首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Activation of caspase-1 and subsequent processing and secretion of the pro-inflammatory cytokine IL-1beta is triggered upon assembly of the inflammasome complex. It is generally believed that bacterial lipopolysaccharides (LPS) are activators of the inflammasome through stimulation of Toll-like receptor 4 (TLR4). Like TLRs, NALP3/Cryopyrin, which is a key component of the inflammasome, contains Leucine-Rich-Repeats (LRRs). LRRs are frequently used to sense bacterial components, thus raising the possibility that bacteria directly activate the inflammasome. Here, we show that bacterial peptidoglycans (PGN), but surprisingly not LPS, induce NALP3-mediated activation of caspase-1 and maturation of proIL-1beta. Activation is independent of TLRs because the PGN degradation product muramyl dipeptide (MDP), which is not sensed by TLRs, is the minimal-activating structure. Macrophages from a patient with Muckle-Wells syndrome, an autoinflammatory disease associated with mutations in the NALP3/Cryopyrin gene, show increased IL-1beta secretion in the presence of MDP. The activation of the NALP3-inflammasome by MDP may be the basis of the potent adjuvant activity of MDP.  相似文献   

2.
3.
Anthrax lethal toxin (LT) is cytotoxic to macrophages from certain inbred mouse strains. The gene controlling macrophage susceptibility to LT is Nalp1b . Nalp1b forms part of the inflammasome, a multiprotein complex involved in caspase-1 activation and release of interleukin (IL)-1β and IL-18. We confirm the role of caspase-1 in LT-mediated death by showing that caspase inhibitors differentially protected cells against LT, with the degree of protection corresponding to each compound's ability to inhibit caspase-1. Caspase-1 activation and cytokine processing and release were late events inhibited by elevated levels of KCl and sucrose, by potassium channel blockers, and by proteasome inhibitors, suggesting that inflammasome formation requires a protein-degradation event and occurs downstream of LT-mediated potassium efflux. In addition, IL-18 and IL-1β release was dependent on cell death, indicating that caspase-1-mediated cytotoxicity is independent of these cytokines. Finally, inducing NALP3-inflammasome formation in LT-resistant macrophages did not sensitize cells to LT, suggesting that general caspase-1 activation cannot account for sensitivity to LT and that a Nalp1b-mediated event is specifically required for death. Our data indicate that inflammasome formation is a contributing, but not initiating, event in LT-mediated cytotoxicity and that earlier LT-mediated events leading to ion fluxes are required for death.  相似文献   

4.
Activation of caspase-3 is generally acknowledged as a penultimate step in apoptotic cell death pathways. Two studies in this issue of Cell Stem Cell (Fujita et al., 2008; Janzen et al., 2008) provide compelling data to demonstrate that caspase-3 is also a conserved inductive cue for stem cell differentiation.  相似文献   

5.
Activation of the DNA damage response (DDR) is critical for genomic integrity and tumor suppression. The occurrence of DNA damage quickly evokes the DDR through ATM/ATR-dependent signal transduction, which promotes DNA repair and activates the checkpoint to halt cell cycle progression (Halazonetis et al., 2008; Motoyama and Naka, 2004; Zhou and Elledge, 2000). The "turn off" process of the DDR upon satisfaction of DNA repair, also known as "checkpoint recovery", involves deactivation of DDR elements, but the mechanism is poorly understood. Greatwall kinase (Gwl) has been identified as a key element in the G2/M transition (Archambault et al., 2007; Jackson, 2006; Zhao et al., 2008; Yu et al., 2004; Yu et al., 2006; Zhao et al., 2006) and helps maintain M phase through inhibition of PP2A/B55δ (Burgess et al., 2010; Castilho et al., 2009; Goldberg, 2010; Lorca et al., 2010; Vigneron et al., 2009), the principal phosphatase for Cdk-phosphorylated substrates. Here we show that Gwl also promotes recovery from DNA damage and is itself directly inhibited by the DNA damage response (DDR). In Xenopus egg extracts, immunodepletion of Gwl increased the DDR to damaged DNA, whereas addition of wild type, but not kinase dead Gwl, inhibited the DDR. The removal of damaged DNA from egg extracts leads to recovery from checkpoint arrest and entry into mitosis, a process impaired by Gwl depletion and enhanced by Gwl over-expression. Moreover, activation of Cdk1 after the removal of damaged DNA is regulated by Gwl. Collectively, these results defines Gwl as a new regulator of the DDR, which plays an important role in recovery from DNA  相似文献   

6.
Interleukin (IL)-1beta maturation is accomplished by caspase-1-mediated proteolysis, an essential element of innate immunity. NLRs constitute a recently recognized family of caspase-1-activating proteins, which contain a nucleotide-binding oligomerization domain and leucine-rich repeat (LRR) domains and which assemble into multiprotein complexes to create caspase-1-activating platforms called "inflammasomes." Using purified recombinant proteins, we have reconstituted the NALP1 inflammasome and have characterized the requirements for inflammasome assembly and caspase-1 activation. Oligomerization of NALP1 and activation of caspase-1 occur via a two-step mechanism, requiring microbial product, muramyl-dipeptide, a component of peptidoglycan, followed by ribonucleoside triphosphates. Caspase-1 activation by NALP1 does not require but is enhanced by adaptor protein ASC. The findings provide the biochemical basis for understanding how inflammasome assembly and function are regulated, and shed light on NALP1 as a direct sensor of bacterial components in host defense against pathogens.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
Inflammasomes are Nod-like receptor(NLR)- and caspase-1-containing cytoplasmic multiprotein complexes, which upon their assembly, process and activate the proinflammatory cytokines interleukin (IL)-1beta and IL-18. The inflammasomes harboring the NLR members NALP1, NALP3 and IPAF have been best characterized. While the IPAF inflammasome is activated by bacterial flagellin, activation of the NALP3 inflammasome is triggered not only by several microbial components, but also by a plethora of danger-associated host molecules such as uric acid. How NALP3 senses these chemically unrelated activators is not known. Here, we provide evidence that activation of NALP3, but not of the IPAF inflammasome, is blocked by inhibiting K(+) efflux from cells. Low intracellular K(+) is also a requirement for NALP1 inflammasome activation by lethal toxin of Bacillus anthracis. In vitro, NALP inflammasome assembly and caspase-1 recruitment occurs spontaneously at K(+) concentrations below 90 mM, but is prevented at higher concentrations. Thus, low intracellular K(+) may be the least common trigger of NALP-inflammasome activation.  相似文献   

15.
The fibrillins are a large family of chloroplast proteins that have been linked with stress tolerance and disease resistance. FIBRILLIN4 (FIB4) is found associated with the photosystem II light-harvesting complex, thylakoids, and plastoglobules, which are chloroplast compartments rich in lipophilic antioxidants. For this study, FIB4 expression was knocked down in apple (Malus 3 domestica) using RNA interference. Plastoglobule osmiophilicity was decreased in fib4 knockdown (fib4 KD) tree chloroplasts compared with the wild type, while total plastoglobule number was unchanged. Compared with the wild type, net photosynthetic CO2 fixation in fib4 KD trees was decreased at high light intensity but was increased at low light intensity. Furthermore, fib4 KD trees produced more anthocyanins than the wild type when transferred from low to high light intensity, indicating greater sensitivity to high light stress. Relative to the wild type, fib4 KD apples were more sensitive to methyl viologen and had higher superoxide levels during methyl viologen treatment. Arabidopsis (Arabidopsis thaliana) fib4 mutants and fib4 KD apples were more susceptible than their wild-type counterparts to the bacterial pathogens Pseudomonas syringae pathovar tomato and Erwinia amylovora, respectively, and were more sensitive to ozone-induced tissue damage. Following ozone stress, plastoglobule osmiophilicity decreased in wild-type apple and remained low in fib4 KD trees; total plastoglobule number increased in fib4 KD apples but not in the wild type. These results indicate that FIB4 is required for plastoglobule development and resistance to multiple stresses. This study suggests that FIB4 is involved in regulating plastoglobule content and that defective regulation of plastoglobule content leads to broad stress sensitivity and altered photosynthetic activity.Increased production of reactive oxygen species (ROS) is among the first biochemical responses of plants when challenged by pathogens and harsh environmental conditions (Mehdy, 1994; Lamb and Dixon, 1997; Joo et al., 2005). ROS are implicated in tissue damage during environmental stress and in the promotion of disease development by necrotrophic and hemibiotrophic pathogens (Venisse et al., 2001; Apel and Hirt, 2004; Shetty et al., 2008). For example, ROS production is critical for host colonization and pathogenesis by the bacterium Erwinia amylovora, which causes fire blight disease in rosaceous plants such as apple (Malus 3 domestica) and pear (Pyrus communis; Venisse et al., 2001).The chloroplast is a site of ROS production during biotic and abiotic stress (Joo et al., 2005; Liu et al., 2007). The chloroplast has a battery of enzymes such as superoxide dismutase and ascorbate peroxidase, and antioxidants such as ascorbate, glutathione, and tocopherols, for protection against ROS (Noctor and Foyer, 1998; Asada, 2006). Plastoglobules are lipoprotein bodies attached to the thylakoids (Austin et al., 2006) that store lipids, including antioxidants such as tocopherols, carotenes, and plastoquinones (Steinmüller and Tevini, 1985; Tevini and Steinmüller, 1985). In addition to antioxidants, plastoglobules contain tocopherol cyclase, which is involved in γ-tocopherol synthesis (Austin et al., 2006; Vidi et al., 2006). The antioxidant content of plastoglobules and their apparent involvement in tocopherol biosynthesis imply that they could play a role in plant responses to oxidative stress.Plastoglobules contain fibrillins, which were initially described as protein components of chromoplast fibrils with a molecular mass of approximately 30 kD (Winkenbach et al., 1976; Knoth et al., 1986; Emter et al., 1990; Deruère et al., 1994). Fibrillins are ubiquitous proteins present from cyanobacteria to plants (Laizet et al., 2004). Fibrillins maintain plastoglobule structural integrity (Deruère et al., 1994; Pozueta-Romero et al., 1997; Langenkämper et al., 2001; Vidi et al., 2006; Bréhélin et al., 2007) and stabilize the photosynthetic apparatus during photooxidative stress (Gillet et al., 1998; Yang et al., 2006; Youssef et al., 2010), osmotic stress (Gillet et al., 1998), drought (Pruvot et al., 1996; Rey et al., 2000), and low temperature (Rorat et al., 2001). Fibrillins are involved in abscisic acid-mediated protection from photoinhibition (Yang et al., 2006), and a subfamily of Arabidopsis (Arabidopsis thaliana) fibrillins (FIB1a, -1b, and -2) conditions jasmonate production during low-temperature, photooxidative stress (Youssef et al., 2010). Arabidopsis plants lacking one fibrillin (At4g22240) and tomato (Solanum lycopersicum) plants with suppressed expression of a fibrillin (LeCHRC) are susceptible to Pseudomonas syringae and Botrytis cinerea, respectively (Cooper et al., 2003; Leitner-Dagan et al., 2006), indicating that fibrillins play a role in disease resistance.The Arabidopsis fibrillin encoded by At3g23400 has received various appellations, including FIBRILLIN4 (FIB4; Laizet et al., 2004), Harpin-Binding Protein1 (Song et al., 2002), AtPGL 30.4 (Vidi et al., 2006), and Fibrillin6 (Galetskiy et al., 2008); here, it will be referred to by its earliest published name, FIB4. FIB4 is found associated with the PSII light-harvesting complex (Galetskiy et al., 2008). FIB4 has also been detected in plastoglobules (Vidi et al., 2006; Ytterberg et al., 2006) and thylakoids (Friso et al., 2004; Peltier et al., 2004). However, the specific function of FIB4 is unknown. Several lines of evidence suggest that FIB4 may be involved in plant disease resistance responses: pathogen-associated molecular patterns trigger its phosphorylation (Jones et al., 2006); pathogen-associated molecular patterns stimulate the expression of its ortholog in tobacco (Nicotiana tabacum; Jones et al., 2006; Sanabria and Dubery, 2006); and it can physically interact with the HrpN (harpin) virulence protein of the fire blight pathogen E. amylovora in a yeast two-hybrid assay, suggesting that it could be a receptor or target of HrpN (Song et al., 2002). In addition, it is thought that FIB4 may be involved in the transport of small, hydrophobic molecules because it contains a conserved lipocalin signature (Jones et al., 2006). Here, we report a genetic analysis of FIB4 function in apple and Arabidopsis in terms of its role in plastoglobule development and plant resistance to biotic and abiotic stresses.  相似文献   

16.
17.
18.
19.
Role of the Rice Hexokinases OsHXK5 and OsHXK6 as Glucose Sensors   总被引:1,自引:0,他引:1       下载免费PDF全文
The Arabidopsis (Arabidopsis thaliana) hexokinase 1 (AtHXK1) is recognized as an important glucose (Glc) sensor. However, the function of hexokinases as Glc sensors has not been clearly demonstrated in other plant species, including rice (Oryza sativa). To investigate the functions of rice hexokinase isoforms, we characterized OsHXK5 and OsHXK6, which are evolutionarily related to AtHXK1. Transient expression analyses using GFP fusion constructs revealed that OsHXK5 and OsHXK6 are associated with mitochondria. Interestingly, the OsHXK5ΔmTP-GFP and OsHXK6ΔmTP-GFP fusion proteins, which lack N-terminal mitochondrial targeting peptides, were present mainly in the nucleus with a small amount of the proteins seen in the cytosol. In addition, the OsHXK5NLS-GFP and OsHXK6NLS-GFP fusion proteins harboring nuclear localization signals were targeted predominantly in the nucleus, suggesting that these OsHXKs retain a dual-targeting ability to mitochondria and nuclei. In transient expression assays using promoter∷luciferase fusion constructs, these two OsHXKs and their catalytically inactive alleles dramatically enhanced the Glc-dependent repression of the maize (Zea mays) Rubisco small subunit (RbcS) and rice α-amylase genes in mesophyll protoplasts of maize and rice. Notably, the expression of OsHXK5, OsHXK6, or their mutant alleles complemented the Arabidopsis glucose insensitive2-1 mutant, thereby resulting in wild-type characteristics in seedling development, Glc-dependent gene expression, and plant growth. Furthermore, transgenic rice plants overexpressing OsHXK5 or OsHXK6 exhibited hypersensitive plant growth retardation and enhanced repression of the photosynthetic gene RbcS in response to Glc treatment. These results provide evidence that rice OsHXK5 and OsHXK6 can function as Glc sensors.In higher plants, sugars are known to function as signaling molecules in addition to being a fundamental source of fuel for carbon and energy metabolism. Indeed, sugars have been shown to regulate physiological processes during the entire plant life cycle, from germination to flowering and senescence, and to function during defense responses to biotic and abiotic stresses (Jang and Sheen, 1994; Jang et al., 1997; Perata et al., 1997; Smeekens and Rook, 1997; Smeekens, 1998; Wingler et al., 1998; Rolland et al., 2001, 2006; Leon and Sheen, 2003; Gibson, 2005; Biemelt and Sonnewald, 2006; Seo et al., 2007). Therefore, to sustain normal plant growth and development, rigorous sugar sensing and signaling systems are important for coordinating and modulating many essential metabolic pathways.Glc, one of the main products of photosynthesis, is the most widely recognized sugar molecule that regulates plant signaling pathways (Koch, 1996; Yu et al., 1996; Ho et al., 2001; Chen, 2007). Yeast (Saccharomyces cerevisiae) has several Glc sensors, including the hexokinase ScHXK2, Glc transporter-like proteins Sucrose nonfermenting 3 (Snf3) and Restores glucose transport 2 (Rgt2), and G protein-coupled receptor Gpr1. These sensors have been reported to sense the internal and external Glc status as part of mechanisms controlling cell growth and gene expression (Rolland et al., 2001; Lemaire et al., 2004; Santangelo, 2006). Similarly, recent studies in plants have unveiled sugar sensing and signaling systems mediated by hexokinase as a Glc sensor or G protein-coupled receptors in a hexokinase-independent way (Rolland et al., 2001, 2002, 2006; Chen et al., 2003; Moore et al., 2003; Holsbeeks et al., 2004; Cho et al., 2006b; Huang et al., 2006). In addition, plant Snf1-related protein kinase 1 (SnRK1), which is an ortholog of the yeast Snf1, plays important roles linking sugar signal, as well as stress and developmental signals, for the global regulation of plant metabolism, energy balance, growth, and survival (Baena-González et al., 2007; Lu et al., 2007; Baena-González and Sheen, 2008).In addition to the catalytic role of hexokinase in plants, which is to facilitate hexose phosphorylation to form hexose-6-P, the role of hexokinase as an evolutionarily conserved Glc sensor was first recognized from biochemical, genetic, and molecular studies of Arabidopsis (Arabidopsis thaliana) hexokinase 1 (AtHXK1) transgenic plants and glucose insensitive2 (gin2) mutants (Jang et al., 1997; Rolland et al., 2002; Harrington and Bush, 2003; Moore et al., 2003; Cho et al., 2006b). Transgenic plants expressing catalytically inactive AtHXK1 mutant alleles in the gin2 mutant background have provided compelling evidence that the catalytic and sensory functions of AtHXK1 are uncoupled in the Arabidopsis plant (Moore et al., 2003). Furthermore, proteomics and yeast two-hybrid interaction experiments have revealed that in the nucleus, AtHXK1 interacts with two partners, the vacuolar H+-ATPase B1 and the 19S regulatory particle of proteasome subunit, to directly control the expression of specific photosynthetic genes (Cho et al., 2006b; Chen, 2007). In these studies, the interactions between AtHXK1 and vacuolar H+-ATPase B1 or 19S regulatory particle of proteasome subunit appeared not to require the enzymatic activity of AtHXK1. In the tomato (Solanum lycopersicum) plant, AtHXK1 expression causes a reduction in photosynthesis, growth inhibition, and the induction of rapid senescence (Dai et al., 1999), which are all characteristics of sugar sensing and signaling in photosynthetic tissues. With the exception of Arabidopsis HXK1, the role of hexokinases as Glc sensors has yet to be demonstrated in other plant species (Halford et al., 1999; Veramendi et al., 2002; Rolland et al., 2006).Hexokinases have been shown to associate with various subcellular compartments, including mitochondria, chloroplasts, Golgi complexes, endoplasmic reticula, plasma membranes, and cytosols, suggesting numerous distinct intracellular functions (Schleucher et al., 1998; Wiese et al., 1999; Frommer et al., 2003; Olsson et al., 2003; Giese et al., 2005; Cho et al., 2006a; Kandel-Kfir et al., 2006; Rezende et al., 2006; Damari-Weissler et al., 2007). In yeast, the Glc sensor ScHXK2 has a nuclear localization signal (NLS) within its N-terminal domain and resides partly in the nucleus in addition to the cytosol (Herrero et al., 1998; Randez-Gil et al., 1998). Furthermore, the nuclear localization of ScHXK2 is required for Glc repression of several genes, such as SUC2, HXK1, and GLK1 (Herrero et al., 1998; Rodríguez et al., 2001). A portion of cellular AtHXK1, which is predominantly associated with mitochondria, was also found to reside in the nucleus (Yanagisawa et al., 2003; Cho et al., 2006b). Under conditions of Glc excess, it has thus been hypothesized that nuclear AtHXK1 binds its substrate Glc, resulting in the suppression of target gene expression (Cho et al., 2006b; Chen, 2007).We have previously isolated 10 rice (Oryza sativa) hexokinases, OsHXK1 through OsHXK10, and demonstrated that all of these subtypes possess hexokinase activity (Cho et al., 2006a). The results of this previous study showed that OsHXK4 and OsHXK7 reside in the chloroplast stroma and cytosol, respectively. Based on sequence similarity and subcellular localization, we have identified two rice hexokinases homologous to AtHXK1, OsHXK5 and OsHXK6. The subcellular localization of OsHXK5 and OsHXK6, observed with GFP fusion constructs, suggested that OsHXK5 and OsHXK6 retain a dual-targeting ability to mitochondria and nuclei. This finding prompted us to examine whether these homologues play a role in Glc sensing and signaling in rice. To address this question, we observed the function of OsHXK5 and OsHXK6 in mesophyll protoplasts of maize (Zea mays) and rice and in transgenic rice plants. In addition, we transformed the Arabidopsis gin2-1 mutant with either wild-type or catalytically inactive alleles of OsHXK5 and OsHXK6 and analyzed their sugar sensing and signaling characteristics. Finally, the conserved role of hexokinase as a Glc sensor in Arabidopsis and rice plants is discussed.  相似文献   

20.
Nitric oxide (NO) regulates a wide range of plant processes from development to environmental adaptation. Despite its reported regulatory functions, it remains unclear how NO is synthesized in plants. We have generated a triple nia1nia2noa1-2 mutant that is impaired in nitrate reductase (NIA/NR)- and Nitric Oxide-Associated1 (AtNOA1)-mediated NO biosynthetic pathways. NO content in roots of nia1nia2 and noa1-2 plants was lower than in wild-type plants and below the detection limit in nia1nia2noa1-2 plants. NIA/NR- and AtNOA1-mediated biosynthesis of NO were thus active and responsible for most of the NO production in Arabidopsis (Arabidopsis thaliana). The nia1nia2noa1-2 plants displayed reduced size, fertility, and seed germination potential but increased dormancy and resistance to water deficit. The increasing deficiency in NO of nia1nia2, noa1-2, and nia1nia2noa1-2 plants correlated with increased seed dormancy, hypersensitivity to abscisic acid (ABA) in seed germination and establishment, as well as dehydration resistance. In nia1nia2noa1-2 plants, enhanced drought tolerance was due to a very efficient stomata closure and inhibition of opening by ABA, thus uncoupling NO from ABA-triggered responses in NO-deficient guard cells. The NO-deficient mutants in NIA/NR- and AtNOA1-mediated pathways in combination with the triple mutant will be useful tools to functionally characterize the role of NO and the contribution of both biosynthetic pathways in regulating plant development and defense.Nitric oxide (NO) is a small ubiquitous molecule derived from nitrogen-containing precursors that is one of the earliest and most widespread signaling molecules in living organisms from metazoans to mammals (Torreilles, 2001). The regulatory functions of NO have been extensively studied in mammals, where it is synthesized from Arg through the activity of NO synthases (Knowles and Moncada, 1994). By contrast, the biosynthesis and function of this molecule in plants are largely unknown. During the last 10 years, NO biosynthesis in plants has been one of the most controversial topics in plant biology (Durner and Klessig, 1999; Wendehenne et al., 2001; del Río et al., 2004; Zeier et al., 2004; Lamotte et al., 2005; Meyer et al., 2005; Modolo et al., 2005; Crawford, 2006; Crawford et al., 2006; Zemojtel et al., 2006a). Despite the controversy about its biosynthesis, it is now clear that NO regulates many physiological processes of plants, including seed germination, cell death, defense responses against pathogens, stomata function, senescence, and flowering (Beligni and Lamattina, 2000; Pedroso et al., 2000; Neill et al., 2002; Lamattina et al., 2003; He et al., 2004; Romero-Puertas et al., 2004; Wendehenne et al., 2004; Delledonne, 2005; Guo and Crawford, 2005; Simpson, 2005; Grün et al., 2006; Melotto et al., 2006; Planchet et al., 2006; Ali et al., 2007; Mishina et al., 2007).The molecular mechanisms underlying the control of seed dormancy and germination are still poorly characterized. Genetic data support a central role of abscisic acid (ABA) in regulating seed dormancy, whereas gibberellins promote germination (Finkelstein et al., 2008; Holdsworth et al., 2008). In addition, NO has been lately characterized as a new component in the signaling pathway leading to dormancy breakage. NO-releasing compounds reduce dormancy in a NO-dependent manner in Arabidopsis (Arabidopsis thaliana), some warm-season grasses, and certain barley (Hordeum vulgare) cultivars (Bethke et al., 2004; Sarath et al., 2006). More recently, the aleurone layer cells have been characterized as responsive to NO, gibberellins, and ABA, thus becoming a primary determinant of seed dormancy in Arabidopsis (Bethke et al., 2007).Two main enzyme-based pathways have been proposed to be functional for NO biosynthesis in plants. One is based on the activity of nitrate reductases (Meyer et al., 2005; Modolo et al., 2005), and another one, yet undefined, is based on the direct or indirect function of the Nitric Oxide-Associated1/Resistant to Inhibition by Fosfidomycin1 (AtNOA1/RIF1) protein. It has been also reported that NO synthesis from nitrite occurs in mitochondria associated with mitochondrial electron transport (Planchet et al., 2005) and also that this pathway is mainly functioning in roots under anoxia (Gupta et al., 2005). Moreover, the balance between mitochondrial nitrite reduction and superoxide-dependent NO degradation seems to be derived from factors controlling NO levels in Arabidopsis (Wulff et al., 2009). It has been recently reported that the synthesis of NO in floral organs requires nitrate reductase activity (Seligman et al., 2008) and also that homologues of AtNOA1 participate in NO biosynthesis in diatoms (Vardi et al., 2008), mammals (Zemojtel et al., 2006b; Parihar et al., 2008a, 2008b), and Nicotiana benthamiana (Kato et al., 2008). Recently, the identification of the rif1 mutant, carrying a null mutation in the AtNOA1 locus (At3g47450), allowed uncovering of a function for AtNOA1/RIF1 in the expression of plastome-encoded proteins (Flores-Pérez et al., 2008). Moreover, another recent report claims that AtNOA1 is not a NO synthase but a cGTPase (Moreau et al., 2008), likely playing a role in ribosome assembly and subsequent mRNA translation to proteins in the chloroplasts.To date, it is not clear if both pathways coexist in plants and, if so, the corresponding contributions of each pathway to NO biosynthesis. In this work, we have addressed the functions of both pathways in Arabidopsis by generating a triple mutant in both nitrate reductases and AtNOA1 that is severely impaired in NO production. Further characterization of NO-deficient plants allowed us to identify a functional cross talk between NO and ABA in controlling seed germination and dormancy as well as plant resistance to water deficit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号