首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pyridoxal 5'-diphospho-5'-adenosine (PLP-AMP) inhibits glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides competitively with respect to glucose 6-phosphate and noncompetitively with respect to NAD+ or NADP+, with Ki = 40 microM in the NADP-linked and 34 microM in the NAD-linked reaction. Incubation of glucose-6-phosphate dehydrogenase with [3H]PLP-AMP followed by borohydride reduction shows that incorporation of 0.85 mol of PLP-AMP per mol of enzyme subunit is required for complete inactivation. Both glucose 6-phosphate and NAD+ protect against this covalent modification. The proteolysis of the modified enzyme and isolation and sequencing of the labeled peptides revealed that Lys-21 and Lys-343 are the sites of PLP-AMP interaction and that glucose 6-phosphate and NAD+ protect both lysyl residues against modification. Pyridoxal 5'-phosphate (PLP) also modifies Lys-21 and probably Lys-343. Lys-21 is part of a highly conserved region that is present in all glucose-6-phosphate dehydrogenases that have been sequenced. Lys-343 corresponds to an arginyl residue in other glucose-6-phosphate dehydrogenases and is in a region that is less homologous with those enzymes. PLP-AMP and PLP are believed to interact with L. mesenteroides glucose-6-phosphate dehydrogenase at the glucose 6-phosphate binding site. Simultaneous binding of NAD+ induces conformational changes (Kurlandsky, S. B., Hilburger, A. C., and Levy, H. R. (1988) Arch. Biochem. Biophys. 264, 93-102) that are postulated to interfere with Schiff's-base formation with PLP or PLP-AMP. One or both of the lysyl residues covalently modified by PLP or PLP-AMP may be located in regions of the enzyme undergoing the NAD(+)-induced conformational changes.  相似文献   

2.
The adenine nucleotide analog, [3H]pyridoxal 5'-diphospho-5'-adenosine (PLP-AMP), is shown to be a potent and specific inhibitor of yeast hexokinase PII. Evidence that the analog binds specifically at the ATP binding site includes the demonstration that glucose binding enhances PLP-AMP binding and that PLP-AMP and ATP bind competitively with an apparent Ki(PLP-AMP) = 23 microM. In addition, from the relationship between the degree of inhibition and extent of modification, it is estimated that the incorporation of 1 mol of PLP-AMP/mol of subunit is required for complete inhibition. Borohydride reduction of the Schiff's base complex formed between hexokinase and [3H]PLP-AMP gives a stable product. The reduced derivative was digested with trypsin and a single radioactive peptide was isolated by reversed-phase high-pressure liquid chromatography. Amino acid sequence analysis identified Lys-111 as the modified residue. Taking into account the known structures of the binary complexes (Shoham, M., and Steitz, T. A. (1980) J. Mol. Biol. 140, 1-14), the results suggest that Lys-111, located in the smaller of the two lobes of hexokinase, moves into the active site upon formation of the ternary complex.  相似文献   

3.
We have labeled the adenosine triphosphate binding site of Escherichia coli DNA gyrase with the ATP affinity analog, [3H]pyridoxal 5'-diphospho-5'-adenosine (PLP-AMP). PLP-AMP strongly inhibits the ATP-ase and DNA supercoiling activities of DNA gyrase, with 50% inhibition occurring at 7.5 microM inhibitor. ATP and ADP compete with PLP-AMP for binding and protect the enzyme against inhibition. The labeling appears to proceed by a Schiff base complex between the 4-formyl group of the pyridoxyl moiety of PLP-AMP and a protein primary amino group, since the inhibition and reagent labeling are reversible unless the complex is treated with NaBH4. Complete inactivation is estimated to occur upon the covalent incorporation of 2 mol of inhibitor/mol of gyrase. The Km for ATP was found to be unchanged for partially inhibited enzyme samples, suggesting an all-or-none type of inhibition. A 3H-labeled peptide spanning residues 93-131 of the B protein was isolated from a V-8 protease digest. Radioactive peaks corresponding to Lys-103 and Lys-110 were found during the Edman degradation, suggesting that these amino acids form part of the ATP binding site. A comparison of the amino acid sequence in this region with the sequences of other type II topoisomerases indicates the possible location of a common ATP binding domain.  相似文献   

4.
We have labeled the nucleoside triphosphate-binding domain of Escherichia coli rho factor with the ATP affinity analog [3H]pyridoxal 5'-diphospho-5'-adenosine (PLP-AMP). PLP-AMP completely inactivates the RNA-dependent ATPase activity of rho upon incorporation of 3 mol of reagent/mol of hexameric rho protein. Although the potency of PLP-AMP is enhanced when an RNA substrate such as poly(C) is present, the stoichiometry for inhibition remains the same as in the absence of poly(C). The nucleotide substrate ATP competes very effectively for the binding site and protects against PLP-AMP inactivation. A domain of rho called N2, which comprises the distal two-thirds of the molecule (residues 152-419) and encompasses the region proposed to bind ATP, is labeled specifically in the presence of poly(C). Amino acid sequence analysis of the single [3H]PLP-AMP labeled proteolytic fragment showed Lys181 to be the site of modification, suggesting that this residue normally interacts with the gamma-phosphoryl of bound ATP. These results agree with our proposed tertiary structure for the ATP-binding domain of rho that places this lysine residue in a flexible loop above a hydrophobic nucleotide-binding pocket comprised of several parallel beta-strands, similar to adenylate kinase, F1-ATPase, and related ATP-binding proteins. Parallel studies of rho structure and function by site-directed mutagenesis and chemical modification support this interpretation.  相似文献   

5.
Lee P  Gorrell A  Fromm HJ  Colman RF 《Biochemistry》1999,38(18):5754-5763
Adenylosuccinate synthetase from Escherichia coli is inactivated in a biphasic reaction by 6-(4-bromo-2,3-dioxobutyl)thioadenosine 5'-monophosphate (6-BDB-TAMP) at pH 7.0 and 25 degrees C. The initial fast-phase inactivation is not affected by the presence of active-site ligands and can be completely eliminated by blocking Cys291 of the enzyme with N-ethylmaleimide (NEM). Reaction of the NEM-treated enzyme with 6-BDB-[32P]TAMP results in 2 mol of reagent incorporated/mol of enzyme subunit. The inactivation kinetics of the slow-phase exhibit an apparent KI of 40.6 microM and kmax of 0.0228 min-1. Active-site ligands, either adenylosuccinate or IMP and GTP, completely prevent inactivation of the enzyme by 6-BDB-TAMP, whereas IMP or IMP and aspartate is much less effective in protection. 6-BDB-TAMP-inactivated enzyme has a 3-fold increase in Km for aspartate with no change in Km for IMP or GTP. Protease digestion of 6-BDB-[32P]TAMP inactivated enzyme reveals that both Arg131 and Arg303 are modified by the affinity-labeling reagent. The crystal structure [Poland, B. W., Fromm, H. J., and Honzatko, R. B. (1996) J. Mol. Biol. 264, 1013-1027] and site-directed mutagenesis [Kang, C., Sun, N., Poland, B. W., Gorrell, A., and Fromm, H. J. (1997) J. Biol. Chem. 272, 11881-11885] of E. coli adenylosuccinate synthetase show that Arg303 interacts with the carboxyl group of aspartate and the 2'-OH of the ribose of IMP and Arg131 is involved in stabilizing aspartate in the active site of the enzyme. We conclude that 6-BDB-TAMP functions as a reactive adenylosuccinate analogue in modifying both Arg131 and Arg303 in the active site of adenylosuccinate synthetase.  相似文献   

6.
Chemical modification of Escherichia coli 5-enolpyruvylshikimate-3-phosphate synthase, a target for the nonselective herbicide glyphosate (N-phosphonomethylglycine), with pyridoxal 5'-phosphate suggested that Lys-22 (equivalent to Lys-23 of the Petunia hybrida enzyme) is a potential active site residue (Huynh, Q. K., Kishore, G. M., and Bild, G. S. (1988) J. Biol. Chem. 263, 735-739). To investigate the possible role of this residue in the reaction mechanism, we have used site-directed mutagenesis to replace Lys-23 of the P. hybrida enzyme with 3 other amino acid residues: Ala, Glu, and Arg. Analysis of these mutant enzymes indicates that of these only the Lys-23 to Arg mutant enzyme is active; the other two replacements (Ala and Glu) result in inactivation of the enzyme. Two of the mutant enzymes (Lys-23 to Arg and Ala) were purified to homogeneity and characterized. The purified Lys-23 to Arg mutant enzyme is less sensitive than the wild type enzyme to pyridoxal 5'-phosphate. It showed identical Km values for substrates and a 5-fold higher I50 value for glyphosate in comparison with those from the wild type enzyme. Binding studies using fluorescence measurements revealed that the substrate shikimate 3-phosphate and glyphosate were able to bind the purified Lys-23 to Arg mutant enzyme but not to the purified catalytically inactive Lys-23 to Ala mutant enzyme. The above results suggest that the cationic group at position 23 of the enzyme may play an important role in substrate binding.  相似文献   

7.
Adenosine diphosphopyridoxal, the affinity labeling reagent specific for a lysyl residue in the nucleotide-binding site of several enzymes (Tagaya, M., and Fukui, T. (1986) Biochemistry 25, 2958-2964; Tamura, J. K., Rakov, R. D., and Cross R. L. (1986) J. Biol. Chem. 261, 4126-4133) was applied to adenylate kinase from rabbit muscle. Incubation of the enzyme with a low concentration of the reagent at 25 degrees C for 20 min followed by reduction by sodium borohydride resulted in rapid inactivation of the enzyme. Extrapolation to 100% loss of enzyme activity gave a value of 1.0 mol of the reagent per mol of enzyme. ADP, ATP, and MgATP almost completely protected the enzyme from inactivation, whereas AMP offered little retardation of the inactivation. Dilution of the inactivated enzyme which had not been treated with the reducing reagent led to restoration of enzyme activity. This reactivation was accelerated by ATP but not by AMP. Structural study of the labeled peptide showed that Lys21 is exclusively labeled by adenosine diphosphopyridoxal. These results suggest that the epsilon-amino group of Lys21 is located in the ATP-binding site of the enzyme, more specifically at or close to the subsite for the gamma-phosphate of the nucleotide.  相似文献   

8.
Pyridoxal 5'-diphospho-5'-adenosine (PLP-AMP), an adenine nucleotide affinity analog, was found to bind in a saturable fashion to isolated alpha-subunit from Escherichia coli F1-ATPase with a stoichiometry of one mol/mol and a Kd approximately 150 microM. The binding was shown to be specific by the following criteria: 1) ATP reduced the binding of PLP-AMP by 80%, and 2) PLP-AMP, like ATP, induced a conformational change which increased the mobility of alpha-subunit in nondenaturing polyacrylamide gel electrophoresis and rendered alpha-subunit resistant to mild trypsin proteolysis. A stable adduct was formed between isolated alpha-subunit and [3H] PLP-AMP after reduction with NaBH4. alpha-Subunit labeled to the extent of 0.4-0.7 mol/mol was digested with trypsin and subjected to high pressure liquid chromatography purification, yielding a single labeled peptide. Automated amino acid sequencing showed that residue alpha-Lys-201 was specifically labeled. The results suggest that Lys-201 occupies a position proximate to the phosphate groups of bound ATP in the alpha.ATP complex. PLP-AMP did not support repolymerization of isolated alpha-, beta-, and gamma-subunits, consistent with previous reports that subunit repolymerization in vitro is dependent upon the presence of nucleoside triphosphate. Further, PLP-AMP-labeled alpha-subunit could not be reconstituted with isolated beta- and gamma-subunits in the presence of ATP, showing that occupation of the alpha-subunit nucleotide site by PLP-AMP impairs normal subunit-subunit interaction.  相似文献   

9.
Site-directed mutagenesis studies of bovine pancreatic phospholipase A2 (PLA2, overproduced in Escherichia coli) showed that replacement of surface residue Lys-56 by a neutral or hydrophobic amino acid residue resulted in an unexpected and significant change in the function of the enzyme. The kcat for phosphatidylcholine micelles increases 3-4-fold for K56M, K56I, and K56F and ca. 2-fold for K56N and K56T but does not change for K56R. These results suggest that the side chain of residue 56 has significant influence on the activity of PLA2. In order to probe the structural basis for the enhanced activity, the crystal structures of wild-type and K56M PLA2 were determined by X-ray crystallography to a resolution of 1.8 A. The results suggest that the mutation has not only perturbed the conformation of the side chain of Met-56 locally but also caused conformational changes in the neighboring loop (residues 60-70), resulting in the formation of a hydrophobic pocket by residues Met-56, Tyr-52, and Tyr-69. Docking of a phosphatidylcholine inhibitor analogue into the active site of K56M, according to the structure of the complex of cobra venom PLA2-phosphatidylethanolamine inhibitor analogue [White, S.P., Scott, D. L., Otwinowski, Z., Gleb, M. H., & Sigler, P. (1990) Science 250, 1560-1563], showed that the choline moiety [N(CH3)3]+ is readily accommodated into the newly formed hydrophobic pocket with a high degree of surface complementarity. This suggests a possible interaction between residue 56 and the head group of the phospholipid, explaining the enhanced activities observed when the positively charged Lys-56 is substituted by apolar residues, viz., K56M, K56I, and K56F. Further support for this interpretation comes from the 5-fold enhancement in kcat for the mutant K56E with a negatively charged side chain, where there would be an attractive electrostatic interaction between the side chain of Glu-56 and the positively charged choline moiety. Our results also refute a recent report [Tomasselli, A. G., Hui, J., Fisher, J., Zürcher-Neely, H., Reardon, I.M., Oriaku, E., Kézdy, F.J., & Heinrikson, R.L. (1989) J. Biol. Chem. 264, 10041-10047] that substrate-level acylation of Lys-56 is an obligatory step in the catalysis by PLA2.  相似文献   

10.
Pyridoxal 5'-phosphate (pyridoxal-5'-P) has been found to act as a bifunctional reagent during the inactivation of porcine heart cytoplasmic malate dehydrogenase (L-malate: NAD+ oxidoreductase, EC 1.1.1.37). The biphasic kinetics and X-azolidine-like structure formed were similar to those observed for mitochondrial malate dehydrogenase (Wimmer, M.J., Mo, T., Sawyers, D.L., and Harrison, J.H. (1975) J. Biol. Chem. 250, 710-715). In the cytoplasmic enzyme, however, irreversible inactivation representing X-azolidine formation was found to be the dominant characteristic of the interaction with pyridoxal-5'-P. Spectral evidence indicated that at total inactivation 2 mol of pyridoxal-5'-P were incorporated per mol of enzyme or one pyridoxal-5'-P per enzymatic active site. The presence of NADH protected the enzyme from inactivation suggesting interaction of pyridoxal-5'-P at or near the enzymatic active centers of this enzyme. Fluorometric titrations indicated that pyridoxal-5'-P-inactivated enzyme failed to bind NADH or at least failed to bind NADH in the same fashion as native enzyme.  相似文献   

11.
The reaction of aldose reductase from human psoas muscle with either pyridoxal 5'-phosphate (PLP) or pyridoxal 5'-diphospho-5'-adenosine (PLP-AMP) results in a pseudo first-order 2-fold activation of the enzyme with the stoichiometric incorporation of 1 mol of either reagent per mol of enzyme. However, in addition to an increase in Vmax there was also an increase in Km for both substrate, DL-glyceraldehyde, and coenzyme, NADPH. This resulted in an overall decrease in catalytic efficiency (kcat/Km). Spectral analysis indicated that activation by both PLP and PLP-AMP was accompanied by Schiff's base formation and epsilon-pyridoxyllysine was identified in hydrolysates of the reduced enzyme PLP-complex. Digestion of either PLP-modified or PLP-AMP-modified aldose reductase with endoproteinase Lys-C followed by high performance liquid chromatography purification and amino acid sequencing of the pyridoxyllated peptide revealed that PLP and PLP-AMP had modified the same lysine residue. A 32-residue peptide containing the essential lysine was found to be highly homologous with a segment of the sequence of both human liver aldehyde reductase and rat lens aldose reductase. A tetrapeptide (Ile-Pro-Lys-Ser) containing the essential lysine was identical in all three enzymes. These results highlight the close structural similarity between members of the aldehyde reductase family.  相似文献   

12.
Ferry G  Giganti A  Cogé F  Bertaux F  Thiam K  Boutin JA 《FEBS letters》2007,581(18):3572-3578
Autotaxin is a member of the phosphodiesterase family of enzymes, (NPP2). It is an important secreted protein found in conditioned medium from adipocytes. It also has a putative role in the metastatic process. Based on these observation, further validation of this potential target was necessary, apart from the classical biochemical ones. The construction of a knock out mouse strain for ATX was started. In this paper, we report the generation of a mouse line displaying an inactivated ATX gene product. The KO line was designed in order to generate a functional inactivation of the protein. In this respect, the threonine residue T210 was replaced by an alanine (T210A) leading to a catalytically inactive enzyme. If the experimental work was straight forward, we disappointedly discovered at the final stage that the breeding of heterozygous animals, ATX -/+, led to the generation of a Mendelian repartition of wild-type and heterozygous, but no homozygous were found, strongly suggesting that the ATX deletion is lethal at an early stage of the development. This was confirmed by statistical analysis. Although other reported the same lethality for attempted ATX-/- mice generation [van Meeteren, L.A., Ruurs, P., Stortelers, C., Bouwman, P., van Rooijen, M.A., Pradère, J.P., Pettit, T.R., Wakelam, M.J.O., Saulnier-Blache, J.S., Mummery, C.L., Moolenar, W.H. and Jonkers, J. (2006) Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development, Mol. Cell. Biol. 26, 5015-5022; Tanaka, M., Okudaira, S., Kishi, Y., Ohkawa, R., Isei, S., Ota, M., Noji, S., Yatomi, Y., Aoki, J., and Arai, H. (2006) Autotaxin stabilizes blood vessels and is required for embryonic vasculature by producing lysophosphatidic acid, J. Biol. Chem. 281, 25822-25830], they used more drastic multiple exon deletions in the ATX gene, while we chose a single point mutation. To our knowledge, the present work is the first showing such a lethality in any gene after a point mutation in an enzyme catalytic site.  相似文献   

13.
Chemical, genetic, and structural studies have defined a critical role for Asp-49 in the calcium-mediated activation of extracellular phospholipases A2 (PLA2). In 1984, a new class of PLA2 was isolated in which this invariant aspartate was replaced with a lysine (Maragnore, J.M., Merutka, G., Cho, W., Welches, W., Kezdy, F.J., and Heinrikson, R.L. (1984) J. Biol. Chem. 259, 13839-13843; Maragnore, J.M., and Heinrikson, R.L. (1986) J. Biol. Chem. 261, 4797-4804). The enzymatic activity of Lys-49 PLA2s has been questioned based on biochemical, mutational, and structural studies (van den Bergh, C.J., Slotboom, A.J., Verheij, H.M., and de Haas, G.H. (1988) Eur. J. Biochem. 176, 353-357). In this paper, we describe the structures of two crystal forms of the Lys-49 PLA2 isolated from the venom of Agkistridon piscivorus piscivorus. The refined models, along with complementary biochemical analysis, clarify the structural basis for the enzymatic inactivity of Lys-49 proteins.  相似文献   

14.
The substrate analogue 3-bromo-2-ketoglutarate reacts with pig heart NADP+-dependent isocitrate dehydrogenase to yield partially inactive enzyme. Following 65% inactivation, no further inactivation was observed. Concomitant with this inactivation, incorporation of 1 mol of reagent/mol of enzyme dimer was measured. The dependence of the inactivation rate on bromoketoglutarate concentration is consistent with reversible binding of reagent (KI = 360 microM) prior to irreversible reaction. Manganous isocitrate reduces the rate of inactivation by 80% but does not provide complete protection even at saturating concentrations. Complete protection is obtained with NADP+ or the NADP+-alpha-ketoglutarate adduct. By modification with [14C]bromoketoglutarate or by NaB3H4 reduction of modified enzyme, a single major radiolabeled tryptic peptide was obtained by high performance liquid chromatography with the sequence: Asp-Leu-Ala-Gly-X-Ile-His-Gly-Leu-Ser-Asn-Val-Lys. Evidence in the following paper (Bailey, J.M., Colman, R.F. (1987) J. Biol. Chem. 262, 12620-12626) indicates that X is glutamic acid. Enzyme modified at the coenzyme site by 2-(bromo-2,3-dioxobutylthio)-1,N(6)-ethenoadenosine 2',5'-biphosphate in the presence of manganous isocitrate is not further inactivated by bromoketoglutarate. Bromoketoglutarate-modified enzyme exhibits a stoichiometry of binding isocitrate and NADPH equal to 1 mol/mol of enzyme dimer, half that of native enzyme. These results indicate that bromoketoglutarate modifies a residue in the nicotinamide region of the coenzyme site proximal to the substrate site and that reaction at one catalytic site of the enzyme dimer decreases the activity of the other site.  相似文献   

15.
The function of Lys-59, Arg-141, and Arg-277 in PAPS binding and catalysis of the flavonol 3-sulfotransferase was investigated. Affinity chromatography of conservative mutants with PAPS analogues allowed us to determine that Lys-59 interacts with the 5' portion of the nucleotide, while Arg-141 interacts with the 3' portion, confirming assignments deduced from the crystal structure of mouse estrogen sulfotransferase [Kakuta, Y., Pedersen, L. G., Carter, C. W. , Negishi, M., and Pedersen, L. C. (1997) Nat. Struct. Biol. 4, 904-908]. The affinity chromatography method could be used to characterize site-directed mutants for other types of enzymes that bind nucleoside 3',5'- or 2',5'-diphosphates. 31P NMR spectra of enzyme-PAP complexes were recorded for the wild-type enzyme and K59R and K59A mutants. The results of these experiments suggest that Lys-59 is involved in the determination of the proper orientation of the phosphosulfate group for catalysis.  相似文献   

16.
Lysine acetylation is a major post-translational modification of proteins and regulates many physiological processes such as metabolism, cell migration, aging, and inflammation. Proteomic studies have identified numerous lysine-acetylated proteins in human and mouse models (Kim, S. C., Sprung, R., Chen, Y., Xu, Y., Ball, H., Pei, J., Cheng, T., Kho, Y., Xiao, H., Xiao, L., Grishin, N. V., White, M., Yang, X. J., and Zhao, Y. (2006) Mol. Cell 23, 607-618). One family of proteins identified in this study was the murine glycine N-acyltransferase (GLYAT) enzymes, which are acetylated on lysine 19. Lysine 19 is a conserved residue in human glycine N-acyltransferase-like 2 (hGLYATL2) and in several other species, showing that this residue may be important for enzyme function. Mutation of lysine 19 in recombinant hGLYATL2 to glutamine (K19Q) and arginine (K19R) resulted in a 50-80% lower production of N-oleoyl glycine and N-arachidonoylglycine, indicating that lysine 19 is important for enzyme function. LC/MS/MS confirmed that Lys-19 is not acetylated in wild-type hGLYATL2, indicating that Lys-19 requires to be deacetylated for full activity. The hGLYATL2 enzyme conjugates medium- and long-chain saturated and unsaturated acyl-CoA esters to glycine, resulting in the production of N-oleoyl glycine and also N-arachidonoyl glycine. N-Oleoyl glycine and N-arachidonoyl glycine are structurally and functionally related to endocannabinoids and have been identified as signaling molecules that regulate functions like the perception of pain and body temperature and also have anti-inflammatory properties. In conclusion, acetylation of lysine(s) in hGLYATL2 regulates the enzyme activity, thus linking post-translational modification of proteins with the production of biological signaling molecules, the N-acyl glycines.  相似文献   

17.
Pig heart NADP-dependent isocitrate dehydrogenase is 65% inactivated by 3-bromo-2-ketoglutarate (Ehrlich, R.S., and Colman, R.F., 1987, J. Biol. Chem. 262, 12,614-12,619) and 90% inactivated by 2-(4-bromo-2,3-dioxobutylthio)-1,N6- ethenoadenosine 2',5'-bisphosphate (2-BDB-T epsilon A-2',5'-DP) (Bailey, J.M., and Colman, R.F., 1987, J. Biol. Chem. 262, 12,620-12,626). Both inactivation reactions result in enzyme with an incorporation of 1.0 mol reagent/mol enzyme dimer and both modified enzymes bind only 1.0 mol manganous isocitrate or NADPH/mol enzyme dimer as compared to 2.0 mol manganous isocitrate or NADPH/mol enzyme dimer for unmodified enzyme. The inactivation reactions, which occur at or near the nucleotide binding site, are mutually exclusive. Reaction with either affinity reagent led to the isolation of the same modified triskaidekapeptide, DLAGXIHGLSNVK. We have isolated from isocitrate dehydrogenase a peptide, DLAGCIHGLSNVK, that had been modified by N-ethylmaleimide (NEM) with no loss of enzymatic activity. We now show that enzyme modified by NEM in the presence of isocitrate plus Mn2+ retains full catalytic activity but is not inactivated by either of the affinity reagents; thus, all three reagents appear to react at the same site. The analysis of HPLC tryptic maps of isocitrate dehydrogenase treated under denaturing conditions with iodo[3H]acetic acid or [3H]NEM demonstrates that both bromoketoglutarate and 2-BDB-T epsilon A-2',5'-DP react with the cysteine residue of DLAGCIHGLSNVK. We conclude that the cysteine of this triskaidekapeptide is close to the coenzyme binding site but is not essential for catalytic function.  相似文献   

18.
The conformational stability and reversibility of unfolding of the human dimeric enzyme Cu Zn superoxide dismutase (HSOD) and the three mutant enzymes constructed by replacement of Cys6 by Ala and Cys111 by Ser, singly and in combination, were determined by differential scanning calorimetry. The differential scanning calorimetry profile of wild-type HSOD consists of two components, which probably represent the unfolding of the oxidized and reduced forms of the enzyme, with denaturation temperatures (Tm) of 74.9 and 83.6 degrees C, approximately 7 degrees lower than those for bovine superoxide dismutase (BSOD). The conformational stabilities of the two components of the mutant HSOD's differ only slightly from those of the wild type (delta delta Gs of -0.2 to +0.8 kcal/mol of dimer), while replacement of the BSOD Cys6 by Ala is somewhat destabilizing (delta delta G of -0.7 to -1.3 kcal/mol of dimer). These small alterations in conformational stability do not correlate with the large increases in resistance to thermal inactivation following substitution of free Cys in both HSOD and BSOD (McRee, D.E., Redford, S.M., Getzoff, E.D., Lepock, J.R., Hallewell, R.A., and Tainer, J.A. (1990) J. Biol. Chem. 265, 14234-14241 and Hallewell, R.A., Imlay, K.C., Laria, I., Gallegos, C., Fong, N., Irvine, B., Getzoff, E.D., Tainer, J.A., Cubelli, D.E., Bielski, B.H.J., Olson, P., Mallenbach, G.T., and Cousens, L.S. (1991) Proteins Struct. Funct. Genet., submitted for publication). The reversibility of unfolding was determined by scanning part way through the profile, cooling, rescanning, and calculating the amount of protein irreversibly unfolded by the first scan. The order of reversibility at a constant level of unfolding is the same as the order of resistance to inactivation for both the HSOD and BSOD wild-type and mutant enzymes. Thus, the greater resistance to thermal inactivation of the superoxide dismutase enzymes with free Cys replaced by Ala or Ser is dominated by a greater resistance to irreversible unfolding and relatively unaffected by changes in conformational stability.  相似文献   

19.
Previous chemical and structural studies have proposed a major role for Asp-49 in the calcium-mediated activation of phospholipases A2. Recently, a new class of phospholipases A2 has been characterized with a lysine in the place of aspartate at position 49 (Maraganore, J. M., Merutka, G., Cho, W., Welches, W., Kézdy, F. J., and Heinrikson, R. L. (1984) J. Biol. Chem. 259, 13839-13843; Maraganore, J. M., and Heinrikson, R. L. (1986) J. Biol. Chem. 261, 4797-4804). Although both the Lys-49 and Asp-49 phospholipases require calcium for enzymatic activity, the Lys-49 enzymes appear to be unique in their ability to bind phospholipids prior to undergoing calcium-mediated activation. We have successfully crystallized the Lys-49 phospholipase A2 from the venom of the American cottonmouth water moccasin (Agkistrodon piscivorus piscivorus). The crystals are tetragonal, the space group being P4(1)2(1)2 or P4(3)2(1)2 with unit cell dimensions of a = b = 71.05 A, and c = 57.76 A. There is only one molecule in the asymmetric unit and the crystals provide good quality diffraction data to 2.2 A.  相似文献   

20.
Pig gastric (H+ + K+)-ATPase can be covalently modified with pyridoxal 5'-phosphate (PLP) (about 1 mol/mol enzyme), and this modification is not observed in the presence of ATP, suggesting that PLP binds to a specific Lys residue in the ATP binding site or the region in its vicinity (Maeda, M., Tagaya, M., and Futai, M. (1988) J. Biol. Chem. 263, 3652-3656). The peptides labeled with radioactive PLP could be released from the gastric membrane vesicles quantitatively by chymotrypsin treatment, and two peptides were purified by high performance liquid chromatographies. These peptides were not obtained from vesicles incubated with PLP in the presence of ATP. The sequences of the two peptides were NH2-Asn-Ser-Thr-Asn-Lys-Phe-COOH and NH2-Ser-Thr-Asn-Lys-Phe-COOH, exactly corresponding to residues 493-498 and 494-498, respectively, of pig gastric (H+ + K+)-ATPase sequenced recently (Maeda, M., Ishizaki, J., and Futai, M. (1988) Biochem. Biophys. Res. Commun. 157, 203-209). Lys-497 was concluded to be the binding site of PLP, as pyridoxyl-Lys was identified at the corresponding position. This Lys residue is conserved in (Na+ + K+)- and Ca2+-ATPases. The possible amino acid residues in the catalytic site of gastric (H+ + K+)-ATPase are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号