首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli cells harboring an altered Q beta RNA replicase which has amino acid substitutions of the glycine residue at position 357 in the conserved sequence Tyr356-Gly357-Asp358-Asp359 of the beta-subunit protein lost the replicase activity but interfered with proliferation of Q beta phage [Inokuchi and Hirashima (1987) J. Virol. 61, 3946-3949]. To examine the mechanism of the interference, we further analyzed various mutants lacking the carboxy-terminal region of the beta-subunit protein. The cells expressing the beta-subunit gene with up to 17% deletion from the carboxy-terminus of the protein prevented the proliferation of Q beta phage. However, in the case that the deletion extended beyond 25% from the carboxy-terminus, the cells showed no interference. In addition, when the interference took place, the phage coat protein synthesis was inhibited. These results indicate that the region between amino acids 440 and 487 of the beta-subunit protein is involved in the interference and suggest that the defective replicase inhibits the phage coat protein synthesis by competing with the ribosomes at the initiation site of the coat gene.  相似文献   

2.
We have localized a functional region of the RNA bacteriophage Q beta replicase following an extensive mutational analysis. Using the method of oligonucleotide linker-insertion mutagenesis, we specifically introduced mutations into a cloned DNA copy of the Q beta replicase gene so that the resulting replicase products would putatively contain small amino acid insertions. In a selective phenotypic assay, we screened mutant replicases for RNA-directed replication activity in vivo. Analysis of 37 different mutant clones indicated that Q beta replicase can accept amino acid substitutions and insertions at several sites at the amino and carboxy termini without abolishing functional activity in vivo or in vitro. However, disruption within the internal amino acid sequence resulted almost exclusively in nonfunctional enzyme. The results suggest that the central region of the replicase protein contains a rigid amino acid composition that is required for replicase function, whereas the amino and carboxy termini are much more receptive to small amino acid insertions and substitutions. These experiments should further enable us to analyze the coding function of the Q beta replicase gene independently of other phage RNA functions contained within this nucleotide region.  相似文献   

3.
The secondary structure of genomic RNA from the coliphage Q beta has been examined by electron microscopy in the presence of varying concentrations of spermidine using the Kleinschmidt spreading technique. The size and position of structural features that cover 70% of the viral genome have been mapped. The structural features that are visualized by electron microscopy in Q beta RNA are large. They range in size from 170 to 1600 nucleotides. A loop containing approximately 450 nucleotides is located at the 5' end of the RNA. It includes the initiation region for the viral maturation protein. A large hairpin containing approximately 1600 nucleotides is located in the center of the molecule. It is multibranched and includes most of the viral coat gene, the readthrough region of the A1 gene, and approximately one third of the viral replicase gene. Within the central hairpin, the initiation region for the viral replicase gene pairs with a region within the distal third of the viral coat gene. This structure may participate in the regulation of translational initiation of the viral replicase gene. Two structural variants of the central hairpin were observed. One of them brings the internal S and M viral replicase binding regions into juxtaposition. These observations suggest that the central hairpin may also participate in the regulation of translation of the viral coat gene. The secondary structures that are observed in Q beta RNA differ significantly from structures that we described previously in the genomic RNA of coliphage MS2 but are similar to structures we observed by electron microscopy in the related group B coliphage SP.  相似文献   

4.
The complete nucleotide sequence of the group II RNA coliphage GA   总被引:14,自引:0,他引:14  
The complete nucleotide sequence of the RNA coliphage GA, a group II phage, is presented. The entire genome comprises 3466 bases. Three large open reading frames were identified, which correspond to the maturation protein gene (390 amino acids), the coat protein gene (129 amino acids) and the replicase beta-subunit protein gene (531 amino acids). In addition, untranslated regions occur at the 5' (135 bases) and 3' (122 bases) ends of the molecule. Two intercistronic untranslated regions occur between the cistrons for the maturation and coat proteins, and between the coat and beta-subunit proteins. We have compared the nucleotide sequence of GA RNA with the published sequence of MS2 RNA, and show that they are related. The comparative structures of two important regulatory regions are presented; the coat protein binding site which is involved in translational repression of the replicase beta-subunit protein gene, and a hairpin in a region proximal to the lysis protein gene.  相似文献   

5.
The cDNA sequence coding for the coat protein of cucumber mosaic virus (Japanese Y strain) was cloned, and its nucleotide sequence was determined. The sequence contains an open reading frame that encodes the coat protein composed of 218 amino acids. The nucleotide and deduced amino acid sequences of the coat protein of this strain were compared with those of the Q strain; the homologies of the sequences were 78% and 81%, respectively. Further study of the sequences gave an insight into the genome organization and the molecular features of the coat protein. The coding region can be divided into three characteristic regions. The N-terminal region has conserved features in the positively charged structure, the hydropathy pattern and the predicted secondary structure, although the amino acid sequence is varied mainly due to frameshift mutations. It is noteworthy that the positions of arginine residues in this region are highly conserved. Both the nucleotide and amino acid sequences of the central region are well conserved. The amino acid sequence of the C-terminal region is not conserved, because of frameshift mutations, however, the total number of amino acids is conserved. The nucleotide sequence of the 3'-noncoding region is divergent, but it could form a tRNA-like structure similar to those reported for other viruses. Detailed investigation suggests that the Y and Q strains are evolutionarily distant.  相似文献   

6.
C K Biebricher  R Luce 《The EMBO journal》1992,11(13):5129-5135
SV-11 is a short-chain [115 nucleotides (nt)] RNA species that is replicated by Q beta replicase. It is reproducibly selected when MNV-11, another 87 nt RNA species, is extensively amplified by Q beta replicase at high ionic strength and long incubation times. Comparing the sequences of the two species reveals that SV-11 contains an inverse duplication of the high-melting domain of MNV-11. SV-11 is thus a recombinant between the plus and minus strands of MNV-11 resulting in a nearly palindromic sequence. During chain elongation in replication, the chain folds consecutively to a metastable secondary structure of the RNA, which can rearrange spontaneously to a more stable hairpin-form RNA. While the metastable form is an excellent template for Q beta replicase, the stable RNA is unable to serve as template. When initiation of a new chain is suppressed by replacing GTP in the replication mixture by ITP, Q beta replicase adds nucleotides to the 3' terminus of RNA. The replicase uses parts of the RNA sequence, preferentially the 3' terminal part for copying, thereby creating an interior duplication. This reaction is about five orders of magnitude slower than normal template-instructed synthesis. The reaction also adds nucleotides to the 3' terminus of some RNA molecules that are unable to serve as templates for Q beta replicase.  相似文献   

7.
Interference with viral infection by defective RNA replicase.   总被引:16,自引:6,他引:10  
RNA-dependent RNA and DNA polymerases have a conserved segment, Tyr-X-Asp-Asp (G. Karmer and P. Argos, Nucleic Acids Res. 12:7269-7282, 1984). To investigate the function of this segment, we changed the Gly residue at position 357 in the conserved sequence Tyr-356-Gly-357-Asp-358-Asp-359 of the replicase of RNA coliphage Q beta to Ala, Ser, Pro, Met, or Val and examined the replicase activity in vivo. Cells carrying the variant plasmids lost the replicase activity and severely inhibited the proliferation of phage Q beta (group III) and related phage SP (group IV) by suppressing phage RNA synthesis. In contrast, substitution of the Gly residue at 390 showed only a slight inhibitory effect, although replicase activity was also lost. These results suggest that the cells harboring an altered replicase at the conserved segment can interfere specifically with the wild-type phage and different but related phage infections.  相似文献   

8.
We have cloned a DNA complementary to the messenger RNA encoding the precursor of ornithine transcarbamylase from rat liver. This complementary DNA contains the entire protein coding region of 1062 nucleotides and 86 nucleotides of 5'- and 298 nucleotides of 3'-untranslated sequences. The predicted amino acid sequence has been confirmed by extensive protein sequence data. The mature rat enzyme contains the same number of amino acid residues (322) as the human enzyme and their amino acid sequences are 93% homologous. The rat and human amino-terminal leader sequences of 32 amino acids, on the other hand, are only 69% homologous. The rat leader contains no acidic and seven basic residues compared to four basic residues found in the human leader. There is complete sequence homology (residues 58-62) among the ornithine and aspartate transcarbamylases from E. coli and the rat and human ornithine transcarbamylases at the carbamyl phosphate binding site. Finally, a cysteine containing hexapeptide (residues 268-273), the putative ornithine binding site in Streptococcus faecalis, Streptococcus faecium, and bovine transcarbamylases, is completely conserved among the two E. coli and the two mammalian transcarbamylases.  相似文献   

9.
One of the two mechanisms that regulate expression of the replicase cistron in the single stranded RNA coliphages is translational coupling. This mechanism prevents ribosomes from binding at the start of the replicase cistron unless the upstream coat cistron is being translated. Genetic analysis had identified a maximal region of 132 nucleotides in the coat gene over which ribosomes should pass to activate the replicase start. Subsequent deletion studies in our laboratory had further narrowed down the regulatory region to 12 nucleotides. Here, we identify a long-distance RNA-RNA interaction of 6 base pairs as the basis of the translational polarity. The 3' side of the complementarity region is located in the coat-replicase intercistronic region, some 20 nucleotides before the start codon of the replicase. The 5' side encodes amino acids 31 and 32 of the coat protein. Mutations that disrupt the long-range interaction abolish the translational coupling. Repair of basepairing by second site base substitutions restores translational coupling.  相似文献   

10.
The complete amino acid sequence of the coat protein of RNA bacteriophage PRR1 is presented. After thermolysin digestion, 26 peptides were isolated, covering the complete coat protein chain. Their alignment was established in part using automated Edman degradation on the intact protein, in part with overlapping peptides obtained by enzymic hydrolysis with trypsin, pepsin, subtilisin and Staphylococcus aureus protease, and by chemical cleavage with cyanogen bromide and N-bromosuccinimide. To obtain the final overlaps, a highly hydrophobic, insoluble tryptic peptide was sequenced for seven steps by the currently used manual dansyl-Edman degradation procedure, which was slightly modified for application on insoluble peptides. PRR1 coat protein contains 131 amino acids, corresponding to a molecular weight of 14534. It is highly hydrophobic, and the residues with ionizable side chains are distributed unevenly: acidic residues are absent in the middle third of the sequence, whereas a clustering of basic residues occurs between positions 44 and 62. PRR1 coat protein was compared with the coat proteins of RNA coliphages MS2 and Q beta, and the minimum mutation distance was calculated for both comparisons. It is highly probable that PRR1. Q beta and MS2 share a common ancestor. The basic region present in the three coat proteins is recognized as an essential structural feature of RNA phage coat proteins.  相似文献   

11.
Localization of the Q beta replicase recognition site in MDV-1 RNA   总被引:4,自引:0,他引:4  
Fragments of MDV-1 RNA (a small, naturally occurring template for Q beta replicase) that were missing nucleotides at either their 5' end or their 3' end were still able to form a complex with Q beta replicase. By assaying the binding ability of fragments of different length, it was established that the binding site for Q beta replicase is determined by nucleotide sequences that are located near the middle of MDV-1 RNA. Fragments missing nucleotides at their 5' end were able to serve as templates for the synthesis of complementary strands, but fragments missing nucleotides at their 3' end were inactive, indicating that the 3'-terminal region of the template is required for the initiation of RNA synthesis. The nucleotide sequences of both the 3' terminus and the central binding region of MDV-1 (+) RNA are almost identical to sequences at the 3' terminus and at an internal region of Q beta (-) RNA.  相似文献   

12.
THE single stranded RNA genome of bacteriophage Qβ has been variously estimated to consist of from 3,5001 to 4,5002 nucleotides. It contains three known cistrons3, which correspond to three of the four Qβ-specific proteins synthesized in vivo and in vitro4–6. These are: (1) the gene for the maturation or A protein (molecular weight 41,000 (refs. 4, 5)), (2) that for the major coat protein of the virus (molecular weight 14,000 (ref. 9)) and (3) the gene for the phage-specific subunit of the Qβ replicase (molecular weight 64,000 (ref. 10) or 69,000 (ref. 24)), listed in the probable order7,8 that they occur on the Qβ RNA. The fourth Qβ-specific protein, A1 or IIb (molecular weight 36,000 (refs. 4–6, 10)), has recently been shown by Weiner and Weber to have an N-terminal sequence which is identical (for eight amino-acids) to that of the coat protein7. Because increased amounts of A1 appear in virus particles grown in cells containing a UGA suppressor, Weiner and Weber postulate7 that this protein is the product of natural read-through at the UGA termination signal of the Qβ coat cistron. Such read-through (involving about 600 nucleotides) could occur entirely within a large “intercistronic” region between the coat and replicase genes, or could involve translation, either in or out of phase, of the replicase cistron. In hopes of distinguishing between these alternatives, I have isolated and examined the nucleotide sequence of the region surrounding the initiator codon of the Qβ replicase gene.  相似文献   

13.
Ribosomal protein S1 is known to play an important role in translational initiation, being directly involved in recognition and binding of mRNAs by 30S ribosomal particles. Using a specially developed procedure based on efficient crosslinking of S1 to mRNA induced by UV irradiation, we have identified S1 binding sites on several phage RNAs in preinitiation complexes. Targets for S1 on Q beta and fr RNAs are localized upstream from the coat protein gene and contain oligo(U)-sequences. In the case of Q beta RNA, this S1 binding site overlaps the S-site for Q beta replicase and the site for S1 binding within a binary complex. It is reasonable that similar U-rich sequences represent S1 binding sites on bacterial mRNAs. To test this idea we have used E. coli ssb mRNA prepared in vitro with the T7 promoter/RNA polymerase system. By the methods of toeprinting, enzymatic footprinting, and UV crosslinking we have shown that binding of the ssb mRNA to 30S ribosomes is S1-dependent. The oligo(U)-sequence preceding the SD domain was found to be the target for S1. We propose that S1 binding sites, represented by pyrimidine-rich sequences upstream from the SD region, serve as determinants involved in recognition of mRNA by the ribosome.  相似文献   

14.
15.
The RNA of the Escherichia coli RNA phages is highly structured with 75% of the nucleotides estimated to take part in base-pairing. We have used enzymatic and chemical sensitivity of nucleotides, phylogenetic sequence comparison and the phenotypes of constructed mutants to develop a secondary structure model for the central region (900 nucleotides) of the group I phage MS2. The RNA folds into a number of, mostly irregular, helices and is further condensed by several long-distance interactions. There is substantial conservation of helices between the related groups I and II, attesting to the relevance of discrete RNA folding. In general, the secondary structure is thought to be needed to prevent annealing of plus and minus strand and to confer protection against RNase. Superimposed, however, are features required to regulate translation and replication. The MS2 RNA section studied here contains three translational start sites, as well as the binding sites for the coat protein and the replicase enzyme. Considering the density of helices along the RNA, it is not unexpected to find that all these sites lie in helical regions. This fact, however, does not mean that these sites are recognized as secondary structure elements by their interaction partners. This holds true only for the coat protein binding site. The other four sites function in the unfolded state and the stability of the helix in which they are contained serves to negatively control their accessibility. Mutations that stabilize helices containing ribosomal binding sites reduce their efficiency and vice versa. Comparison of homologous helices in different phage RNAs indicates that base substitutions have occurred in such a way that the thermodynamic stability of the helix is maintained. The evolution of individual helices shows several distinct size-reduction patterns. We have observed codon deletions from loop areas and shortening of hairpins by base-pair deletions from either the bottom, the middle or the top of stem structures. Evidence for the coaxial stacking of some helical segments is discussed.  相似文献   

16.
Autocatalytic replication of a recombinant RNA   总被引:11,自引:0,他引:11  
We demonstrate that a heterologous RNA sequence can be copied in vitro by Q beta replicase when it is inserted into a naturally occurring Q beta replicase template. A recombinant RNA was constructed by inserting decaadenylic acid between nucleotides 63 and 64 of MDV-1 (+) RNA, using phage T4 RNA ligase. The insert was located away from regions of the template known to be required for the binding of the replicase and for the initiation of product strand synthesis. To minimize the disruption of template structure, we inserted the heterologous sequence into a hairpin loop on the exterior of the molecule. Q beta replicase copied this recombinant RNA in vitro, and the complementary product strands served as templates for the synthesis of additional copies of the original recombinant RNA. The reaction was therefore autocatalytic and the amount of recombinant RNA increased exponentially. A 300-fold amplification of the recombinant RNA occurred within nine minutes. Insertion of biologically significant RNAs into the MDV-1 RNA sequence should allow them to be replicated autocatalytically.  相似文献   

17.
The multigene family which codes for the mouse major urinary proteins (MUPs) consists of approximately 35 genes. Most of these are members of two different groups, Group 1 and Group 2, which can be distinguished by nucleic acid hybridisation. Here we describe the structure of a Group 1 gene and show that two size classes of MUP mRNA which are found in mouse liver result from different splicing events in the 3''-non-coding region and contain different polyadenylation sites. Short mRNA is approximately 750 nucleotides long, contains six exons, and is the main product of the Group 2 genes. Long mRNA is approximately 880 nucleotides long, contains seven exons and is the main product of the Group 1 genes. Five exons and part of the sixth are common to long and short mRNA and contain the coding region. This codes for an acidic protein of 180 amino acids containing an 18 residue signal peptide. A comparison of the mouse sequence with a homologous rat alpha 2u-globulin sequence shows that the rate of evolutionary divergence of the two proteins has been high. Silent sites have diverged four times more rapidly than replacement sites, showing that there has been selection against change in the protein sequence.  相似文献   

18.
The effect of polyamines on Q beta and MS2 phage RNA-directed synthesis of three kinds of protein in an Escherichia coli cell-free system has been studied. With both phage RNAs, the degree of stimulation of protein synthesis by spermidine was in the order RNA replicase greater than A protein, while the synthesis of coat protein was not stimulated significantly by spermidine. The synthesis of RNA replicase was stimulated by 1 mM spermidine approx. 8-fold. From the results of Q beta RNA direct alanyl-tRNA and seryl-tRNA binding to ribosomes and initiation dipeptide synthesis, it is suggested that the preferential stimulation of the synthesis of RNA replicase by spermidine is due at least partially to the stimulation of the initiation of RNA replicase synthesis.  相似文献   

19.
Nine mutants of bacteriophage Qβ were studied, each having an amber mutation in the coat protein gene. The N-terminal coat protein fragments synthesized in vitro by a non-suppressing Escherichia coli cell extract directed by the mutant RNA's were characterized by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, agarose column gel filtration, and their relative content of certain amino acids. These methods permitted the mutant codon in the coat protein gene to be identified unambiguously; in three cases the amber mutation was at position 17; in five cases, at position 37, and in one case at position 86.Phage-specific uracil incorporation and Qβ replicase activities were measured in infected, non-suppressing cells. Their amounts for each mutant were related to the position of the amber mutation, indicating that across the coat protein gene of Qβ there exists a gradient of polarity for the expression of the replicase gene.  相似文献   

20.
Interactions of Q beta replicase with Q beta RNA   总被引:15,自引:0,他引:15  
The interactions of Qβ replicase with Qβ RNA were investigated by treating replicase-Qβ RNA complexes under various conditions with ribonuclease T1, and by characterizing enzyme-bound RNA fragments recovered by a filter binding technique. Evidence for replicase binding at two internal regions of Qβ RNA was obtained. One region (at about 1250 to 1350 nucleotides from the 5′ end) overlaps with the initiation site for coat protein synthesis; this interaction is thought to be inessential for template activity but rather to be involved in the regulation of protein synthesis. Binding to this site (called the S-site) requires moderate concentrations of salt but no magnesium ions. The other region (at about 2550 to 2870 nucleotides from the 5′ end) is probably essential for template activity; binding to this site (called the M-site) is dependent on the presence of magnesium ions. The nucleotide sequences of the RNA fragments from the two sites were determined and found to have no common features. Under the conditions tested, replicase binding at the 3′ end of Qβ RNA could not be demonstrated, except when initiation of RNA synthesis was allowed to occur in the presence of GTP and host factor. If instead of intact Qβ RNA, a complete RNAase T1 digest of Qβ RNA was allowed to bind to replicase, oligonucleotides from the S-site and the M-site, and oligonucleotides from a region close to the 3′ end, were found to have the highest affinity to the enzyme.The RNA fragments recovered in highest yield, M-2 and S-3 from the M and S-site, respectively, were isolated on a preparative scale and their enzyme binding properties were studied. In competition assays with random RNA fragments of the same size, selective binding was observed both for the M and the S-site fragment. Partial competition for replicase binding was found if M-2 and S-3 were presented simultaneously to the enzyme. Either fragment, if preincubated with replicase, caused a specific inhibition of initiation of Qβ RNA-directed RNA synthesis, without inhibiting the poly(rC)-directed reaction.The results are discussed in terms of a model of replicase-Qβ RNA recognition. Template specificity is attributed to binding of internal RNA regions to replicase, resulting in a specific spatial orientation of the RNA by which the inherently weak, but essential, interaction at the 3′ end is allowed to occur and to lead to the initiation of RNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号