首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enzymes and inhibitors in leu-enkephalin in metabolism in human plasma   总被引:1,自引:0,他引:1  
The enzymes degrading leucine enkephalin in human plasma and the inhibitors active on these enzymes were studied by kinetic and chromatographic techniques. Data obtained evidence the existence of complex kinetics of leu-enkephalin hydrolysis and of formation of its hydrolysis byproducts. These appear to originate from the combined effect of further hydrolysis of the enkephalin's fragments after their release and of competition between the different enzymes present in plasma. Chromatographic separation of plasma proteolysis inhibitors indicates the existence of several pools of substances acting on all three enzyme groups that degrade leu-enkephalin. The partial specificity of these substances induces competition effects: consequently, the actual protection over leu-enkephalin is considerably lower that the total inhibitory activity. That notwithstanding, plasma inhibitors control enkephalin hydrolysis to a relevant extent, while they modify only slightly the ratio of hydrolysis between the different enzymes. This latter parameter—and specifically the large prevalence of aminopeptidases over dipeptidylaminopeptidases and dipeptidylcarboxypeptidases—appears controlled mainly by kinetic factors.  相似文献   

2.
The present work describes the kinetics of enkephalin hydrolysis by plasma enzymes and the fragmentation pattern of both the parent peptide and of the first hydrolysis by-products. The degradation kinetics were followed by positive identification of the hydrolysis fragments by chromatographic methods, by amino acid analysis and by scintillation counting of tritium-labeled enkephalin. In addition, the results presented confirm the role of the low molecular weight plasma components in the control of the hydrolysis of the peripherally-released enkephalins.  相似文献   

3.
The possibility that dehydroepiandrosterone (DHEA) is metabolized in human plasma was studied by column and thin-layer chromatography. The results obtained indicate that a time-dependent disappearance of DHEA is matched by the appearance of newly-formed species that may represent DHEA conversion by-products. Neither disappearance of DHEA, nor formation of the alleged conversion by-products was observed when reactions were performed under conditions in which plasma enzymes were removed or inactivated. These results suggest that, in plasma, DHEA is partially transformed into different substances, and that the conversion reactions are catalyzed by enzymes present in this tissue. The observed kinetics of appearance and partial disappearance of the radiolabeled species can be interpreted as indicating that some of the by-products formed are further converted into other substances. The data shown appear to indicate that plasma can be added to the list of the already known compartments that are involved in steroid metabolism.  相似文献   

4.
Cavazza A  Marini M  Spagnoli GC  Roda LG 《Peptides》2008,29(11):1974-1981
The capacity of pro-inflammatory cytokines to modulate proteolysis was analyzed by liquid chromatography using human fibroblasts as cell model and enzyme source, and the immunodominant epitope gp100(280-288) (YLEPGPVTA) as substrate. The measurements made after fibroblast pre-incubation with either IL-1, TNF, or IL-6 plus its soluble receptors have been compared with those made with un-stimulated fibroblasts. The results obtained suggest an uneven association of cytokine treatment with substrate degradation, and with a prevailingly positive - but also negative - association with release of smaller peptides and free amino acids. Data obtained by separately measuring these two groups of by-products indicate that, after IL-1 cell pre-treatment, the velocity of formation of both groups of by-products increased, resulting in a net increase of substrate degradation. After TNF and IL-6 pre-treatment, the increase of one group was compensated by a decrease of the other group; specifically, the compensation was only partial for TNF, and overall substrate hydrolysis increased. In the case of IL-6, the increase of free amino acids was almost exactly compensated by a reduction of peptidic by-products, resulting in a negligible increase of substrate hydrolysis. In addition, the existence of reaction time-related modifications in the apparent velocity of substrate degradation and formation of by-products, allows hypothesizing different effects of cytokines on the enzymes degrading the substrate with different time constants. Taken together, these data can be interpreted as indicating different, positive and negative, effects of the three cytokines on the individual enzymes expressed by fibroblasts and capable of degrading peptidic substrates.  相似文献   

5.
Leu-enkephalin hydrolysis kinetics were measured in the presence of soluble supernatants obtained from cultures of the K562(S) leukaemic cell line. Under these conditions, the substrate is degraded with formation of two distinct patterns of the hydrolysis by-products: in one pattern, similar amounts of Tyr and Tyr-Gly are formed; in the other, only Tyr-Gly can be measured. Kinetic data suggest that soluble proteolyses are released by these cells, and that either dipeptidylaminopeptidases alone, or both aminopeptidases and dipeptidylaminopeptidases are involved in substrate hydrolysis. This alternation of hydrolysis patterns appears consistent with existing data on the heterogeneity of K562 cells. In contrast with these results, chromatographic separation of the soluble enzymes indicates the release of all three classes of proteolyses known to hydrolyze enkephalins: aminopeptidases, dipeptidylaminopeptidases and dipeptidylcarboxypeptidases. In cells induced to differentiate by treatment with butyric acid, substrate hydrolysis is increased, and the pattern of the enzymes released is modified. In these cells, variations in both total proteolytic activity, and ratio between the three enzyme classes mentioned above are only minor, while the ratio between the different enzyme species within each class is greatly modified. Data obtained suggest that the expression of soluble enzymes is modified by differentiation. These data may also be interpreted as stressing the role of competition in controlling substrate hydrolysis by the multiple enzymes co-released by K562(S) cells.  相似文献   

6.
1. The dipeptidylcarboxypeptidases that degrade leucine enkephalin in human and guinea pig plasma were studied by kinetic and Chromatographic techniques.2. The extremely rapid degradation of enkephalins in Cavia plasma seems to be caused by both increased activity of enzymes and reduced role of inhibitors.3. The increased role of dipeptidylcarboxypeptidases in Cavia as compared to Homo appears prevalently caused by the presence in the former species of a considerable number of very active enzymes.4. The sum of these data indicates the existence of noticeable intraspecific differences either in peptide-degrading enzymes present in plasma, or in plasma peptides, or in both.  相似文献   

7.
During catalysis, all Rubisco (D-ribulose-1,5-bisphosphate carboxylase/oxygenase) enzymes produce traces of several by-products. Some of these by-products are released slowly from the active site of Rubisco from higher plants, thus progressively inhibiting turnover. Prompted by observations that Form I Rubisco enzymes from cyanobacteria and red algae, and the Form II Rubisco enzyme from bacteria, do not show inhibition over time, the production and binding of catalytic by-products was measured to ascertain the underlying differences. In the present study we show that the Form IB Rubisco from the cyanobacterium Synechococcus PCC6301, the Form ID enzyme from the red alga Galdieria sulfuraria and the low-specificity Form II type from the bacterium Rhodospirillum rubrum all catalyse formation of by-products to varying degrees; however, the by-products are not inhibitory under substrate-saturated conditions. Study of the binding and release of phosphorylated analogues of the substrate or reaction intermediates revealed diverse strategies for avoiding inhibition. Rubisco from Synechococcus and R. rubrum have an increased rate of inhibitor release. G. sulfuraria Rubisco releases inhibitors very slowly, but has an increased binding constant and maintains the enzyme in an activated state. These strategies may provide information about enzyme dynamics, and the degree of enzyme flexibility. Our observations also illustrate the phylogenetic diversity of mechanisms for regulating Rubisco and raise questions about whether an activase-like mechanism should be expected outside the green-algal/higher-plant lineage.  相似文献   

8.
Alkaline phosphatases (ALP, EC 3.1.3.1) are ubiquitous enzymes found in most species. ALP from a pearl oyster, Pinctada fucata (PALP), is presumably involved in nacreous biomineralization processes. Here, chemical modification was used to investigate the involvement of basic residues in the catalytic activity of PALP. The Tsou's plot analysis indicated that the inactivation of PALP by 2,4,6-trinitrobenzenesulfonic acid (TNBS) and phenylglyoxal (PG) is dependent upon modification of one essential lysine and one essential arginine residue, respectively. Substrate reaction course analysis showed that the TNBS and PG inactivation of PALP followed pseudo-first-order kinetics and the second-order inactivation constants for the enzyme with or without substrate binding were determined. It was found that binding substrate slowed the PG inactivation whereas had little effect on TNBS inactivation. Protection experiments showed that substrates and competitive inhibitors provided significant protection against PG inactivation, and the modified enzyme lost its ability to bind the specific affinity column. However, the TNBS-induced inactivation could not be prevented in presence of substrates or competitive inhibitors, and the modified enzyme retained the ability to bind the affinity column. In a conclusion, an arginine residue involved in substrate binding and a lysine residue involved in catalysis were present at the active site of PALP. This study will facilitate to illustrate the role ALP plays in pearl formation and the mechanism involved.  相似文献   

9.
The kinetics and mechanism of the citrate synthase from a moderate thermophile, Thermoplasma acidophilum (TpCS), are compared with those of the citrate synthase from a mesophile, pig heart (PCS). All discrete steps in the mechanistic sequence of PCS can be identified in TpCS. The catalytic strategies identified in PCS, destabilization of the oxaloacetate substrate carbonyl and stabilization of the reactive species, acetyl-CoA enolate, are present in TpCS. Conformational changes, which allow the enzyme to efficiently catalyze both condensation of acetyl-CoA thioester and subsequently hydrolysis of citryl-CoA thioester within the same active site, occur in both enzymes. However, significant differences exist between the two enzymes. PCS is a characteristically efficient enzyme: no internal step is clearly rate-limiting and the condensation step is readily reversible. TpCS is a less efficient catalyst. Over a broad temperature range, inadequate stabilization of the transition state for citryl-CoA hydrolysis renders this step nearly rate-limiting for the forward reaction of TpCS. Further, excessive stabilization of the citryl-CoA intermediate renders the condensation step nearly irreversible. Values of substrate and solvent deuterium isotope effects are consistent with the kinetic model. Near its temperature optimum (70 degrees C), there is a modest increase in the reversibility of the condensation step for TpCS, but reversibility still falls short of that shown by PCS at 37 degrees C. The root cause of the catalytic inefficiency of TpCS may lie in the lack of protein flexibility imposed by the requirement for thermal stability of the protein itself or its temperature-labile substrate, oxaloacetate.  相似文献   

10.
The inhibition of lysolecithin:lysolecithin acyltransferase by several specific reagents was studied. Diisopropyl fluorophosphate (DFP) completely inhibited both activities at a concentration of 4 mM. Activity was not protected by substrate and the enzyme showed a change in circular dichroism spectrum upon treatment with inhibitor. Phenylmethanesulfonyl fluoride, another serine-specific reagent, did not inhibit either hydrolysis or transacylation. Therefore, we suggest that DFP does not modify an active serine in the catalytic site. p-Hydroxymercury benzoate and N-ethylmaleimide (NEM) abolished both activities of the enzyme. The presence of substrate partially protected against inactivation. Far-uv CD spectrum of NEM-modified enzyme revealed no changes in protein structure. The existence of two classes of essential cysteine residues was deduced from kinetics of NEM inactivation. Both classes differ in NEM reactivity and also in their participation in the catalytic mechanism. A tyrosine-specific reagent, tetranitromethane, also inhibited hydrolysis and transacylation, following first-order kinetics. The partial protection by substrate suggested the possible existence of essential tyrosines near the active site. At pH 5.0 N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline inactivated hydrolysis but not transacylation. However, both of them remained unchanged at pH 6.5. The substrate prevented the loss of hydrolytic ability. Therefore, a carboxyl residue participating just in the catalytic mechanism of hydrolysis is proposed.  相似文献   

11.
Investigation of the active center of rat pancreatic elastase   总被引:1,自引:0,他引:1  
We have isolated rat pancreatic elastase I (EC 3.4.21.36) using a fast two-step procedure and we have investigated its active center with p-nitroanilide substrates and trifluoroacetylated inhibitors. These ligands were also used to probe porcine pancreatic elastase I whose amino acid sequence is 84% homologous to rat pancreatic elastase I as reported by MacDonald, et al. (Biochemistry 21, (1982) 1453-1463). Both proteinases exhibited non-Michaelian kinetics for substrates composed of three or four residues: substrate inhibition was observed for most enzyme substrate pairs, but with Ala3-p-nitroanilide, rat elastase showed substrate inhibition, whereas porcine elastase exhibited substrate activation. With most of the longer substrates, Michaelian kinetics were observed. The kcat/Km ratio was used to compare the catalytic efficiency of the two elastases on the different substrates. For both elastases, occupancy of subsite S4 was a prerequisite for efficient catalysis, occupancy of subsite S5 further increased the catalytic efficiency, P2 proline favored catalysis and P1 valine had an unfavorable effect. Rat elastase has probably one more subsite (S6) than its porcine counterpart. The rate-limiting step for the hydrolysis of N-succinyl-Ala3-p-nitroanilide by rat elastase was essentially acylation, whereas both acylation and deacylation rate constants participated in the turnover of this substrate by porcine elastase. For both enzymes, trifluoroacetylated peptides were much better inhibitors than acetylated peptides and trifluoroacetyldipeptide anilides were more potent than trifluoroacetyltripeptide anilides. A number of quantitative differences were found, however, and with one exception, trifluoroacetylated inhibitors were less efficient with rat elastase than with the porcine enzyme.  相似文献   

12.
Two thermophilic extracellular proteases, designated Lmm-protease-Lh (29 kDa) and Hmm-protease-Lh (62 kDa), were purified from the Lactobacillus helveticus from kefir, and found active in media containing dithiothreitol; the activity of Lmm-protease-Lh was increased significantly in media containing also EDTAK2. Both novel proteases maintained full activity at 60 °C after 1-h incubation at 10 °C as well as at 80 °C, showing optimum kcat/Km values at pH 7.00 and 60 °C. Only irreversible inhibitors specific for cysteine proteinases strongly inhibited the activity of both novel enzymes, while they remained unaffected by irreversible inhibitors specific for serine proteinases. Both enzymes hydrolyzed the substrate Suc-FR-pNA via Michaelis–Menten kinetics; conversely, the substrate Cbz-FR-pNA was hydrolyzed by Lmm-protease-Lh via Michaelis–Menten kinetics and by Hmm-protease-Lh via substrate inhibition kinetics. Valuable rate constants and activation energies were estimated from the temperature-(kcat/Km) profiles of both enzymes, and useful results were obtained from the effect of different metallic ions on their Michaelis–Menten parameters.  相似文献   

13.
The kinetics of isolated rat liver and beef heart mitochondrial adenosine triphosphatase (ATPase) were studied by using the chromium ATP and ADP complexes as substrate analogs. It was found that both chromium ATP (CrATP) and chromium ADP (CrADP) are competitive inhibitors of ATP hydrolysis. The presence or absence of ATPase-activating anions, e.g., bisulfite, had little effect on the type or potency of the inhibition by these chromium complexes. Both CrADP and CrATP were noncompetitive inhibitors of the hydrolysis of ITP with both the heart and liver-derived enzymes. It was also found that CrADP was a consistently more effective inhibitor than the ATP complex with the beef heart enzyme. These results are consistent with the existence of two types of nucleotide binding sites on mitochondrial ATPases: One site is regulatory and is rather specific for adenosine polyphosphates, while the other site is relatively nonspecific and serves as the hydrolytic site.  相似文献   

14.
The hydrolysis of a model neuropeptide (leucine enkephalin) was studied in the presence of saliva obtained from normal and allergic male and female volunteers in the absence and in the presence of steroidal treatment. Possible variations in the formation of substrate hydrolysis by-products were studied in whole samples and after steric exclusion chromatography fractionation. The results obtained confirm already-described variations in substrate hydrolysis in allergic as compared to control saliva, as well as the effect of steroidal treatment on the activity of the substrate-active enzymes. In addition, whereas in male saliva, therapy was associated with a net decrease of substrate hydrolysis, in female saliva hydrolysis remained near the levels measured in the absence of treatment. Finally, therapy induced modifications of enzyme apparent molecular weight distribution that appear to be similar for all substrate-active enzyme classes, but different in male and female saliva. In male saliva, therapy decreased the activity of the enzymes eluted at high apparent molecular weight, while it increased the activity of the enzymes of low apparent molecular weight. Because the increase was considerably less than the decrease, the net effect was to decrease the activity of the substrate-active enzymes, nearly to the low levels measured in the controls. In female saliva the therapy-associated decrease in the activity of the enzymes eluted at high apparent molecular weight was offset by the increase in the activity of those eluted at low apparent molecular weight, consequently, substrate hydrolysis remained near the level measured in the absence of treatment, a level that was higher than that measured in the controls.  相似文献   

15.
Two enzymes displaying cyclic GMP-stimulated cyclic AMP phosphodiesterase activity were purified from rat liver to apparent homogeneity: a 'particulate enzyme' found as an integral membrane protein associated with the plasma membrane, and a 'soluble' enzyme found in the cytosol. The physical properties of these enzymes were very similar, being dimers of Mr 134,000, composed in each instance of two subunits of Mr = 66,000-67,000. Both enzymes showed similar kinetics for cyclic AMP hydrolysis. They are both high-affinity enzymes, with kinetic constants for the particulate enzyme of Km = 34 microM and Vmax. = 4.0 units/mg of protein and for the cytosolic enzyme Km = 40 microM and Vmax. = 4.8 units/mg of protein. In both instances hydrolysis of cyclic AMP appeared to show apparent positive co-operativity, with Hill coefficients (happ.) of 1.5 and 1.6 for the particulate and cytosolic enzymes respectively. However, in the presence of 2 microM-cyclic GMP, the hydrolysis of cyclic AMP obeyed Michaelis kinetics (happ. = 1) for both enzymes. The addition of micromolar concentrations of cyclic GMP had little effect on the Vmax. for cyclic AMP hydrolysis, but lowered the Km for cyclic AMP hydrolysis to around 20 microM in both cases. However, at low cyclic AMP substrate concentrations, cyclic GMP was a more potent activator of the particulate enzyme than was the soluble enzyme. The activity of these enzymes could be selectively inhibited by cis-16-palmitoleic acid and by arachidonic acid. In each instance, however, the hydrolysis of cyclic AMP became markedly more sensitive to such inhibition when low concentrations of cyclic GMP were present. Tryptic peptide maps of iodinated preparations of these two purified enzyme species showed that there was considerable homology between these two enzyme forms.  相似文献   

16.
Seven groups of enkephalin-degrading enzymes and three groups of inhibitors active on these enzymes were separated from human plasma. The activity of the enzymes in hydrolyzing enkephalins and of the inhibitors in protecting enkephalins from proteolysis was measured. Results obtained with the endogenous inhibitors were compared to those relative to synthetic inhibitors. Data obtained indicate that all enkephalin-degrading enzymes found in plasma are significantly inhibited by the endogenous substances present in this tissue. The inhibition of the different classes of plasma enzymes by two of the three groups of endogenous substances is quite uniform, while one group of inhibitors appears specific to dipeptidylpeptidases. Results obtained are discussed in terms of the functional role of the inhibitory substances and of the possible pharmacological implication of their presence in human plasma.  相似文献   

17.
The kinetics of enzymatic cellulose hydrolysis in a plug-flow column reactor catalysed by cellulases [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] from Trichoderma longibrachiatum adsorbed on cellulose surface have been studied. The maximum substrate conversion achieved was 90–94%. The possibility of enzyme recovery for a reactor of this type is discussed. A mathematical model for enzymatic cellulose hydrolysis in a plug-flow column reactor has been developed. The model allows for the component composition of the cellulase complex, adsorption of cellulases on the substrate surface, inhibition by reaction products, changes in cellulose reactivity and the inactivation of enzymes in the course of hydrolysis. The model affords a reliable prediction of the kinetics of d-glucose and cellobiose formation from cellulose in a column reactor as well as the degree of substrate conversion and reactor productivity with various amounts of adsorbed enzymes and at various flow rates.  相似文献   

18.
A mathematical model for enzymatic cellulose hydrolysis, based on experimental kinetics of the process catalysed by a cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] preparation from Trichoderma longibrachiatum has been developed. The model takes into account the composition of the cellulase complex, the structural complexity of cellulose, the inhibition by reaction products, the inactivation of enzymes in the course of the enzymatic hydrolysis and describes the kinetics of d-glucose and cellobiose formation from cellulose. The rate of d-glucose formation decelerated through the hydrolysis due to a change in cellulose reactivity and inhibition by the reaction product, d-glucose. The rate of cellobiose formation decelerated due to inhibition by the product, cellobiose, and inactivation of enzymes adsorbed on the cellulose surface. Inactivation of the cellobiose-producing enzymes as a result of their adsorption was found to be reversible. The model satisfactorily predicts the kinetics of d-glucose and cellobiose accumulation in a batch reactor up to 70–80% substrate conversion on changing substrate concentration from 5 to 100 g l?1and the concentration of the enzymic preparation from 5 to 60 g l?1.  相似文献   

19.
Marini M  Roda LG 《Peptides》2000,21(1):125-135
The possible presence of enzymes able to hydrolyze leucine enkephalin has been investigated in human saliva. The data obtained indicate that, in the presence of saliva, Leu-enkephalin is partially hydrolyzed. The disappearance of the substrate is paired with the formation of hydrolysis byproducts whose composition indicates the presence of all three classes of enzymes known to hydrolyze enkephalins: aminopeptidases, dipeptidylaminopeptidases, and dipeptidylcarboxypeptidases. The presence of low molecular weight substances with inhibitory activity on proteolytic enzymes has also been detected. These substances are active on all three classes of enkephalin-degrading enzymes, although the inhibition is more evident on dipeptidylpeptidases than on aminopeptidases. Substrate degradation was found to be higher in male than in female saliva: this seems to be caused by the activities both of enzymes and low molecular weight inhibitors that are different in the two sexes.  相似文献   

20.
The degradation of thymic humoral factor-gamma2 (THF-gamma2), an immunoregulatory octapeptide important for T-lymphocyte regulation, by enzymes present in human plasma, was investigated. THF-gamma2 was metabolized through two steps that involved the detaching of N-terminal amino acid leucine followed by hydrolysis of the Lys(6)-Phe(7) bond. The THF-gamma2 cleavages were sensitive to aminopeptidase and metalloproteinase inhibitors. The degradation was completely blocked by amastatin and specific inhibitors of angiotensin converting enzyme (ACE). The cleavages occurred independently, with two different kinetics, faster for the N-terminal hydrolysis than for that of the Lys(6)-Phe(7) bond. Purified human plasma ACE was used to characterize the hydrolysis of Lys(6)-Phe(7) bond. The K(m) and K(cat) values for THF-gamma2 hydrolysis were 0.273 mM and 107 s(-1), respectively. The optimum of chloride concentration was 300 mM, while that of pH was 7.6. The presence of ACE in circulating mononuclear cells raises the possibility that it may play a role in modulating the THF-gamma2 activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号