首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Smad5 is an intracellular transducer of TGF-β signals. Targeted disruption of murine Smad5 gene resulted in embryonic lethal. To study the function of Smad5 in organgenesis, we generated Smad5 double knockout ES cells by homologous recombination. We deleted the neo gene of the Smad5 targeted ES cells using Cre-LoxP system. Smad5 double knockout ES cells were obtained by transfecting the targeted ES cells using the same targeting construct. The results of chimeric study showed that Smad5 might play an important role during the development of heart and neural tube. Smad5 double knockout ES cells formed teratoma when injected subcutaneously into nude mice. They differentiated into several types of cells, including neural cells, muscle cells, chondrocytes, endothelial cells and glandaceous cells. Smad5 double knockout ES cells are useful for studying the function of Smad5 mediated TGF- β during the organgenesis and the in vitro differentiation of ES cells.  相似文献   

2.
Smads is a new gene family in transforming growth factor-β (TGF- β) signaling pathway. Smad2 mutated in multiple human tumors and may be a candidate tumor suppressor gene. Targeted disruption of murine Smad2 gene resulted in embryonic lethality at E6.5. To study the function of Smad2 in vertebrate organgenesis and tumorigenesis, we constructed the Smad2 conditional targeting vector in which two LoxP sequences were placed to flank the sequences encoding the C terminal functional domain of Smad2. The validity of the LoxP sites in the targeting construct was tested in E. coli that express the Cre recombinase constitutively. The vector was electroporated into ES cells and 3 targeted ES cell clones were obtained by Southern blot screening. Targeted ES cells were introduced into C57BL/6J blastocysts by microinjection to generate germ-line chimeras. Genotyping analysis showed that 2 progeny among these chimeras carried the Smad2 conditional targeted allele. The establishment of Smad2 conditional gene targeting mouse has laid a solid foundation for producing the tissue specific Smad2 gene knockout mice.  相似文献   

3.
Smads is a new gene family in transforming growth factor-β (TGF- β signaling pathway. Smad2 mutated in multiple human tumors and may be a candidate tumor suppressor gene. Targeted disruption of murine Smad2 gene resulted in embryonic lethality at E6.5. To study the function of Smad2 in vertebrate organgenesis and tumorigenesis, we constructed the Smad2 conditional targeting vector in which two LoxP sequences were placed to flank the sequences encoding the C terminal functional domain of Smad2. The validity of the LoxP sites in the targeting construct was tested in E. coli that express the Cre recombinase constitutively. The vector was electropo-rated into ES cells and 3 targeted ES cell clones were obtained by Southern blot screening. Targeted ES cells were introduced into C57BL/6J blastocysts by microinjection to generate germ-line chimeras. Genotyping analysis showed that 2 progeny among these chimeras carried the Smad2 conditional targeted allele. The establishment of Smad2 conditional gene targetin  相似文献   

4.
Transforming Growth Factor-β (TGF-β) plays an essential role in differentiation of dental pulp cells into odontoblasts during reparative dentine formation. However, the mechanism by which TGF-β stimulates dental repair remains rather obscure. Human dental pulp cells were used as an in vitro model in the present work. We showed that TGF-β signaled through mitogen-activated protein kinases (MAPKs), such as ERK1/2 and p38, along with Smad pathway. Distinct pathways exerted different time response. SB203580, a specific p38 MAPK inhibitor, reduced phosphorylation of Smad3, while it slightly enhanced phosphorylation of Smad2. Increased phosphorylation of ERK1/2 and p38 confirmed that SB203580 did not block activation of TGF-β receptors. In addition, the inhibition of ERK1/2 activity with MEK1/2 inhibitor U0126 increased TGF-β mediated phosphorylation of Smad3. Our results suggest that p38 affects the phosphorylation of Smad2 and Smad3 differentially during TGF-β signaling in human dental pulp cells and ERK1/2 might be involved in the process.  相似文献   

5.
The aim of this study was to investigate whether transforming growth factor-β1 (TGF-β1) could induce alveolar epithelial-mesenchymal transition (EMT) in vitro, and whether Smad7 gene transfer could block this transition. We also aimed to elucidate the possible mechanisms of these processes. The Smad7 gene was transfected to the rat type II alveolar epithelial cell line (RLE-6TN). Expression of the EMT-associated markers was assayed by Western Blot and Real-time PCR. Morphological alterations were examined via phase-contrast microscope and fluorescence microscope, while ultrastructural changes were examined via electron microscope. TGF-β1 treatment induced a fibrotic phenotype of RLE-6TN with increased expression of fibronectin (FN), α-smooth muscle actin (α-SMA) and vimentin, and decreased expression of E-cadherin (E-cad) and cytokeratin19 (CK19). After transfecting the RLE-6TN with the Smad7 gene, the expression of the mesenchymal markers was downregulated while that of the epithelial markers was upregulated. TGF-β1 treatment for 48 h resulted in the separation of RLE-6TN from one another and a change into elongated, myofibroblast-like cells. After the RLE-6TN had been transfected with the Smad7 gene, TGF-β1 treatment had no effect on the morphology of the RLE-6TN. TGF-β1 treatment for 48 h resulted in an abundant expression of α-SMA in the RLE-6TN. If the RLE-6TN were transfected with the Smad7 gene, TGF-β1 treatment for 48 h could only induce a low level of α-SMA expression. Furthermore, TGF-β1 treatment for 12 h resulted in the degeneration and swelling of the osmiophilic multilamellar bodies, which were the markers of type II alveolar epithelial cells. TGF-β1 can induce alveolar epithelialmesenchymal transition in vitro, which is dependent on the Smads signaling pathway to a certain extent. Overexpression of the Smad7 gene can partially block this process  相似文献   

6.
Liu XJ  Ruan CM  Gong XF  Li XZ  Wang HL  Wang MW  Yin JQ 《Biotechnology letters》2005,27(20):1609-1615
In the fibrotic process, the transforming growth factor-β1 (TGF-β1)/Smad3 (Sma- and Mad-related protein␣3) signaling plays a central role. To screen for antagonists of TGF-β1/Smad3 signaling and to investigate their effects on the genes related to fibrosis, we construct a molecular model with a luciferase reporter gene. Results showed that both SB-431542 [4-(5-benzo[1,3]dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)-benzamide] and small interference RNA (siRNA) against Smad3 could dose-dependently suppress the reporter gene. More importantly, they both significantly inhibited the expression of plasminogen activator inhibitor-type 1 (PAI-1) and type I collagenα1 (Col Iα1) genes in rat hepatic stellate cells. Thus, SB-431542 and Smad3/siRNA may be potential therapeutics for fibrosis.  相似文献   

7.
8.

Background  

In endothelial cells (EC), transforming growth factor-β (TGF-β) can bind to and transduce signals through ALK1 and ALK5. The TGF-β/ALK5 and TGF-β/ALK1 pathways have opposite effects on EC behaviour. Besides differential receptor binding, the duration of TGF-β signaling is an important specificity determinant for signaling responses. TGF-β/ALK1-induced Smad1/5 phosphorylation in ECs occurs transiently.  相似文献   

9.
CD8+ T cell function depends on a finely orchestrated balance of activation/suppression signals. While the stimulatory role of the CD8 co-receptor and pleiotropic capabilities of TGF-β have been studied individually, the influence of CD8 co-receptor on TGF-β function in CD8+ T cells is unknown. Here, we show that while CD8 enhances T cell activation, it also enhances susceptibility to TGF-β-mediated immune suppression. Using Jurkat cells expressing a full-length, truncated or no αβCD8 molecule, we demonstrate that cells expressing full-length αβCD8 were highly susceptible, αβCD8-truncated cells were partially susceptible, and CD8-deficient cells were completely resistant to suppression by TGF-β. Additionally, we determined that inhibition of Lck rendered mouse CD8+ T cells highly resistant to TGF-β suppression. Resistance was not associated with TGF-β receptor expression but did correlate with decreased Smad3 and increased Smad7 levels. These findings highlight a previously unrecognized third role for CD8 co-receptor which appears to prepare activated CD8+ T cells for response to TGF-β. Based on the important role which TGF-β-mediated suppression plays in tumor immunology, these findings unveil necessary considerations in formulation of CD8+ T cell-related cancer immunotherapy strategies.  相似文献   

10.
Transforming growth factor-β1 (TGF-β1) can activate mitogen-activated protein kinases (MAPKs) in many types of cells. The mechanism of this activation is not well elucidated. Here, we explore the role of TGF-β/Smads signaling compounds in TGF-β1-mediated activation of extracellular signal-regulated kinase (ERK) MAPK in human papillomavirus (HPV)-18 immortalized human bronchial epithelial cell line BEP2D and the role of TGF-β1-induced phosphorylation of ERK in proliferation and apoptosis of BEP2D. The cell models of siRNA-mediated silencing of TGF-β receptor type II (TβRII), Smad2, Smad3, Smad4, and Smad7 were employed in this study. Our results demonstrate that TGF-β1 activates ERK in a time-dependent manner with a maximum effect at 60 min; overexpression of Smad7 increased this TGF-β1-mediated phosphorylation of the ERK; and siRNA-mediated silencing of TβRII, Smad3, Smad4, and Smad7 abrogated this effect. Moreover, we observed that overexpression of Smad7 restored TGF-β1-mediated ERK phosphorylation in Smad4 knockdown cells but not in TβRII knockdown cells. In BEP2D cells, TGF-β1 treatment effectively inhibited cells’ proliferation and induced their apoptosis. Pretreatment with U0126, an inhibitor of ERK1/2, significantly enhanced the TGF-β1-mediated antiproliferative and apoptosis induction effects in BEP2D cells. These data revealed that TβRII and Smad7 play the critical roles in TGF-β1-mediated activation of ERK; Smad3 and Smad4 can play an indirect role through up-regulating Smad7 expression; and TGF-β1-induced phosphorylation of ERK may participate in BEP2D cell proliferation and apoptosis regulation.  相似文献   

11.
Wang X  Sun W  Bai J  Ma L  Yu Y  Geng J  Qi J  Shi Z  Fu S 《Molecular biology reports》2009,36(5):861-869
Oral squamous cell carcinoma (OSCC) is a world-wide health problem and its incidence accounts for 1.9–3.5% of all malignant tumors. Transforming growth factor beta/Smads (TGF-β/Smads) signaling pathway plays an important role in oncogenesis, but its function and molecular mechanisms in OSCC remain unclear. Expression of transforming growth factor-β receptor type II (TβRII) and Smad4 was studied by immunohistochemistry in 108 OSCC patients and 10 normal controls. Function and molecular mechanisms of TGF-β/Smads signaling pathway was then investigated in two human tongue squamous carcinoma cell lines with high and low metastasis (Tb and Tca8113) by RT-PCR, Western Blot, immunofluorescence, cell growth curve and flow cytometry (FCM), respectively. TβRII and Smad4 were significantly down-regulated in tumor tissues (with or without lymph node metastasis) compared to normal oral epithelium tissues (P < 0.05). TGF-β1 induced arrest of the cell cycle rather than cell death in Tca8113 and Tb cells, and this influence was mediated by the increasing the expression and changing the location of its downstream components of TGF-β1/Smads signaling pathway. TGF-β1 rapidly increased the expression of p15 and p21 in both Tca8113 and Tb cells. TGF-β1 did not increase p27 expression in Tca8113 cells, but p27 expression was increased in Tb cells. These indicated that TGF-β1 induced G1 arrest of cell cycle through a different regulating pathway in Tb cells compared with Tca8113 cells. Thus, we conclude that TGF-β/Smads signaling pathway play a important role on cell growth and metastasis potential in OSCC. Xiumei Wang, Wenjing Sun, and Jing Bai contributed equally to this paper.  相似文献   

12.
Liver fibrosis occurs in most types of chronic liver diseases and is characterized by excessive accumulation of extracellular matrix proteins, leading to disruption of tissue function and eventually organ failure. Transforming growth factor (TGF)-β represents an important pro-fibrogenic factor and aberrant TGF-β action has been implicated in many disease processes of the liver. Endoglin is a TGF-β co-receptor expressed mainly in endothelial cells that has been shown to differentially regulates TGF-β signal transduction by inhibiting ALK5-Smad2/3 signalling and augmenting ALK1-Smad1/5 signalling. Recent reports demonstrating upregulation of endoglin expression in pro-fibrogenic cell types such as scleroderma fibroblasts and hepatic stellate cells have led to studies exploring the potential involvement of this TGF-β co-receptor in organ fibrosis. A recent article by Meurer and colleagues now shows that endoglin expression is increased in transdifferentiating hepatic stellate cells in vitro and in two different models (carbon tetrachloride intoxication and bile duct ligation) of liver fibrosis in vivo. Moreover, they show that endoglin overexpression in hepatic stellate cells is associated with enhanced TGF-β-driven Smad1/5 phosphorylation and α-smooth muscle actin production without altering Smad2/3 signaling. These findings suggest that endoglin may play an important role in hepatic fibrosis by altering the balance of TGF-β signaling via the ALK1-Smad1/5 and ALK-Smad2/3 pathways and raise the possibility that targeting endoglin expression in transdifferentiating hepatic stellate cells may represent a novel therapeutic strategy for the treatment of liver fibrosis.  相似文献   

13.
The transforming growth factor (TGF)-β superfamily is a group of important growth factors involved in multiple processes such as differentiation, cell proliferation, apoptosis and cellular growth. In the Pacific oyster Crassostrea gigas, the oyster gonadal (og) TGF-β gene was recently characterized through genome-wide expression profiling of oyster lines selected to be resistant or susceptible to summer mortality. Og TGF-β appeared specifically expressed in the gonad to reach a maximum when gonads are fully mature, which singularly contrasts with the pleiotropic roles commonly ascribed to most TGF-β family members. The function of og TGF-β protein in oysters is unknown, and defining its role remains challenging. In this study, we develop a rapid bacterial production system to obtain recombinant og TGF-β protein, and we demonstrate that og TGF-β is processed by furin to a mature form of the protein. This mature form can be detected in vivo in the gonad. Functional inhibition of mature og TGF-β in the gonad was conducted by inactivation of the protein using injection of antibodies. We show that inhibition of og TGF-β function tends to reduce gonadic area. We conclude that mature og TGF-β probably functions as an activator of germ cells development in oyster.  相似文献   

14.
Summary Four insect cell lines were used to isolate two recombinant baculoviruses which had theβ-galactosidase (β-gal) gene for colorimetric assay purposes. Plaque assays were performed using twoTrichoplusia ni cell lines: BTI-TN-5B1-4 and TN-368, and twoSpodoptera frugiperda cell lines: IPLB-SF-21AE and SF9. The number of plaques (occlusion positive and blueβ-gal+ recombinants) formed in theTrichoplusia cells was higher than in theSpodoptera cells. The appearance ofAutographa californica NPV polyhedra was also faster in theT. ni cell lines. The effect of cell passage on the plaque formation proved to be critical when two different passages of the SF9 cells were tested. The higher passage produced a lower viral titration. The size and time of appearance of the plaques was also different.  相似文献   

15.
Summary Platelet-derived growth factor (PDGF) and transforming growth factor beta-1(TGF-β1) were tested separately or together for the ability to stimulate migration of human aortic vascular smooth muscle cells (VSMC). PDGF (10 ng/ml) stimulated migration of VSMC over a 48-h period. TGF-β1 (10 ng/ml) had no effect on migration during the same period. VSMC exposed simultaneously to both TGF-β1 and PDGF exhibited diminished migration (50%) when compared to cells treated only with PDGF. Cells that migrated in the presence of PDGF possessed short actin cables that extended from cellular processes at the leading edge of migrating cells; focal adhesions containing the αvβ35 integrins localized to the same region. Cells grown in the presence of TGF-β1 exhibited long, intensely stained actin filaments that spanned the entire length of the cell and were similar to untreated control VSMC. Focal adhesions containing αvβ35 distributed evenly on the basal surface in both TGF-β1-treated cells and control cultures. Cellular responses to PDGF were mitigated when TGF-β1 was present in the culture medium. VSMC grown in the presence of both PDGF and TGF-β1 exhibited elongated actin filaments that were similar to nonmotile TGF-β1-treated cultures. Concomitant exposure of VSMC to PDGF and TGF-β1 resulted in focal adhesions that distributed evenly on the lower cell surface. This study suggests that TGF-β1 can partially reverse the stimulatory effect of PDGF on VSMC migration in vitro by modifying the actin cytoskeleton and the distribution of the α vβ35 integrins.  相似文献   

16.
The genomic organization and chromosomal location of theβ-tubulin isogenes inLeishmania donovani promastigotes has been studied by nucleic acid hybridization techniques using a cloned β-tubulin gene. We have cloned aβ-tubulin gene fragment, 3.3 kbp long, from genomic DNA ofLeishmania donovani using a heterologousβ-tubulin DNA as probe. Restriction maps of this clone have been prepared. It has been estimated that there are approximately 11–15 copies of theβ-tubulin genes per haploid genome. The majority of these isogenes are arranged in a tandem repeat with a length of 3.5 kbp on a single chromosome. In addition a few dispersed gene copies at different chromosomal loci were detected by pulse field gradient gel electrophoresis. Part of the internal coding region of the gene has been sequenced to confirm the identity of theβ-tubulin clone and is found to be nearly identical to that ofLeishmania mexicana amazonensis.  相似文献   

17.
Summary Mutants in thespoT gene have been isolated as stringent second site revertants of therelC mutation. These show varying degrees of the characteristics associated with thespoT1 gene,viz relative amount and absolute levels of both pppGpp and ppGpp and the decay rate of the latter. The entry of3H-guanosine into GTP and ppGpp pools inspoT + andspoT1 cells either growing exponentially or during amino acid starvation was determined, and the rate of ppGpp synthesis and its decay constant calculated. During exponential growth the ppGpp pool is 2-fold higher, its decay constant 10-fold lower, and its synthesis rate 5-fold lower inspoT - than inspoT + cells; during amino acid starvation the ppGpp pool is 2-fold higher, its decay constant 20-fold lower, and its synthesis rate 10-fold lower inspoT than inspoT + cells. In one of the “intermediate”spoT mutants the rate of entry of3H-guanosine into GTP, ppGpp and pppGpp was measured during amino acid starvation. The data form the basis of a model for the interconversion of the guanosine nucleotides in which the flow is:GDP→GTP→pppGpp→ppGpp→Y. Calculations of the rates of synthesis and conversion of pppGpp and ppGpp under various conditions in variousspoT + andspoT - strains indicate that the ppGpp concentration indirectly controls the rate of pppGpp synthesis. ThespoT1 allele was introduced into various relaxed mutants. It was shown that many phenomena associated with the relaxed response ofrelC and “intermediate”relA mutants were phenotypically suppressed when thespoT1 allele was introduced into these mutants. These double mutants exhibit ppGpp accumulation, rate of RNA accumulation, rate of β-galactosidase synthesis, and heat lability of β-galactosidase synthesized during amino acid starvation similar to the stringent wild-type. It is concluded that the relaxed response is due directly to the lack of ppGpp and that the stringest response is due directly to ppGpp.  相似文献   

18.
19.
20.
Summary A hybrid cell line was constructed by fusion of mouse L-cells with an NIH3T3 cell line derivative containing a hybrid gene consisting of the mouse immunoglobulin kappa (IgK) variable gene promoter linked to theEscherichia coli gpt gene. Such hybrids grew to a much higher density compared to either of the parental cell lines. The utility of this cell line as a host to express foreign genes was tested by the expression of TGF-β cDNA using the cytomegalovirus promoter. The vector also contained the human dihydrofolate reductase (DHFR) gene driven by SV40 early promoter, to allow for the amplification of the transfected gene. Initial transformants, selected at 100 nM methotrexate (MTX), were subsequently selected for resistance to a higher concentration of MTX (2 μM). Such clones expressed an increased level of TGF-β when compared to the initial transformants. Both the initial transformants and the clones with the amplified DHFR gene produced TGF-β in an acid-activatable precursor form. This mouse hybrid host cell line also allowed the expression of foreign genes cloned in an eukaryotic expression vector with the mouse IgK variable region promoter and human growth hormone as the reporter gene, whereas such vectors did not function in CHO cells. The mouse hybrid cell line was also found to be capable of being used with a broad range of promoters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号