首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hyperthermophilic Archaea Sulfolobus solfataricus grows optimally above 80 degrees C and metabolizes glucose by a non-phosphorylative variant of the Entner-Doudoroff pathway. In this pathway glucose dehydrogenase and gluconate dehydratase catalyze the oxidation of glucose to gluconate and the subsequent dehydration of gluconate to D-2-keto-3-deoxygluconate (KDG). KDG aldolase (KDGA) then catalyzes the cleavage of KDG to D-glyceraldehyde and pyruvate. It has recently been shown that all the enzymes of this pathway exhibit a catalytic promiscuity that also enables them to be used for the metabolism of galactose. This phenomenon, known as metabolic pathway promiscuity, depends crucially on the ability of KDGA to cleave KDG and D-2-keto-3-deoxygalactonate (KDGal), in both cases producing pyruvate and D-glyceraldehyde. In turn, the aldolase exhibits a remarkable lack of stereoselectivity in the condensation reaction of pyruvate and D-glyceraldehyde, forming a mixture of KDG and KDGal. We now report the structure of KDGA, determined by multiwavelength anomalous diffraction phasing, and confirm that it is a member of the tetrameric N-acetylneuraminate lyase superfamily of Schiff base-forming aldolases. Furthermore, by soaking crystals of the aldolase at more than 80 degrees C below its temperature activity optimum, we have been able to trap Schiff base complexes of the natural substrates pyruvate, KDG, KDGal, and pyruvate plus D-glyceraldehyde, which have allowed rationalization of the structural basis of promiscuous substrate recognition and catalysis. It is proposed that the active site of the enzyme is rigid to keep its thermostability but incorporates extra functionality to be promiscuous.  相似文献   

2.
An investigation has been carried out into gluconate dehydratase from the hyperthermophilic Archaeon Sulfolobus solfataricus. The enzyme has been purified from cell extracts of the organism and found to be responsible for both gluconate and galactonate dehydratase activities. It was shown to be a 45 kDa monomer with a half-life of 41 min at 95 degrees C and it exhibited similar catalytic efficiency with both substrates. Taken alongside the recent work on glucose dehydrogenase and 2-keto-3-deoxygluconate aldolase, this report clearly demonstrates that the entire non-phosphorylative Entner-Doudoroff pathway of S. solfataricus is promiscuous for the metabolism of both glucose and galactose.  相似文献   

3.
The hyperthermophilic archaeon Sulfolobus solfataricus metabolises glucose and galactose by a 'promiscuous' non-phosphorylative variant of the Entner-Doudoroff pathway, in which a series of enzymes have sufficient substrate promiscuity to permit the metabolism of both sugars. Recently, it has been proposed that the part-phosphorylative Entner-Doudoroff pathway occurs in parallel in S. solfataricus as an alternative route for glucose metabolism. In this report we demonstrate, by in vitro kinetic studies of D-2-keto-3-deoxygluconate (KDG) kinase and KDG aldolase, that the part-phosphorylative pathway in S. solfataricus is also promiscuous for the metabolism of both glucose and galactose.  相似文献   

4.
Carbon-carbon bond forming enzymes offer great potential for organic biosynthesis. Hence there is an ongoing effort to improve their biocatalytic properties, regarding availability, activity, stability, and substrate specificity and selectivity. Aldolases belong to the class of C-C bond forming enzymes and play important roles in numerous cellular processes. In several hyperthermophilic Archaea the 2-keto-3-deoxy-(6-phospho)-gluconate (KD(P)G) aldolase was identified as a key player in the metabolic pathway. The carbohydrate metabolism of the hyperthermophilic Crenarchaeote Thermoproteus tenax, for example, has been found to employ a combination of a variant of the Embden-Meyerhof-Parnas pathway and an unusual branched Entner-Doudoroff pathway that harbors a nonphosphorylative and a semiphosphorylative branch. The KD(P)G aldolase catalyzes the reversible cleavage of 2-keto-3-deoxy-6-phosphogluconate (KDPG) and 2-keto-3-deoxygluconate (KDG) forming pyruvate and glyceraldehyde 3-phosphate or glyceraldehyde, respectively. In T. tenax initial studies revealed that the pathway is specific for glucose, whereas in the thermoacidophilic Crenarchaeote Sulfolobus solfataricus the pathway was shown to be promiscuous for glucose and galactose degradation. The KD(P)G aldolase of S. solfataricus lacks stereo control and displays additional activity with 2-keto-3-deoxy-6-phosphogalactonate (KDPGal) and 2-keto-3-deoxygalactonate (KDGal), similar to the KD(P)G aldolase of Sulfolobus acidocaldarius. To address the stereo control of the T. tenax enzyme the formation of the two C4 epimers KDG and KDGal was analyzed via gas chromatography combined with mass spectroscopy. Furthermore, the crystal structure of the apoprotein was determined to a resolution of 2.0 A, and the crystal structure of the protein covalently linked to a pathway intermediate, namely pyruvate, was determined to 2.2 A. Interestingly, although the pathway seems to be specific for glucose in T. tenax the enzyme apparently also lacks stereo control, suggesting that the enzyme is a trade-off between required catabolic flexibility needed for the conversion of phosphorylated and nonphosphorylated substrates and required stereo control of cellular/physiological enzymatic reactions.  相似文献   

5.
The pathway of glucose degradation in the thermoacidophilic euryarchaeon Picrophilus torridus has been studied by in vivo labeling experiments and enzyme analyses. After growth of P. torridus in the presence of [1-13C]- and [3-13C]glucose, the label was found only in the C-1 and C-3 positions, respectively, of the proteinogenic amino acid alanine, indicating the exclusive operation of an Entner-Doudoroff (ED)-type pathway in vivo. Cell extracts of P. torridus contained all enzyme activities of a nonphosphorylative ED pathway, which were not induced by glucose. Two key enzymes, gluconate dehydratase (GAD) and a novel 2-keto-3-deoxygluconate (KDG)-specific aldolase (KDGA), were characterized. GAD is a homooctamer of 44-kDa subunits, encoded by Pto0485. KDG aldolase, KDGA, is a homotetramer of 32-kDa subunits. This enzyme was highly specific for KDG with up to 2,000-fold-higher catalytic efficiency compared to 2-keto-3-deoxy-6-phosphogluconate (KDPG) and thus differs from the bifunctional KDG/KDPG aldolase, KD(P)GA of crenarchaea catalyzing the conversion of both KDG and KDPG with a preference for KDPG. The KDGA-encoding gene, kdgA, was identified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) as Pto1279, and the correct translation start codon, an ATG 24 bp upstream of the annotated start codon of Pto1279, was determined by N-terminal amino acid analysis. The kdgA gene was functionally overexpressed in Escherichia coli. Phylogenetic analysis revealed that KDGA is only distantly related to KD(P)GA, both enzymes forming separate families within the dihydrodipicolinate synthase superfamily. From the data we conclude that P. torridus degrades glucose via a strictly nonphosphorylative ED pathway with a novel KDG-specific aldolase, thus excluding the operation of the branched ED pathway involving a bifunctional KD(P)GA as a key enzyme.Comparative analyses of sugar-degrading pathways in members of the domain Archaea revealed that all species analyzed so far degrade glucose and glucose polymers to pyruvate via modification of the classical Embden-Meyerhof (EM) and Entner-Doudoroff (ED) pathways found in bacteria and eukarya. Modified EM pathways were reported for hyperthermophilic archaea, including, e.g., the strictly fermentative Thermococcales and Desulfurococcales, the sulfur-reducing Thermoproteus tenax, and the microaerophilic Pyrobaculum aerophilum. These pathways differ from the classical EM pathway by the presence of several novel enzymes and enzyme families, catalyzing, e.g., the phosphorylation of glucose and fructose-6-phosphate, isomerization of glucose-6-phosphate, and oxidation of glyceraldehyde-3-phosphate (18, 22, 25).Modified ED pathways have been proposed for aerobic archaea, including halophiles, and thermoacidophilic crenarchaea, such as Sulfolobus species, and the euryarchaea Thermoplasma acidophilum and Picrophilus torridus. The anaerobic Thermoproteus tenax, which degrades glucose predominantly via a modified EM pathway, also utilizes—to a minor extent (<20%)—a modified ED pathway for glucose degradation. The following ED pathway modifications have been reported in archaea (25). A semiphosphorylative ED pathway was reported in halophilic archaea. Accordingly, glucose is converted to 2-keto-3-deoxy-6-gluconate (KDG) via glucose dehydrogenase and gluconate dehydratase. KDG is then phosphorylated by KDG kinase to 2-keto-3-deoxy-6-phosphogluconate (KDPG), which is split by KDPG aldolase to pyruvate and glyceraldehyde-3-phosphate (GAP). GAP is further converted to form another pyruvate via common reactions of the EM pathway, i.e., phosphorylative GAP dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase, enolase, and pyruvate kinase. The net ATP yield of this pathway is 1 ATP/mol glucose.From initial enzyme studies of the thermoacidophilic archaea Sulfolobus solfataricus, Thermoplasma acidophilum, and Thermoproteus tenax, a nonphosphorylative ED pathway was proposed (25). In this modification of the ED pathway, glucose is converted to KDG via glucose dehydrogenase and gluconate dehydratase, as in the semiphosphorylative pathway, but then the steps differ as follows: KDG is cleaved into pyruvate and glyceraldehyde via 2-keto-3-deoxygluconate-specific aldolase (KDGA). The subsequent oxidation of glyceraldehyde to glycerate involves either NAD(P)+-dependent dehydrogenases or oxidoreductases. Glycerate is then phosphorylated by a specific kinase to 2-phosphoglycerate, which is finally converted to pyruvate via enolase and pyruvate kinase. This modification of the ED pathway was called “nonphosphorylative” since it is not coupled with net ATP synthesis.However, recent comparative genomic studies and refined enzyme analyses suggest that the crenarchaea Sulfolobus and Thermoproteus utilize a so-called branched ED pathway, in which a semiphosphorylated route is simultaneously operative in addition to the nonphosphorylative route (25, 32). Accordingly, the semiphosphorylated route involves—via KDG kinase—the phosphorylation of KDG to KDPG, which is then cleaved to pyruvate and GAP by means of a bifunctional KDG/KDPG aldolase, KD(P)GA. GAP is then converted to another pyruvate via nonphosphorylative GAP dehydrogenase (GAPN), phosphoglycerate mutase, enolase, and pyruvate kinase. The net ATP yield of the branched ED pathway is zero. In support of this pathway, the genes encoding gluconate dehydratase, bifunctional KD(P)GA, KDG kinase, and GAPN were found to be clustered in Sulfolobus solfataricus (see Discussion) and Thermoproteus tenax. The key enzyme of the proposed branched ED pathway is the bifunctional KD(P)GA, which catalyzes the cleavage of KDG to pyruvate and glyceraldehyde and cleavage of KDPG to pyruvate and glyceraldehyde-3-phosphate. This bifunctional aldolase, which has been characterized from S. solfataricus, was found to be identical to a previously described KDG aldolase of the same organism; however, its catalytic property to also utilize KDPG as a substrate has been recognized only recently. In fact, the bifunctional KD(P)GA showed a higher catalytic efficiency for KDPG than for KDG (1, 14). Crystal structures of bifunctional KD(P)GAs of S. solfataricus and T. tenax have been reported (16, 27, 30; G. Taylor [United Kingdom], unpublished data).The branched ED pathway in S. solfataricus has been reported to be promiscuous and therefore represents an equivalent degradation route for both glucose and its C-4 epimer, galactose. Accordingly, glucose dehydrogenase, gluconate dehydratase, KDG kinase, and bifunctional KD(P)GA were found to catalyze the conversion of both glucose and galactose and the corresponding subsequent intermediates, i.e., gluconate/galactonate, KDG/KDGal (KDGal stands for 2-keto-3-deoxygalactonate), and KDPG/KDPGal (KDPGal stands for 2-keto-3-deoxy-6-phosphogalactonate) (4, 12-14).In contrast to crenarchaea, the modified ED pathway in the thermoacidophilic euryarchaea Thermoplasma acidophilum and Picrophilus torridus has not been studied in detail. Enzyme measurements in cell extracts and the characterization of few enzymes suggest the operation of a nonphosphorylative ED pathway in these organisms (2, 3, 17, 19, 25). However, in vivo evidence for the operation of an ED-type pathway, e.g., by 13C-labeling experiments with growing cultures, has not been provided yet. Furthermore, the KDG aldolase activity measured in cell extracts of P. torridus and T. acidophilum has not been purified and characterized, in particular with respect to substrate specificity, and the genes encoding these enzymes have not been identified. The biochemical analysis of this aldolase is crucial to define the enzyme as a KDG-specific aldolase, indicative of a nonphosphorylative ED pathway, or as bifunctional KD(P)GA, indicative of the branched ED pathway as proposed for the crenarchaea Sulfolobus and Thermoproteus.In this communication we studied the sugar-degrading pathway in P. torridus by in vivo labeling experiments with [13C]glucose, by enzyme measurements, and by characterization of two key enzymes, gluconate dehydratase and KDG aldolase. The data indicate that P. torridus utilizes a strict nonphosphorylative ED pathway, involving a novel KDG-specific aldolase as a key enzyme, and thus exclude the operation of a branched ED pathway, as in crenarchaea involving a bifunctional KD(P)GA as a key enzyme.  相似文献   

6.
Reher M  Schönheit P 《FEBS letters》2006,580(5):1198-1204
Cells of Picrophilus torridus, grown on glucose, contained all enzyme activities of a non-phosphorylative Entner-Doudoroff pathway, including glucose dehydrogenase, gluconate dehydratase, 2-keto-3-deoxygluconate aldolase, glyceraldehyde dehydrogenase (GADH), glycerate kinase (2-phosphoglycerate forming), enolase and pyruvate kinase. GADH was purified to homogeneity. The 115-kDa homodimeric protein catalyzed the oxidation of glyceraldehyde with NADP+ at highest catalytic efficiency. NAD+ was not used. By MALDI-TOF analysis, open reading frame (ORF) Pto0332 was identified in the genome of P. torridus as the encoding gene, designated gadh, and the recombinant GADH was characterized. In Thermoplasma acidophilum ORF Ta0809 represents a gadh homolog with highest sequence identity; the gene was expressed and the recombinant protein was characterized as functional GADH with properties very similar to the P. torridus enzyme. Sequence comparison and phylogenetic analysis define both GADHs as members of novel enzyme family within the aldehyde dehydrogenase superfamily.  相似文献   

7.
Summary 2-Keto-3-deoxygluconate, an intermediate of glucose breakdown inSulfolobus solfataricus, was produced by enzymic dehydration of gluconate using whole cells of the micro-organism immobilized in crude egg white. The degradation of 2-keto-3-deoxygluconate to pyruvate and glyceraldehyde was avoided by inhibiting the aldolase activity in the cells by sodium borohydride treatment.  相似文献   

8.
We have previously shown that the hyperthermophilic archaeon, Sulfolobus solfataricus, catabolizes d-glucose and d-galactose to pyruvate and glyceraldehyde via a non-phosphorylative version of the Entner-Doudoroff pathway. At each step, one enzyme is active with both C6 epimers, leading to a metabolically promiscuous pathway. On further investigation, the catalytic promiscuity of the first enzyme in this pathway, glucose dehydrogenase, has been shown to extend to the C5 sugars, d-xylose and l-arabinose. In the current paper we establish that this promiscuity for C6 and C5 metabolites is also exhibited by the third enzyme in the pathway, 2-keto-3-deoxygluconate aldolase, but that the second step requires a specific C5-dehydratase, the gluconate dehydratase being active only with C6 metabolites. The products of this pathway for the catabolism of d-xylose and l-arabinose are pyruvate and glycolaldehyde, pyruvate entering the citric acid cycle after oxidative decarboxylation to acetyl-coenzyme A. We have identified and characterized the enzymes, both native and recombinant, that catalyze the conversion of glycolaldehyde to glycolate and then to glyoxylate, which can enter the citric acid cycle via the action of malate synthase. Evidence is also presented that similar enzymes for this pentose sugar pathway are present in Sulfolobus acidocaldarius, and metabolic tracer studies in this archaeon demonstrate its in vivo operation in parallel with a route involving no aldol cleavage of the 2-keto-3-deoxy-pentanoates but direct conversion to the citric acid cycle C5-metabolite, 2-oxoglutarate.  相似文献   

9.
YagE is a 33 kDa prophage protein encoded by CP4-6 prophage element in Escherichia coli K12 genome. Here, we report the structures of YagE complexes with pyruvate (PDB Id 3N2X) and KDGal (2-keto-3-deoxy galactonate) (PDB Id 3NEV) at 2.2A resolution. Pyruvate depletion assay in presence of glyceraldehyde shows that YagE catalyses the aldol condensation of pyruvate and glyceraldehyde. Our results indicate that the biochemical function of YagE is that of a 2-keto-3-deoxy gluconate (KDG) aldolase. Interestingly, E. coli K12 genome lacks an intrinsic KDG aldolase. Moreover, the over-expression of YagE increases cell viability in the presence of certain bactericidal antibiotics, indicating a putative biological role of YagE as a prophage encoded virulence factor enabling the survival of bacteria in the presence of certain antibiotics. The analysis implies a possible mechanism of antibiotic resistance conferred by the over-expression of prophage encoded YagE to E. coli.  相似文献   

10.
Genes for three enzymes of intermediary sugar metabolism in E. coli, zwf (glucose 6-phosphate dehydrogenase, constitutive), edd (gluconate 6-phosphate dehydrase, inducible), and eda (2-keto-3-deoxygluconate 6-phosphate aldolase, differently inducible) are closely linked on the E. coli genetic map, the overall gene order being man... old... eda. edd. zwf... cheB... uvrC... his. One class of apparent revertants of an eda mutant strain contains a secondary mutation in edd, and some of these mutations are deletions extending into zwf. We have used a series of spontaneous edd-zwf deletions to map a series of point mutants in zwf and thus report the first fine structure map of a gene for a constitutive enzyme (zwf).  相似文献   

11.
Sulfolobus solfataricus is a thermophilic archaebacterium able to grow at 87 degrees C and pH 3.5 on glucose as sole carbon source. The organism metabolizes glucose by two main routes. The first route involves an ATP-dependent phosphorylation to give glucose 6-phosphate, which readily isomerizes to fructose 6-phosphate. In the second route, glucose is converted into gluconate by an NAD+-dependent dehydrogenation; gluconate is then dehydrated to 2-keto-3-deoxygluconate, which, in turn, is cleaved to pyruvate and glyceraldehyde. Each metabolic step has been tested in vitro at 70 degrees C on dialysed homogenates or partially purified fractions; minimal requirements of single enzymes have been evaluated. Identification of the intermediates is based on chromatographic, spectroscopic and/or synthetic evidence and on specific enzymic assays. The oxidative breakdown of glucose to pyruvate occurring in S. solfataricus differs from the Entner-Doudoroff pattern in that there is an absence of any phosphorylation step.  相似文献   

12.
Caulobacter crescentus wild-type strain CB13 is unable to utilize galactose as the sole carbon source unless derivatives of cyclic AMP are present. Spontaneous mutants have been isolated which are able to grow on galactose in the absence of exogenous cyclic nucleotides. These mutants and the wild-type strain were used to determine the pathway of galactose catabolism in this organism. It is shown here that C. crescentus catabolizes galactose by the Entner-Duodoroff pathway. Galactose is initially converted to galactonate by galactose dehydrogenase and then 2-keto-3-deoxy-6-phosphogalactonate aldolase catalyzes the hydrolysis of 2-keto-3-deoxy-6-phosphogalactonic acid to yield triose phosphate and pyruvate. Two enzymes of galactose catabolism, galactose dehydrogenase and 2-keto-3-deoxy-6-phosphogalactonate aldolase, were shown to be inducible and independently regulated. Furthermore, galactose uptake was observed to be regulated independently of the galactose catabolic enzymes.  相似文献   

13.
A new nonphosphorylative pathway for gluconate degradation was found in extracts of a strain of Aspergillus niger. The findings indicate that gluconate is dehydrated into 2-keto-3-deoxy-gluconate (KDG), which then is cleaved into glyceraldehyde and pyruvate. 6-Phosphogluconate was not degraded under the same conditions. In addition, KDG was formed from glyceraldehyde and pyruvate. Very weak activity was obtained when glyceraldehyde 3-phosphate replaced glyceraldehyde in this reaction.  相似文献   

14.
1. A mutant of Escherichia coli, devoid of phosphopyruvate synthetase, glucosephosphate isomerase and 6-phosphogluconate dehydrogenase activities, grew readily on gluconate and inducibly formed an uptake system for gluconate, gluconate kinase and 6-phosphogluconate dehydratase while doing so. 2. This mutant also grew on glucose 6-phosphate and inducibly formed 6-phosphogluconate dehydratase; however, the formation of the gluconate uptake system and gluconate kinase was not induced under these conditions. 3. The use of the Entner–Doudoroff pathway for the dissimilation of 6-phosphogluconate, derived from either gluconate or glucose 6-phosphate, by this mutant was also demonstrated by the accumulation of 2-keto-3-deoxy-6-phosphogluconate (3-deoxy-6-phospho-l-glycero-2-hexulosonate) from both these substrates in a similar mutant that also lacked phospho-2-keto-3-deoxygluconate aldolase activity. 4. Glucose 6-phosphate inhibits the continued utilization of fructose by cultures of the mutants growing on fructose, as it does in wild-type E. coli. 5. The mutants do not use glucose for growth. This is shown to be due to insufficiency of phosphopyruvate, which is required for glucose uptake.  相似文献   

15.
Conversion of glucose to pyruvate via reactions homologous to the non-phosphorylated Entner-Doudoroff (non-P ED) pathway could be achieved in the presence of two amino acid catalysts, cysteine and histidine: cystine oxidizes glucose to gluconic acid by the reaction homologous to glucose dehydrogenase and histidine changes gluconic acid to 2-keto-3-deoxy gluconic acid, then to pyruvate by the reaction homologous to gluconic acid dehydratase and 2-keto-3-deoxy gluconate aldolase, respectively. Pyruvate can be converted to acetyl CoA by the reaction with CoA, TPP and FAD in the presence of cysteine and histidine, which resembles pyruvate dehydrogenase reaction. It was found that gluconic acid dehydration alone is non-specific, in contrast to other reactions. The non-P ED pathway is used by some extreme thermophiles in bacteria and archaea, usually thought as the oldest among the contemporary organisms. This study suggests the possible contribution of amino acid to the origin of the glycolytic pathway.  相似文献   

16.
A mutant lacking gluconate-6-phosphate dehydrase (the first enzyme of the Entner-Doudoroff pathway) was isolated after ethyl methane sulfonate mutagenesis of Escherichia coli. Other enzymes of gluconate metabolism (gluconokinase, gluconate-6-phosphate dehydrogenase, and 2-keto-3-deoxygluconate-6-phosphate aldolase) were present in the mutant. When the mutant was grown on gluconate-1-(14)C, alanine isolated from protein was unlabeled, showing that the dehydrase was absent in vivo and that the sole pathway of gluconate metabolism in the mutant was the hexose monophosphate shunt. The mutant grew on gluconate with a doubling time of 155 min, compared with the parent strain's 56 min. On glucose and fructose it grew with normal doubling times. Thus, in E. coli, the Entner-Doudoroff pathway is used for gluconate metabolism but not for glucose metabolism.  相似文献   

17.
A new mutation in Escherichia coli, giving inability to grow on gluconic, glucuronic, or galacturonic acids, has been identified as complete deficiency of 2-keto-3-deoxygluconate 6-phosphate (KDGP) aldolase activity. The genetic map position of the locus, eda, is about 35 min. The inability to grow on the uronic acids was expected, because the aldolase is on the sole known pathway of their metabolism. However, inability to grow on gluconate was less expected, because the hexose monophosphate shunt might be used, as happens in mutants blocked in the previous step, edd, of the Entner-Doudoroff pathway. The likely explanation of gluconate negativity is inhibition by accumulated KDGP, because gluconate is inhibitory to growth on other substances, and one type of gluconate revertant is eda(-), edd(-). KDGP is probably the inducer of KDGP aldolase.  相似文献   

18.
19.
Five clostridial species were found to ferment gluconate via 2-keto-3-deoxygluconate which subsequently is phosphorylated to yield 2-keto-3-deoxy-6-phosphogluconate (KDPG). This compound is then cleaved by KDPG aldolase.  相似文献   

20.
2-Keto-3-deoxygluconate kinase (KDGK) catalyzes the ATP-dependent phosphorylation of 2-keto-3-deoxygluconate, a key intermediate in the modified (semi-phosphorylative) Entner-Doudoroff (ED) glucose metabolic pathway. We identified the gene (ORF ID: ST2478) encoding KDGK in the hyperthermophilic archaeon Sulfolobus tokodaii based on the structure of a gene cluster in a genomic database and functionally expressed it in Escherichia coli. The expressed protein was purified from crude extract by heat treatment and two conventional column chromatography steps, and the partial amino acid sequence in the N-terminal region of the purified enzyme (MAKLIT) was identical to that obtained from the gene sequence. The purified enzyme was extremely thermostable and retained full activity after heating at 80 degrees C for 1 h. The enzyme utilized ATP or GTP, but not ADP or AMP, as a phosphoryl donor and 2-keto-3-deoxy-D-gluconate or 2-keto-D-gluconate as a phosphoryl acceptor. Divalent cations including Mg(2+), Co(2+), Ni(2+), Zn(2+) or Mn(2+) were required for activity, and the apparent Km values for KDG and ATP at 50 degrees C were 0.027 mM and 0.057 mM, respectively. The presence of KDGK means that the hyperthermophilic archaeon S. tokodaii metabolizes glucose via both modified (semi-phosphorylative) and non-phosphorylative ED pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号