBP that is localized to the bacterial division septum.  相似文献   

7.
Group B Streptococcus (GBS) is a common cause of neonatal sepsis and meningitis. A major GBS virulence determinant is its sialic acid (Sia)-capped capsular polysaccharide. Recently, we discovered the presence and genetic basis of capsular Sia O-acetylation in GBS. We now characterize a GBS Sia O-acetylesterase that modulates the degree of GBS surface O-acetylation. The GBS Sia O-acetylesterase operates cooperatively with the GBS CMP-Sia synthetase, both part of a single polypeptide encoded by the neuA gene. NeuA de-O-acetylation of free 9-O-acetyl-N-acetylneuraminic acid (Neu5,9Ac(2)) was enhanced by CTP and Mg(2+), the substrate and co-factor, respectively, of the N-terminal GBS CMP-Sia synthetase domain. In contrast, the homologous bifunctional NeuA esterase from Escherichia coli K1 did not display cofactor dependence. Further analyses showed that in vitro, GBS NeuA can operate via two alternate enzymatic pathways: de-O-acetylation of Neu5,9Ac(2) followed by CMP activation of Neu5Ac or activation of Neu5,9Ac(2) followed by de-O-acetylation of CMP-Neu5,9Ac(2). Consistent with in vitro esterase assays, genetic deletion of GBS neuA led to accumulation of intracellular O-acetylated Sias, and overexpression of GBS NeuA reduced O-acetylation of Sias on the bacterial surface. Site-directed mutagenesis of conserved asparagine residue 301 abolished esterase activity but preserved CMP-Sia synthetase activity, as evidenced by hyper-O-acetylation of capsular polysaccharide Sias on GBS expressing only the N301A NeuA allele. These studies demonstrate a novel mechanism regulating the extent of capsular Sia O-acetylation in intact bacteria and provide a genetic strategy for manipulating GBS O-acetylation in order to explore the role of this modification in GBS pathogenesis and immunogenicity.  相似文献   

8.
Opsonin-independent phagocytosis of Group B Streptococcus (GBS) is important in defense against neonatal GBS infections. A recent study indicated a role for GBS pilus in macrophage phagocytosis (Maisey et al Faseb J 22 2008 1715-24). We studied 163 isolates from different phylogenetic backgrounds and those possessing or lacking the gene encoding the pilus backbone protein, Spb1 (SAN1518, PI-2b) and spb1-deficient mutants of wild-type (WT) serotype III-3 GBS 874391 in non-opsonic phagocytosis assays using J774A.1 macrophages. Numbers of GBS phagocytosed differed up to 23-fold depending on phylogenetic background; isolates possessing spb1 were phagocytosed more than isolates lacking spb1. Comparing WT GBS and isogenic spb1-deficient mutants showed WT was phagocytosed better compared to mutants; Spb1 also enhanced intracellular survival as mutants were killed more efficiently. Complementation of mutants restored phagocytosis and resistance to killing in J774A.1 macrophages. Spb1 antiserum revealed surface expression in WT GBS and spatial distribution relative to capsular polysaccharide. spb1 did not affect macrophage nitric oxide and TNF-alpha responses; differences in phagocytosis did not correlate with N-acetyl d-glucosamine (from GBS cell-wall) according to enzyme-linked lectin-sorbent assay. Together, these findings support a role for phylogenetic lineage and Spb1 in opsonin-independent phagocytosis and intracellular survival of GBS in J774A.1 macrophages.  相似文献   

9.
Surface capsular polysaccharides play a critical role in protecting several pathogenic microbes against innate host defenses during infection. Little is known about virulence mechanisms of the fish pathogen Streptococcus iniae, though indirect evidence suggests that capsule could represent an important factor. The putative S. iniae capsule operon contains a homologue of the cpsD gene, which is required for capsule polymerization and export in group B Streptococcus and Streptococcus pneumoniae. To elucidate the role of capsule in the S. iniae infectious process, we deleted cpsD from the genomes of two virulent S. iniae strains by allelic exchange mutagenesis to generate the isogenic capsule-deficient DeltacpsD strains. Compared to wild-type S. iniae, the DeltacpsD mutants had a predicted reduction in buoyancy and cell surface negative charge. Transmission electron microscopy confirmed a decrease in the abundance of extracellular capsular polysaccharide. Gas-liquid chromatography-mass spectrometry analysis of the S. iniae extracellular polysaccharides showed the presence of l-fucose, d-mannose, d-galactose, d-glucose, d-glucuronic acid, N-acetyl-d-galactosamine, and N-acetyl-d-glucosamine, and all except mannose were reduced in concentration in the isogenic mutant. The DeltacpsD mutants were highly attenuated in vivo in a hybrid striped bass infection challenge despite being more adherent and invasive to fish epithelial cells and more resistant to cationic antimicrobial peptides than wild-type S. iniae. Increased susceptibility of the S. iniae DeltacpsD mutants to phagocytic killing in whole fish blood and by a fish macrophage cell line confirmed the role of capsule in virulence and highlighted its antiphagocytic function. In summary, we report a genetically defined study on the role of capsule in S. iniae virulence and provide preliminary analysis of S. iniae capsular polysaccharide sugar components.  相似文献   

10.
Transposon-mediated mutability has been used to isolate the isogenic strains of the group B serotype Ia streptococci with the mutations in the genes coding for the production of capsular antigen. The transconjugants have lost the ability to bind type Ia antiserum as demonstrated by immunoblotting technique. The loss of type-specific antigen by the strains has resulted in a dramatic decrease in virulence for mice while the absorbtion indexes of transconjugants increased 2-3 fold. The mutant clones deficient in capsule expression had the increased buoyant density in the percoll gradient as compared with the parent strains of group B. The stable mutants impaired in ability to produce the polysaccharide capsule on the cell surface were obtained as a result of site-specific insertion of transposon Tn916 into the genome of group B serotype I streptococcus.  相似文献   

11.
The Staphylococcus aureus serotype 5 capsular polysaccharide (CP5) has a trisaccharide repeating unit of (→ 4)-3-O-Ac-β- D -ManNAcA p -(1 → 4)-α- L -FucNAc p -(1 → 3)-β- D -FucNAc p -(1→). Tn 918 mutagenesis of strain Reynolds yielded a mutant that produced wild-type levels of O-deacetylated CP5. The site and orientation of the single transposon insertion in mutant JL232 were determined by analysis of Southern blots and amplification of DNA flanking the transposon. DNA sequencing revealed that Tn 918 was inserted within an open reading frame of 627 bp. The predicted amino acid sequence encodes a protein of approximately 26 kDa with homology to members of the NodL-LacA-CysE family of bacterial acetyltransferases. Southern blot analysis showed that genes similar to cap5H were present only in strains of S . aureus belonging to capsular serotypes 2, 4 and 5. In an in vitro assay, the parental strain was more resistant to opsonophagocytic killing than the mutant strain. In a mouse model of staphylococcal infection, the parental strain was able to seed the bloodstream from the peritoneal cavity and colonize the kidneys more efficiently than the O-deacetylated mutant. When cap5H was provided to the mutant in trans , it fully restored CP5 O-acetylation. The virulence of the complemented mutant strain closely approximated that of the parental strain.  相似文献   

12.
Bacillus subtilis mutants with altered penicillin-binding proteins (PBPs), or altered expression of PBPs, were isolated by screening for changes in susceptibility to beta-lactam antibiotics. Mutations affecting only PBPs 2a, 2b and 3 were isolated. Cell shape and peptidoglycan metabolism were examined in representative mutants. Cells of a PBP 2a mutant (UB8521) were usually twisted whereas PBP 2b (UB8524) and 3 (UB8525) mutants produced helices, particularly after growth at 41 degrees C. The PBP 2a mutant (UB8521) had a higher peptidoglycan synthetic activity than its parent strain whereas the opposite applied to the PBP 2b mutant UB8524. The PBP 3 mutant (UB8525) had a similar peptidoglycan synthetic activity to that of the parent strain when grown at 37 degrees C, but 40% higher activity after growth at 41 degrees C. The PBP 2a mutant (UB8521) exhibited the same wall thickening activity as the parent, but the PBP 2b and 3 mutants (UB8524 and UB8525) were partially defective in this respect. The changes in the susceptibility of PBP 2a, 2b and 3 mutants to beta-lactam antibiotics imply that these PBPs are killing targets, consistent with the fact that these PBPs are also important for shape determination and peptidoglycan synthesis.  相似文献   

13.
Burkholderia pseudomallei is a gram-negative bacillus that is the causative agent of melioidosis. We evaluated host–pathogen interaction at different levels using three separate B. pseudomallei mutants generated by insertional inactivation. One of these mutants is defective in the production of the polysaccharide side chains associated with lipopolysaccharide; one does not produce the capsular polysaccharide with the structure -3)-2- O -acetyl-6-deoxy-β- d - manno -heptopyranose-(1-; and the third mutant does not produce flagellin. We compared the in vivo virulence in BALB/c mice, the in vitro fate of intracellular survival inside human polymorphonuclear cells (PMNs) and macrophages (Mφs) and the susceptibility to killing by 30% normal human serum, reactive nitrogen and oxygen intermediates and antimicrobial peptides with that of their wild-type counterpart. The lipopolysaccharide and capsule mutants demonstrated a marked reduction in virulence for BALB/c mice, but the flagellin mutant was only slightly less virulent than the parent strain. The results from the BALB/c mice experiments correlated with survival in Mφs. The lipopolysaccharide and capsule mutants were also more susceptible to killing by antimicrobial agents. All bacteria were equally susceptible to killing by PMNs. Altogether, the data suggest that lipopolysaccharide and capsule and, to a much lesser extent, flagella, are most likely associated with the virulence of this bacterium and highlight the importance of intracellular killing by PMNs and Mφs in disease pathogenesis.  相似文献   

14.
Radiolabelled penicillin G was used to examine penicillin-binding proteins (PBPs) from Erwinia amylovora (OT1). This procedure identified seven PBPs with molecular masses ranging from 22 to 83 kDa. E. amylovora PBPs were compared with those from Escherichia coli (JM101) and from two spherical, avirulent TnphoA mutants derived from OT1. Radiolabelled penicillin G bound to only six proteins from the spherical mutants which lacked a 69-kDa PBP. The spherical mutants could be complemented by the cloned E. coli pbpA-rodA operon, which restored both cell shape and virulence to apple seedlings. This suggested that the E. amylovora 69-kDa PBP is probably the functional equivalent of the E. coli PBP2 protein. Southern blot analysis using the E. coli rodA and pbpA genes as radiolabelled probes showed that TnphoA had inserted into the E. amylovora equivalent of the E. coli rodA-pbpA operon. Southern blots to chromosomal DNAs of the two spherical mutants, using the cloned hrp and dsp genes from E. amylovora as radiolabelled probes, confirmed that the TnphoA insertions were not located in the region of the E. amylovora chromosome postulated to encode known virulence factors. Both of the spherical TnphoA mutants synthesized amounts of extracellular polysaccharide equivalent to those synthesized by the wild-type strain (OT1), were resistant to lysis in distilled water and to lysozyme, and elicited the hypersensitive response on nonhost plants. These results indicate a possible role for cell shape in the virulence of this plant pathogen.  相似文献   

15.
In Streptococcus pneumoniae, alterations in penicillin-binding protein 2b (PBP 2b) that reduce the affinity for penicillin binding are observed during development of beta-lactam resistance. The development of resistance was now studied in three independently obtained piperacillin-resistant laboratory mutants isolated after several selection steps on increasing concentrations of the antibiotic. The mutants differed from the clinical isolates in major aspects: first-level resistance could not be correlated with alterations in the known PBP genes, and the first PBP altered was PBP 2b. The point mutations occurring in the PBP 2b genes were characterized. Each mutant contained one single point mutation in the PBP 2b gene. In one mutant, this resulted in a mutation of Gly-617 to Ala within one of the homology boxes common to all PBPs, and in the other two cases, the same Gly-to-Asp substitution at the end of the penicillin-binding domain had occurred. The sites affected were homologous to those determined previously in the S. pneumoniae PBP 2x of mutants resistant to cefotaxime, indicating that, in both PBPs, similar sites are important for interaction with the respective beta-lactams.  相似文献   

16.
To study the functional differences between penicillin-binding proteins (PBPs) 1A and 1B, as well as their recently postulated involvement in the septation process (F. García del Portillo, M. A. de Pedro, D. Joseleau-Petit, and R. D'Ari, J. Bacteriol. 171:4217-4221, 1989), a series of isogenic strains with mutations in the genes coding for PBP 1A (ponA) or PBP 1B (ponB) or in the cell division-specific genes ftsA, ftsQ, pbpB, and ftsZ was constructed and used as the start point to produce double mutants combining the ponA or ponB characters with mutations in cell division genes. PBP 1A seemed to be unable to preserve cell integrity by itself, requiring the additional activities of PBP 2, PBP 3, and FtsQ. PBP 1B was apparently endowed with a more versatile biosynthetic potential that permitted a substantial enlargement of PBP 1A-deficient cells when PBP 2 or 3 was inhibited or when FtsQ was inactive. beta-Lactams binding to PBP 2 (mecillinam) or 3 (furazlocillin) caused rapid lysis in a ponB background. The lytic effect of furazlocillin to ponB cell division double mutants was suppressed at the restrictive temperature irrespective of the identity of the mutated cell division gene. These results indicate that PBPs 1A and 1B play distinct roles in cell wall synthesis and support the idea of a relevant involvement of PBP 1B in peptidoglycan synthesis at the time of septation.  相似文献   

17.
One group of penicillin target enzymes, the class A high-molecular-weight penicillin-binding proteins (PBPs), are bimodular enzymes. In addition to a central penicillin-binding-transpeptidase domain, they contain an N-terminal putative glycosyltransferase domain. Mutations in the genes for each of the three Streptococcus pneumoniae class A PBPs, PBP1a, PBP1b, and PBP2a, were isolated by insertion duplication mutagenesis within the glycosyltransferase domain, documenting that their function is not essential for cellular growth in the laboratory. PBP1b PBP2a and PBP1a PBP1b double mutants could also be isolated, and both showed defects in positioning of the septum. Attempts to obtain a PBP2a PBP1a double mutant failed. All mutants with a disrupted pbp2a gene showed higher sensitivity to moenomycin, an antibiotic known to inhibit PBP-associated glycosyltransferase activity, indicating that PBP2a is the primary target for glycosyltransferase inhibitors in S. pneumoniae.  相似文献   

18.
A detailed study of gerJ mutants of Bacillus subtilis   总被引:2,自引:0,他引:2  
A total of nine gerJ mutants have now been isolated in Bacillus subtilis. All are defective in their spore germination properties, being blocked at an intermediate (phase grey) stage. The dormant spores are sensitive to heating at 90 degrees C and two of the mutants (generated by transposon insertion) produce spores sensitive at 80 degrees C. The spores of these two more extreme mutants had a visibly defective cortex when studied by electron microscopy, as did some of the other mutants. During sporulation, the acquisition of spore resistance properties and the appearance of the sporulation-specific penicillin-binding protein PBP5* were delayed. A strain probably carrying a lacZ fusion to the gerJ promoter demonstrated increased expression between t2 and t4. We propose that the gerJ locus is involved in the control of one or more sporulation-specific genes.  相似文献   

19.
The coding sequence of the Haemophilus influenzae ORF I gene was amplified by PCR and cloned into different Escherichia coli expression vectors. The ORF I-encoded protein was approximately 90 kDa and bound 3H-benzyl-penicillin and 125I-cephradine. This high-molecular-weight penicillin-binding protein (PBP) was also shown to possess transglycosylase activity, indicating that the ORF I product is a bifunctional PBP. The ORF I protein was capable of maintaining the viability of E. coli delta ponA ponB::spcr cells in transcomplementation experiments, establishing the functional relevance of the significant amino acid homology seen between E. coli PBP 1A and 1B and the H. influenzae ORF I product. In addition, the physiological functioning of the H. influenzae ORF I (PBP 1A) product in a heterologous species established the ability of the enzyme not only to recognize the E. coli substrate but also to interact with heterologous cell division proteins. The affinity of the ORF I product for 3H-benzylpenicillin and 125I-cephradine, the MIC of beta-lactams for E. coli delta ponA ponB::spcr expressing the ORF I gene, and the amino acid alignment of the PBP 1 family of high-molecular-weight PBPs group the ORF I protein into the PBP 1A family of high-molecular-weight PBPs.  相似文献   

20.
In order to identify genes involved in LPS biosynthesis we isolated random mutants generated by transposon insertion in Francisella novicida. The resulting mutant bank yielded mutants with three distinct LPS phenotypes, and three representative mutants were chosen for further study. One mutant that had short O-antigen chains was sensitive to serum; this mutant and one other were more sensitive to killing by deoxycholate than control strains. The third mutant was resistant to deoxycholate killing but slightly sensitive to serum. The three mutants varied in their ability to grow in macrophages. The DNA sequences interrupted by the transposon in two of the three mutants showed similarity to known LPS biosynthetic genes at the deduced amino acid level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号