首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New organotin(IV) complexes of 5,7-ditertbutyl-1,2,4-triazolo[1,5-a]pyrimidine (dbtp) and 5,7-diphenyl-1,2,4-triazolo[1,5-a]pyrimidine (dptp) with 1:1 and/or 1:2 stoichiometry were synthesized and investigated by X-ray diffraction, FT-IR and 119Sn Mössbauer in the solid state and by 1H and 13C NMR spectroscopy, in solution. Moreover, the crystal and molecular structures of Et2SnCl2(dbtp)2 and Ph2SnCl2(EtOH)2(dptp)2 are reported. The complexes contain hexacoordinated tin atoms: in Et2SnCl2(dbtp)2 two 5,7-ditertbutyl-1,2,4-triazolo[1,5-a]pyrimidine molecules coordinate classically the tin atom through N(3) atom and the coordination around the tin atom shows a skew trapezoidal structure with axial ethyl groups. In Ph2SnCl2(EtOH)2(dptp)2 two ethanol molecules coordinate tin through the oxygen atom and the 5,7-diphenyl-1,2,4-triazolo[1,5-a]pyrimidine molecules are not directly bound to the metal center but strictly H-bonded, through N(3), to the OH group of the ethanol moieties; Ph2SnCl2(EtOH)2(dptp)2 has an all-trans structure and the C-Sn-C fragment is linear. On the basis of Mössbauer data, the 1:2 diorganotin(IV) complexes are advanced to have the same structure of Et2SnCl2(dbtp)2, while Me2SnCl2(dptp)2 to have a regular all-trans octahedral structure. A distorted cis-R2 trigonal bipyramidal structure is assigned to 1:1 diorganotin(IV) complexes. The in vitro antibacterial activities of the synthesized complexes have been tested against a group of reference pathogen micro-organisms and some of them resulted active with MIC values of 5 μg/mL, most of all against staphylococcal strains, which shows their inhibitory effect.  相似文献   

2.
Five new metal complexes with the metal ions Cu(II), Ni(II) and Zn(II) and containing 1,2,4-triazolo[1,5-a]pyrimidine derivatives and 1,3-propanediamine (tn) are described. The structural morphology of these coordination compounds depends on the triazolopyrimidine derivative used, being mononuclear for 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine (dmtp) and 5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7(4H)-one (HmtpO), and 1D-polymeric for 7-amine-1,2,4-triazolo[1,5-a]pyrimidine (7atp). In the 7atp case, this ligand does not coordinate through N3 atom, as expected, but through N1, N4 and N71 in a bridging fashion. This unexpected coordination mode seems to be induced by the stability of the polynuclear metal complex in presence of tn ligand. All isolated metal complexes have been characterized by single-crystal X-ray diffraction, IR and UV-Vis spectroscopies, and EPR measurements. Moreover, luminescence measurements have been carried out for 7atp ligand and its polynuclear complex with Zn(II).  相似文献   

3.
The reactions of cis-[PtCl(NH3)2(H2O)]+ with L-methionine have been studied by 1D 195Pt and 15N NMR, and by 2D[1H, 15N] NMR. When the platinum complex is in excess, the initial product, cis-[PtCl(NH3)2(Hmet-S)]+ undergoes slow ring closure to [Pt(NH3)2(Hmet-N,S)]2+. Slow ammine loss then occurs to give the isomer of [PtCl(NH3)(Hmet-N,S)]+ with chloride trans to sulfur. When methionine is in excess, a reaction sequence is proposed in which trans-[PtCl(NH3)(Hmet-S)2]+ isomerises to the cis-isomer, with subsequent ring closure reactions leading to cis-[Pt(Hmet-N,S)2]2+. Near pH 7, methionine is unreactive toward cis-[PtCl(OH)(NH3)2]. By contrast, L-cysteine reacts readily with cis-[PtCl(OH)(NH3)2] at pH 7, but there were many reaction products, including bridged species. Cis-[PtCl(OH)(NH3)2] reacts with reduced thiols in ultrafiltered plasma but these are oxidized if the plasma is not fresh or appropriately stored. With very low concentrations of the platinum complexes (35.5 microM), HPLC experiments (UV detection at 305 nm) indicate that the thiolate (probably cysteine) reactions become simpler as bridging becomes less important.  相似文献   

4.
This paper describes the silver dinuclear complex [Ag2L2(NO3)2] · 2H2O, where L represents the bridging ligand 7,8-dihydro-7-oxo-1,2,4-triazolo[4,3-a]pyrimidine, this being the first example of a coordination compound of a 1,2,4-triazolo[4,3-a]pyrimidine derivative. As a difference with the most studied 1,2,4-triazolo[1,5-a]pyrimidine derivatives, the coordination takes place through the contiguous nitrogen atoms of the triazole ring, closing a six member Ag2N4 core with a higher intermetallic distance, 3.4791(3) Å. Linear coordination of silver is not possible in this geometry, so flat trigonal coordination involving also the nitrate counteranion is found instead.  相似文献   

5.
Some 2-aryl-8-chloro-1,2,4-triazolo[1,5-a]quinoxaline derivatives 2-18, obtained by introducing different substituents on either the 4-amino moiety (acyl or carbamoyl groups) or the 2-phenyl ring (4-OCH3) of previously reported 8-chloro-2-phenyl-1,2,4-triazolo[1,5-a]quinoxalin-4-amine (1), have been synthesized and tested in radioligand binding assays at bovine A1 and A(2A) and at cloned human A1 and A3 adenosine receptors. The rationally designed 8-chloro-2-(4-methoxy-phenyl)-1,2,4-triazolo[1,5-a]quinoxalin-4-acetylamine (14) can be considered one of the most potent and hA3 versus hA1 selective AR antagonists reported till now. The structure-activity relationships of compounds 2-18 are in agreement with those of previously reported 2-aryl-1,2,4-triazolo[4,3-a]quinoxalines (series A) and 2-arylpyrazolo[3,4-c]quinolines (series B), thus suggesting a similar AR binding mode. In fact, the importance for the A3 receptor-ligand interaction of both a strong acidic NH proton donor and a C=O proton acceptor at position-4, able to engage hydrogen-bonding interactions with specific sites on the A3 AR, has been confirmed. Using our recently published hA3 receptor model, to better elucidate our experimental results, we decided to theoretically depict the putative TM binding motif of the herein reported 1,2,4-triazolo[1,5-a]quinoxaline derivatives on human A3 receptor. Structure-activity relationships have been explained analyzing the three-dimensional structure of the antagonist-receptor models obtained by molecular docking simulation.  相似文献   

6.
A series of platinum(II) tri-n-butylphosphine complexes having the formulas cis-[PtCl2L2], NEt4[PtCl3L], [PtCl(en)L]Cl, [Pt(en)L2](ClO4)2, sym-trans-[Pt2Cl4L2], [Pt2Cl2L4](ClO4)2, trans,trans-[PtCl2L(mu-N2H4)PtCl2L] trans,trans-[PtCl2L(mu-en)PtCl2L], and cis,cis-[PtClL2(mu-N2H4)PtClL2](ClO4)2 (L = tri-n-butylphosphine; en = ethylenediamine) have been synthesized and their cytotoxic activity in vitro and in vivo has been studied. The solution behavior of the novel dinuclear diamine-bridged platinum(II) complexes has been investigated by means of UV and 31P NMR spectroscopy. For the ionic hydrazine compound cis,cis-[PtClL2(mu-N2H4)PtClL2](ClO4)2, an x-ray structure determination is reported. Crystal data: space group P2(1)/a, a = 17.803(1), b = 18.888(3), c = 12.506(3) A, beta = 107.97(2) degrees, Z = 2, R = 0.052, RW = 0.058. The platinum coordination is approximately square-planar, with the bond lengths Pt-Cl = 2.358(5), Pt-N = 2.15(1), Pt-P(trans to Cl) = 2.260(5), and Pt-P(trans to N) = 2.262(6) A. All investigated compounds were cytotoxic in vitro against L1210 cells and showed no cross-resistance to cisplatin. On the other hand, no antitumor activity was observed vs L1210 leucemia in DBA2 mice.  相似文献   

7.
Complexes of general formula [PtCl2(NH3)L] with one radiosensitizing ligand per platinum are compared with ligand L alone, complexes with two radiosensitizers per platinum [PtCl2L2], and their analogs with NH3 ligands, with respect to radiosensitizing properties and toxicity in CHO cells. Radiosensitizing ligands, L, were misonidazole, metronidazole, 4(5)-nitroimidazole, and 2-amino-5-nitrothiazole, and the ammine analogs were cis- and trans-DDP [diamminedichloroplatinum(II)] and the monoammine, K[PtCl3(NH3)]. Results are related to a previous study on plasmid DNA binding by these series. The toxicity of the mono series [PtCl2(NH3)L], attributable to DNA binding, is much higher than the corresponding bis complexes, [PtCl2L2]. For L = misonidazole, toxicity is similar to the monoammine, but higher in hypoxic than in aerobic cells. trans-[PtCl2(NH3)-(misonidazole)] is more toxic than the cis isomer. Except for L = 4(5)-nitroimidazole, the complexes [PtCl2(NH3)L] are more toxic than L in air and hypoxia. Hypoxic radiosensitization by the mono complexes is comparable to the monoammine and is not better than free sensitizers, again except for L = 4(5)-nitroimidazole. Significantly lower sensitization is observed in oxic cells. The bis complexes [PtCl2L2], which do not bind to DNA as well as the mono complexes, are less effective radiosensitizers and less toxic than the [PtCl2(NH3)L] series.  相似文献   

8.
Reactions of cis- and trans-[PtCl2(NH3)2] with glutathione (GSH) inside intact red blood cells have been studied by 1H spin-echo nuclear magnetic resonance (NMR). Upon addition of trans-[PtCl2(NH3)2] to a suspension of red cells, there was a gradual decrease in the intensity of the resonances for free GSH, and new peaks were observed that were assignable to coordinated GSH protons in trans-[Pt(SG)Cl(NH3)2], trans-[Pt(SG)2(NH3)2], and possibly the S-bridged complex trans-[[NH3)2PtCl)2SG]+. Formation of trans-[Pt(SG)2(NH3)2] inside the cell was confirmed from the 1H NMR spectrum of hemolyzed cells, which were ultrafiltered to remove large protein molecules; the ABM multiplet of the coordinated GSH cys-beta CH2 protons was resolved using selective-decoupling experiments. Seventy percent of the total intracellular GSH was retained by the ultrafiltration membrane, suggesting that the mixed complex trans-[Pt(SG)(S-hemoglobin)(NH3)2] also is a major metabolite of trans-[PtCl2(NH3)2] inside red cells. The reaction of cis-[PtCl2(NH3)2] with intracellular GSH was slower; only 35% of the GSH had been complexed after a 4-hr incubation compared to 70% for the trans isomer. There was a gradual decrease in the intensity of the GSH 1H spin-echo NMR resonances, but no new peaks were resolved. This was interpreted as formation of high-molecular weight Pt:GSH and mixed GS-Pt-S(hemoglobin) polymers. By using a 15N-[1H] DEPT pulse sequence, we were able to study the reaction of cis-[PtCl2(15NH3)2] with red cells at concentrations as low as 1 mM. 15NH3 ligands were released, and no resonances assignable to Pt-15NH3 species were observed after a 12-hr incubation.  相似文献   

9.
SRIXE mapping has been used to gain insight into the fate of platinum(II) and platinum(IV) complexes in cells and tumours treated with anticancer active complexes to facilitate the development of improved drugs. SRIXE maps were collected of thin sections of human ovarian (A2780) cancer cells treated with bromine containing platinum complexes, cis-[PtCl(2)(3-Brpyr)(NH(3))] (3-Brpyr=3-bromopyridine) and cis,trans,cis-[PtCl(2)(OAcBr)(2)(NH(3))(2)] (OAcBr=bromoacetate), or a platinum complex with an intercalator attached cis-[PtCl(2)(2-[(3-aminopropyl)amino]-9,10-anthracenedione)(NH(3))]. After 24h the complexes appear to be localised in the cell nucleus with a lower concentration in the surrounding cytoplasm. In cells treated with cis-[PtCl(2)(3-Brpyr)(NH(3))] the concentration of bromine was substantially higher than in control cells and the bromine was co-localised with the platinum consistent with the 3-bromopyridine ligand remaining bound to the platinum. The cells treated with cis,trans,cis-[PtCl(2)(OAcBr)(2)(NH(3))(2)] also showed an increased level of bromine, but to a much lesser extent than for those treated with cis-[PtCl(2)(3-Brpyr)(NH(3))] suggestive of substantial reduction of the platinum(IV) complex. Maps were also collected from thin sections of a 4T1.2 neo 1 mammary tumour xenograft removed from a mouse 3h after treatment with cis,trans,cis-[PtCl(2)(OH)(2)(NH(3))(2)] and revealed selective uptake of platinum by one cell.  相似文献   

10.
Syntheses of a series of novel 3-sulfonyl-pyrazolo[1,5-a]pyrimidines and their 5-HT(6) receptor antagonistic structure-activity relationship are disclosed. The nature and position of substituents, which affect their receptor antagonistic activity, are analyzed. Among all synthesized derivatives, {3-(3-chlorophenylsulfonyl)-5,7-dimethyl-pyrazolo[1,5-a]pyrimidin-2-yl}-methyl-amine 33 (K(i)=190 pM), (3-phenylsulfonyl-7-methyl-pyrazolo[1,5-a]pyrimidin-2-yl)-methyl-amine 44 (K(i)=240 pM), (3-phenylsulfonyl-5-metoxymethyl-7-methyl-pyrazolo[1,5-a]pyrimidin-2-yl)-methyl-amine 50 (K(i)=270 pM), and (3-phenylsulfonyl-5-methyl-7-metoxymethyl-pyrazolo[1,5-a]pyrimidin-2-yl)-methyl-amine 52 (K(i)=280 pM) are the most potent antagonists of the 5-HT(6) receptors.  相似文献   

11.
A comparative study of the binding of square planar cis- and trans-[Pt(NH3)2Cl2] complexes and the octahedral [Ru(NH3)5(H2O)]3+ complex to tRNAphe from yeast was carried out by X-ray crystallography. Both of the carcinostatic compounds, cis-[Pt(NH3)2Cl2] and [Ru(NH3)5(H2O)]3+ show similarities in their mode of binding to tRNA. These complexes bind specifically to the N(7) positions of guanines G15 and G18 in the dihydrouridine loop. [Ru(NH3)5(H2O)]3+ has an additional binding site at N(7) of residue G1 after extensive soaking times (58 days). A noncovalent binding site for ruthenium is also observed in the deep groove of the acceptor stem helix with shorter (25 days) soaking time. The major binding site for the inactive trans-[Pt(NH3)Cl2] complex is at the N(1) position of residue A73, with minor trans-Pt binding sites at the N(7) positions of residues Gm34, G18 and G43. The similarities in the binding modes of cis-[Pt(NH3)2Cl2] and [Ru(NH3)5(H2O)]3+ are expected to be related to their carcinostatic properties.  相似文献   

12.
An array of poly- and mononuclear complexes of Pt(II) with polypyridyl ligands is reported. The framework complexes [(PtCl(2))(2)(bpp)(2)(micro-PtCl(2))](H(2)O)(2) [bpp=2,3-bis(2-pyridyl)pyrazine], [PtCl(2)(micro-tptz)PtClNCPh]Cl [tptz=2,4,6-tris(2-pyridyl)-1,3,5-triazine], and mononuclear PtCl(2)(NH(2)dpt) [NH(2)dpt=4-amino-3,5-bis(2-pyridyl)-1,2,4-triazole] have been prepared and structurally characterized. Both neutral and ionic complexes are present, with bifunctional and monofunctional Pt(II) moieties, whose size and shape enable them to behave as novel scaffolds for DNA binding. Pt(II) complexes were tested for their biological activity. Cell viability assay and flow cytometric analysis demonstrated that these complexes, particularly [PtCl(2)(micro-tptz)PtClNCPh]Cl, were effective death inducers in human colon rectal carcinoma HT29 cells and their cytotoxic activity was higher than that exerted by cisplatin. Morphological analysis of treated HT29 cells, performed by fluorescence microscopy after Hoechst 33258 staining, showed the appearance of the typical features of apoptosis. Moreover, our results suggested that mitochondria are involved in apoptosis induced by Pt(II) complexes in HT29 cells as demonstrated by dissipation of mitochondrial transmembrane potential.  相似文献   

13.
Huang LH  Zheng YF  Song CJ  Wang YG  Xie ZY  Lai YW  Lu YZ  Liu HM 《Steroids》2012,77(5):367-374
The preparation of novel steroidal heterocycles containing the 7-aryl-substituted 1,2,4-triazolo[1,5-a]pyrimidine moiety fused to the 16,17-positions of the steroid nucleus is described. The Aldol reaction of 4-aza-androst-3,17-dione (1a) and dehydroepiandrosterone (DHEA, 1b) with aromatic aldehydes was catalyzed by KF/Al(2)O(3) to give the corresponding 3-oxo-4-aza-5α- and 3β-hydroxy-5-en-16-arylidene-17-ketosteroids (2a-r). Subsequently, the intermediates 2a-r reacted with dinucleophilic 3-amino-1,2,4-triazole in presence of t-BuOK to afford the title compounds (3a-r). All the synthesized heterosteroids are new and are currently being evaluated for their biological activities.  相似文献   

14.
A series of pyrazolo[1,5-a]pyrimidine, triazolo[1,5-a]pyrimidine, and pyrimido[1,2-a]benzimidazole ring systems incorporating phenylsulfonyl moiety were synthesized via the reaction of 3-(N,N-dimethylamino)-1-aryl-2-(phenylsulfonyl)prop-2-en-1-one derivatives 2a,b with appropriate nitrogen nucleophiles. The analgesic and anti-inflammatory activities of the newly synthesized compound were investigated in vivo. 3-Bromo-2-phenyl-6-(phenylsulfonyl)-7-(4-methylphenyl)pyrazolo[1,5-a]pyrimidine (5e) was found to have an excellent analgesic activity in comparison with indomethacin as a reference drug, while the highest anti-inflammatory effect was observed in the case of 2-(4-bromophenyl)-6-(phenylsulfonyl)-5-(4-methylphenyl)pyrazolo[1,5-a]pyrimidine (5d). From the structure-activity relationship (SAR) point of view, the analgesic/anti-inflammatory activity of pyrazolo[1,5-a]pyrimidine derivatives was found to be much higher than triazolo[1,5-a]pyrimidine and pyrimido[1,2-a]benzimidazole derivatives.  相似文献   

15.
Antagonism of the adenosine A2a receptor offers great promise in the treatment of Parkinson’s disease. In the course of exploring pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine A2A antagonists, which led to clinical candidate SCH 420814, we prepared 1,2,4-triazolo[1,5-c]pyrimidines with potent and selective (vs A1) A2a antagonist activity, including oral activity in the rat haloperidol-induced catalepsy model. Structure–activity relationships and plasma levels are described for this series.  相似文献   

16.
A series of 1,2,4-triazolo[1,5-a]pyrimidin-7(3H)-ones with excellent enzyme inhibition, improved isoform selectivity, and excellent inhibition of downstream phosphorylation of AKT has been identified. Several compounds in the series demonstrated potent (~ 0.100 μM IC(50)) growth inhibition in a PTEN deficient cancer cell line.  相似文献   

17.
The reaction of the antitumor active agent cis-[Pt(NH3)2(4-mepy)Cl]Cl (4-mepy stands for 4-methylpyridine) with d(GpG) has been investigated by 1H magnetic resonance spectroscopy. Initially, two mononuclear complexes cis-Pt(NH3)2(4-mepy)[d(GpG)-N7(1)] 1 and cis-Pt(NH3)2(4-mepy)[d(GpG)-N7(2)] 2 are formed in an unexpected ratio 65:35, as determined by 1H NMR and enzymatic digestion techniques. Both products react further with a second equivalent of cis-[Pt(NH3)2(4-mepy)Cl]Cl forming the dinuclear platinum complex [cis-Pt(NH3)2(4-mepy)]2[mu-d(GpG)- N7(1),N7(2)] 3. With [Pt(dien)Cl]Cl and [Pt(NH3)3Cl]Cl similar complexes are formed. No evidence was found for the formation of chelates cis-Pt(NH3)(4-mepy) [d(GpG)-N7(1),N7(2)], which would be formed upon ammonia release from the mononuclear complexes 1 and 2. Even addition of strong nucleophiles, like sodium diethyldithiocarbamate, thiourea, cysteine, or methionine, before or after reaction, do not induce the formation of a chelate. Under all conditions the N-donor ligands remain coordinated to Pt in 1,2 and 3. In addition, the results of bacterial survival and mutagenesis experiments with E. coli strains show that the in vivo formation of bifunctional adducts in DNA, comparable to those induced by cis-Pt(NH3)2Cl2, by treatment of cells with cis-[Pt(NH3)2(4-mepy)Cl]Cl is unlikely. Also, a mechanism of binding and intercalation is not supported by experimental data. All experiments suggest that the mechanism of action of this new class of antitumor agents must be different from that of cis-Pt(NH3)2Cl2.  相似文献   

18.
The substitution reactions of [PtCl(bpma)]+, [PtCl(gly-met-S,N,N)], [Pt(bpma)(H(2)O)](2+) and [Pt(gly-met-S,N,N)(H(2)O)](+) [where bpma is bis(2-pyridylmethyl)amine and gly-met-S,N,N is glycylmethionine] with L-methionine, glutathione and guanosine 5'-monophosphate (5'-GMP) were studied in aqueous solutions in 0.10 M NaClO(4) under pseudo-first-order conditions as a function of concentration and temperature using UV-vis spectrophotometry. The reactions of the chloro complexes were followed in the presence of 10 mM NaCl and at pH approximately 5, whereas the reactions of the aqua complexes were studied at pH 2.5. The [PtCl(bpma)]+ complex is more reactive towards the chosen nucleophiles than [PtCl(gly-met-S,N,N)]. Also, the aqua complexes are more reactive than the corresponding chloro complexes. The activation parameters for all the reactions studied suggest an associative substitution mechanism. The reactions of [PtCl(bpma)]+ and [PtCl(gly-met-S,N,N)] with 5'-GMP were studied by using (1)H NMR spectroscopy at 298 K. The pK (a) value of the [Pt(gly-met-S,N,N)(H(2)O)]+ complex is 5.95. Density functional theory calculations (B3LYP/LANL2DZp) show that in all cases guanine coordination to the L(3)Pt fragment (L(3) is terpyridine, bpma, diethylenetriamine, gly-met-S,N,N) is much more favorable than the thioether-coordinated form. The calculations collectively support the experimentally observed substitution of thioethers from Pt(II) complexes by N7-GMP. This study throws more light on the mechanistic behavior of platinum antitumor complexes.  相似文献   

19.
5-Fluorouracil-cisplatin adducts with potential antitumor activity   总被引:1,自引:0,他引:1  
Using 5-fluorouracil (5-FU) and cis-diamminedichloroplatinum(II) (cisplatin, CDDP) as starting compounds, 5-FU-cisplatin adducts cis-[Pt(NH(3))(2)(HFU)Cl] (1) and cis-[Pt(NH(3))(2)(HFU)(2)] (2) were prepared. The obtained complexes were characterized by IR, ES-MS and 1H NMR spectroscopy. Complex 1 reacted with guanosine-5'-monophosphate (5'-GMP) and gave rise to a stable mixed-ligand complex cis-[Pt(NH(3))(2)(HFU)(GMP)] (3), whereas 2 did not undergo a similar reaction. In vitro cell growth inhibition tests of complexes 1 and 2 exhibited moderate antitumor activities against the melanoma B16-BL6 cell line. This work provides the basis for a potential alternative for the combinational use of 5-FU and CDDP in cancer therapy.  相似文献   

20.
We prepared platinum(IV) complexes containing dipeptide and diimine or diamine, the [PtCl(dipeptide-N,N,O)(diimine or diamine)]Cl complex, where -N,N,O means dipeptide coordinated as a tridentate chelate, dipeptide=glycylglycine (NH(2)CH(2)CON(-)CH(2)COO(-), digly, where two protons of dipeptide are detached when the dipeptide coordinates to metal ion as a tridentate chelate), glycyl-L-alanine (NH(2)CH(2)CON(-)CHCH(3)COO(-), gly-L-ala), L-alanylglycine (NH(2)CH CH(3)CON(-)CH(2)COO(-), L-alagly), or L-alanyl-L-alanine (NH(2)CHCH(3)CON(-)CHCH(3)COO(-), dil-ala), and diimine or diamine=bipyridine (bpy), ethylenediamine (en), N-methylethylenediamine (N-Me-en), or N,N'-dimethylethylenediamine (N,N'-diMe-en). In the complexes containing gly-L-ala or dil-ala, two separate peaks of the (195)Pt NMR spectra of the [PtCl(dipeptide-N,N,O)(diimine or diamine)]Cl complexes appeared in, but in the complexes containing digly or L-alagly, one peak which contained two overlapped signals appeared. One of the two complexes containing gly-L-ala and bpy, [PtCl(gly-L-ala-N,N,O)(bpy)]NO(3), crystallized and was analyzed. This complex has the monoclinic space group P2(1)2(1)2(1) with unit cell dimensions of a=9.7906(3)A, b=11.1847(2)A, c=16.6796(2)A, Z=4. The crystal data revealed that this [PtCl(gly-L-ala-N,N,O)(bpy)]NO(3) complex has the near- (Cl, CH(3)) configuration of two possible isomers. Based on elemental analysis, the other complex must have the near- (Cl, CH(3))-[PtCl(gly-L-ala-N,N,O)(bpy)]NO(3) configuration. The (195)Pt NMR chemical shifts of the near- (Cl, CH(3))-[PtCl(gly-L-ala-N,N,O)(bpy)]NO(3) complex and the far- (Cl, CH(3))-[PtCl(gly-L-ala-N,N,O)(bpy)]NO(3) complex are 0 ppm and -19 ppm, respectively (0 ppm for the Na(2)[PtCl(6)] signal). The additive property of the (195)Pt NMR chemical shift is discussed. The (195)Pt NMR chemical shifts of [PtCl(dipeptide-N,N,O)(bpy)]Cl appeared at a higher field when the H attached to the dipeptide carbon atom was replaced with a methyl group. On the other hand, the (195)Pt NMR chemicals shifts of [PtCl(dipeptide-N,N,O)(diamine)] appeared at a lower field when the H attached to the diamine nitrogen atom was replaced with a methyl group, in the order of [PtCl(digly-N,N,O)(en)]Cl, [PtCl(digly-N,N,O)(N-Me-en)]Cl, and [PtCl(digly-N,N,O)(N,N'-diMe-en)]Cl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号