首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The microtubule-dependent kinesin-like protein Eg5 from Homo sapiens is involved in the assembly of the mitotic spindle. It shows a three-domain structure with an N-terminal motor domain, a central coiled coil, and a C-terminal tail domain. In vivo HsEg5 is reversibly inhibited by monastrol, a small cell-permeable molecule that causes cells to be arrested in mitosis. Both monomeric and dimeric Eg5 constructs have been examined in order to define the minimal monastrol binding domain on HsEg5. NMR relaxation experiments show that monastrol interacts with all of the Eg5 constructs used in this study. Enzymatic techniques indicate that monastrol partially inhibits Eg5 ATPase activity by binding directly to the motor domain. The binding is noncompetitive with respect to microtubules, indicating that monastrol does not interfere with the formation of the motor-MT complex. The binding is not competitive with respect to ATP. Both enzymology and in vivo assays show that the S enantiomer of monastrol is more active than the R enantiomer and racemic monastrol. Stopped-flow fluorometry indicates that monastrol inhibits ADP release by forming an Eg5-ADP-monastrol ternary complex. Monastrol reversibly inhibits the motility of human Eg5. Monastrol has no inhibitory effect on the following members of the kinesin superfamily: MC5 (Drosophila melanogaster Ncd), HK379 (H. sapiens conventional kinesin), DKH392 (D. melanogaster conventional kinesin), BimC1-428 (Aspergillus nidulans BimC), Klp15 (Caenorhabditis elegans C-terminal motor), or Nkin460GST (Neurospora crassa conventional kinesin).  相似文献   

2.
We present here a protocol for the synthesis of the dihydropyrimidine (DHPM) derivative monastrol, which is known to be a specific mitotic kinesin Eg5 inhibitor. By applying controlled microwave heating under sealed-vessel conditions, the synthesis via the one-pot three-component Biginelli condensation can be performed in a shorter reaction time (30 min) compared with conventional heating methods that normally require several hours of reflux heating. For the purification of the crude target compound, two different methods are presented. The first protocol includes a simple precipitation/filtration step to provide monastrol in 76% isolated yield and high purity so that no recrystallization step is necessary. This can be ascribed to the microwave heating technology in which less side-product formation is typically one of the advantages. In an alternative purification step, column chromatography is performed, which provides the product in a slightly higher yield (86%). Monastrol synthesis can be conducted in approximately 2 h by employing the precipitation/filtration purification method.  相似文献   

3.
Eg5 or KSP is a homotetrameric Kinesin-5 involved in centrosome separation and assembly of the bipolar mitotic spindle. Analytical gel filtration of purified protein and cryo-electron microscopy (cryo-EM) of unidirectional shadowed microtubule-Eg5 complexes have been used to identify the stable dimer Eg5-513. The motility assays show that Eg5-513 promotes robust plus-end-directed microtubule gliding at a rate similar to that of homotetrameric Eg5 in vitro. Eg5-513 exhibits slow ATP turnover, high affinity for ATP, and a weakened affinity for microtubules when compared to monomeric Eg5. We show here that the Eg5-513 dimer binds microtubules with both heads to two adjacent tubulin heterodimers along the same microtubule protofilament. Under all nucleotide conditions tested, there were no visible structural changes in the monomeric Eg5-microtubule complexes with monastrol treatment. In contrast, there was a substantial monastrol effect on dimeric Eg5-513, which reduced microtubule lattice decoration. Comparisons between the X-ray structures of Eg5-ADP and Eg5-ADP-monastrol with rat kinesin-ADP after docking them into cryo-EM 3-D scaffolds revealed structural evidence for the weaker microtubule-Eg5 interaction in the presence of monastrol.  相似文献   

4.
Monastrol, a cell-permeable small molecule inhibitor of the mitotic kinesin, Eg5, arrests cells in mitosis with monoastral spindles. Here, we use monastrol to probe mitotic mechanisms. We find that monastrol does not inhibit progression through S and G2 phases of the cell cycle or centrosome duplication. The mitotic arrest due to monastrol is also rapidly reversible. Chromosomes in monastrol-treated cells frequently have both sister kinetochores attached to microtubules extending to the center of the monoaster (syntelic orientation). Mitotic arrest-deficient protein 2 (Mad2) localizes to a subset of kinetochores, suggesting the activation of the spindle assembly checkpoint in these cells. Mad2 localizes to some kinetochores that have attached microtubules in monastrol-treated cells, indicating that kinetochore microtubule attachment alone may not satisfy the spindle assembly checkpoint. Monastrol also inhibits bipolar spindle formation in Xenopus egg extracts. However, it does not prevent the targeting of Eg5 to the monoastral spindles that form. Imaging bipolar spindles disassembling in the presence of monastrol allowed direct observations of outward directed forces in the spindle, orthogonal to the pole-to-pole axis. Monastrol is thus a useful tool to study mitotic processes, detection and correction of chromosome malorientation, and contributions of Eg5 to spindle assembly and maintenance.  相似文献   

5.
Monastrol inhibition of the mitotic kinesin Eg5   总被引:1,自引:0,他引:1  
Monastrol is a small, cell-permeable molecule that arrests cells in mitosis by specifically inhibiting Eg5, a member of the Kinesin-5 family. We have used steady-state and presteady-state kinetics as well as equilibrium binding approaches to define the mechanistic basis of S-monastrol inhibition of monomeric human Eg5/KSP. In the absence of microtubules (Mts), the basal ATPase activity is inhibited through slowed product release. In the presence of microtubules, the ATPase activity is also reduced with weakened binding of Eg5 to microtubules during steady-state ATP turnover. Monastrol-treated Eg5 also shows a decreased relative affinity for microtubules under equilibrium conditions. The Mt.Eg5 presteady-state kinetics of ATP binding and the subsequent ATP-dependent isomerization are unaffected during the first ATP turnover. However, monastrol appears to stabilize a conformation that allows for reversals at the ATP hydrolysis step. Monastrol promotes a dramatic decrease in the observed rate of Eg5 association with microtubules, and ADP release is slowed without trapping the Mt.Eg5.ADP intermediate. We propose that S-monastrol binding to Eg5 induces a stable conformational change in the motor domain that favors ATP re-synthesis after ATP hydrolysis. The aberrant interactions with the microtubule and the reversals at the ATP hydrolysis step alter the ability of Eg5 to generate force, thereby yielding a nonproductive Mt.Eg5 complex that cannot establish or maintain the bipolar spindle.  相似文献   

6.
Eg5 is a slow, plus-end-directed microtubule-based motor of the BimC kinesin family that is essential for bipolar spindle formation during eukaryotic cell division. We have analyzed two human Eg5/KSP motors, Eg5-367 and Eg5-437, and both are monomeric based on results from sedimentation velocity and sedimentation equilibrium centrifugation as well as analytical gel filtration. The steady-state parameters were: for Eg5-367: k(cat) = 5.5 s(-1), K(1/2,Mt) = 0.7 microm, and K(m,ATP) = 25 microm; and for Eg5-437: k(cat) = 2.9 s(-1), K(1/2,Mt) = 4.5 microm, and K(m,ATP) = 19 microm. 2'(3')-O-(N-Methylanthraniloyl)-ATP (mantATP) binding was rapid at 2-3 microm(-1)s(-1), followed immediately by ATP hydrolysis at 15 s(-1). ATP-dependent Mt.Eg5 dissociation was relatively slow and rate-limiting at 8 s(-1) with mantADP release at 40 s(-1). Surprisingly, Eg5-367 binds microtubules more effectively (11 microm(-1)s(-1)) than Eg5-437 (0.7 microm(-1)s(-1)), consistent with the steady-state K(1/2,Mt) and the mantADP release K(1/2,Mt). These results indicate that the ATPase pathway for monomeric Eg5 is more similar to conventional kinesin than the spindle motors Ncd and Kar3, where ADP product release is rate-limiting for steady-state turnover.  相似文献   

7.
Monastrol is a small molecule inhibitor that is specific for Eg5, a member of the kinesin 5 family of mitotic motors. Crystallographic models of Eg5 in the presence and absence of monastrol revealed that drug binding produces a variety of structural changes in the motor, including in loop L5 and the neck linker. What is not clear from static crystallographic models, however, is the sequence of structural changes produced by drug binding. Furthermore, because crystallographic structures can be influenced by the packing forces in the crystal, it also remains unclear whether these drug-induced changes occur in solution, at physiologically active concentrations of monastrol or of other drugs that target this site. We have addressed these issues by using a series of spectroscopic probes to monitor the structural consequences of drug binding. Our results demonstrated that the crystallographic model of an Eg5-ADP-monastrol ternary complex is consistent with several solution-based spectroscopic probes. Furthermore, the kinetics of these spectroscopic signal changes allowed us to determine the temporal sequence of drug-induced structural transitions. These results suggested that L5 may be an element in the pathway that links the state of the nucleotide-binding site to the neck linker in kinesin motors.  相似文献   

8.
Targeting the kinesin Eg5 to monitor siRNA transfection in mammalian cells   总被引:5,自引:0,他引:5  
RNA interference, the inhibition of gene expression by double-stranded RNA, provides a powerful tool for functional studies once the sequence of a gene is known. In most mammalian cells, only short molecules can be used because long ones induce the interferon pathway. With the identification of a proper target sequence, the penetration of the oligonucleotides constitutes the most serious limitation in the application of this technique. Here we show that a small interfering RNA (siRNA) targeting the mRNA of the kinesin Eg5 induces a rapid mitotic arrest and provides a convenient assay for the optimization of siRNA transfection. Thus, dose responses can be established for different transfection techniques, highlighting the great differences in response to transfection techniques of various cell types. We report that the calcium phosphate precipitation technique can be an efficient and cost-effective alternative to Oligofectamine in some adherent cells, while electroporation can be efficient for some cells growing in suspension such as hematopoietic cells and some adherent cells. Significantly, the optimal parameters for the electroporation of siRNA differ from those for plasmids, allowing the use of milder conditions that induce less cell toxicity. In summary, a single siRNA leading to an easily assayed phenotype can be used to monitor the transfection of siRNA into any type of proliferating cells of both human and murine origin.  相似文献   

9.
The mitotic kinesin Eg5 plays an essential role in establishing the bipolar spindle. Recently, several antimitotic inhibitors have been shown to share a common binding region on Eg5. Considering the importance of Eg5 as a potential drug target for cancer chemotherapy it is essential to understand the molecular mechanism, by which these agents block Eg5 activity, and to determine the "key residues" crucial for inhibition. Eleven residues in the inhibitor binding pocket were mutated and the effects were monitored by kinetic analysis and mass spectrometry. Mutants R119A, D130A, P131A, I136A, V210A, Y211A and L214A abolish the inhibitory effect of monastrol. Results for W127A and R221A are less striking, but inhibitor constants are still considerably modified compared to wild-type Eg5. Only one residue, Leu214, was found to be essential for inhibition by STLC. W127A, D130A, V210A lead to increased K(i)(app) values, but binding of STLC is still tight. R119A, P131A, Y211A and R221A convert STLC into a classical rather than a tight-binding inhibitor with increased inhibitor constants. These results demonstrate that monastrol and STLC interact with different amino acids within the same binding region, suggesting that this site is highly flexible to accommodate different types of inhibitors. The drug specificity is due to multiple interactions not only with loop L5, but also with residues located in helices alpha2 and alpha3. These results suggest that tumour cells might develop resistance to Eg5 inhibitors, by expressing Eg5 point mutants that retain the enzyme activity, but prevent inhibition, a feature that is observed for certain tubulin inhibitors.  相似文献   

10.
Brier S  Lemaire D  Debonis S  Forest E  Kozielski F 《Biochemistry》2004,43(41):13072-13082
Human Eg5, a mitotic motor of the kinesin superfamily, is involved in the formation and maintenance of the mitotic spindle. The recent discovery of small molecules that inhibit HsEg5 by binding to its catalytic motor domain leading to mitotic arrest has attracted more interest in Eg5 as a potential anticancer drug target. We have used hydrogen-deuterium exchange mass spectrometry and directed mutagenesis to identify the secondary structure elements that form the binding sites of new Eg5 inhibitors, in particular for S-trityl-l-cysteine, a potent inhibitor of Eg5 activity in vitro and in cell-based assays. The binding of this inhibitor modifies the deuterium incorporation rate of eight peptides that define two areas within the motor domain: Tyr125-Glu145 and Ile202-Leu227. Replacement of the Tyr125-Glu145 region with the equivalent region in the Neurospora crassa conventional kinesin heavy chain prevents the inhibition of the Eg5 ATPase activity by S-trityl-l-cysteine. We show here that S-trityl-l-cysteine and monastrol both bind to the same region on Eg5 by induced fit in a pocket formed by helix alpha3-strand beta5 and loop L5-helix alpha2, and both inhibitors trigger similar local conformational changes within the interaction site. It is likely that S-trityl-l-cysteine and monastrol inhibit HsEg5 by a similar mechanism. The common inhibitor binding region appears to represent a "hot spot" for HsEg5 that could be exploited for further inhibitor screening.  相似文献   

11.
All members of the kinesin superfamily of molecular motors contain an unusual structural motif consisting of an α-helix that is interrupted by a flexible loop, referred to as L5. We have examined the function of L5 in the mitotic kinesin Eg5 by combining site-directed mutagenesis of L5 with transient state kinetics, molecular dynamics simulations, and docking using cryo electron microscopy density. We find that mutation of a proline residue located at a turn within this loop profoundly slows nucleotide-induced structural changes both at the catalytic site as well as at the microtubule binding domain and the neck linker. Molecular dynamics simulations reveal that this mutation affects the dynamics not only of L5 itself but also of the switch I structural elements that sense ATP binding to the catalytic site. Our results lead us to propose that L5 regulates the rate of conformational change in key elements of the nucleotide binding site through its interactions with α3 and in so doing controls the speed of movement and force generation in kinesin motors.  相似文献   

12.
Human Eg5, responsible for the formation of the bipolar mitotic spindle, has been identified recently as one of the targets of S-trityl-L-cysteine, a potent tumor growth inhibitor in the NCI 60 tumor cell line screen. Here we show that in cell-based assays S-trityl-L-cysteine does not prevent cell cycle progression at the S or G(2) phases but inhibits both separation of the duplicated centrosomes and bipolar spindle formation, thereby blocking cells specifically in the M phase of the cell cycle with monoastral spindles. Following removal of S-trityl-L-cysteine, mitotically arrested cells exit mitosis normally. In vitro, S-trityl-L-cysteine targets the catalytic domain of Eg5 and inhibits Eg5 basal and microtubule-activated ATPase activity as well as mant-ADP release. S-trityl-L-cysteine is a tight binding inhibitor (estimation of K(i,app) <150 nm at 300 mm NaCl and 600 nm at 25 mm KCl). S-trityl-L-cysteine binds more tightly than monastrol because it has both an approximately 8-fold faster association rate and approximately 4-fold slower release rate (6.1 microM(-1) s(-1) and 3.6 s(-1) for S-trityl-L-cysteine versus 0.78 microM(-1) s(-1) and 15 s(-1) for monastrol). S-trityl-L-cysteine inhibits Eg5-driven microtubule sliding velocity in a reversible fashion with an IC(50) of 500 nm. The S and D-enantiomers of S-tritylcysteine are nearly equally potent, indicating that there is no significant stereospecificity. Among nine different human kinesins tested, S-trityl-L-cysteine is specific for Eg5. The results presented here together with the proven effect on human tumor cell line growth make S-trityl-L-cysteine a very attractive starting point for the development of more potent mitotic inhibitors.  相似文献   

13.
Mitotic kinesins represent potential drug targets for anticancer chemotherapy. Inhibitors of different chemical classes have been identified that target human Eg5, a kinesin responsible for the establishment of the bipolar spindle. One potent Eg5 inhibitor is S-trityl-L-cysteine (STLC), which arrests cells in mitosis and exhibits tumor growth inhibition activity. However, the underlying mechanism of STLC action on the molecular level is unknown. Here, cells treated with STLC were blocked in mitosis through activation of the spindle assembly checkpoint as shown by the phosphorylated state of BubR1 and the accumulation of mitosis specific phosphorylation on histone H3 and aurora A kinase. Using live cell imaging, we observed prolonged mitotic arrest and subsequent cell death after incubation of GFP-alpha-tubulin HeLa cells with STLC. Activated caspase-9 occurred before cleavage of caspase-8 leading to the accumulation of the activated executioner caspase-3 suggesting that STLC induces apoptosis through the intrinsic apoptotic pathway. Proteome analysis following STLC treatment revealed 33 differentially regulated proteins of various cellular processes, 31 of which can be linked to apoptotic cell death. Interestingly, four identified proteins, chromobox protein homolog, RNA-binding Src associated in mitosis 68 kDa protein, stathmin, and translationally controlled tumor protein can be linked to mitotic and apoptotic processes.  相似文献   

14.
Meiotic arrest and aneuploidy induced by vinblastine in mouse oocytes   总被引:1,自引:0,他引:1  
Young superovulated female mice were injected i.p. with single doses of vinblastine sulfate just before the onset of the first meiotic division. Secondary oocytes, fixed one by one on a slide, were cytogenetically scored. Evidence of the meiotic arresting activity of vinblastine was produced by the observation of increasing frequencies of M1-arrested oocytes and by the presence of undegenerated chromosome sets of first polar bodies. When the first meiotic division could be undertaken chromosome malsegregation occurred with high frequency, both in terms of aneuploidy and polyploidy. M1-blocked and polyploid oocytes have been interpreted as the consequence of irreversible damage to the spindle induced by vinblastine through its binding on tubulin low-affinity sites; this reaction, in fact, causes microtubule crystallization. According to this mechanism, dose-effect relationships of both phenomena show a threshold at 0.45 mg/kg. On the other hand, the incidence of aneuploid oocytes is correlated with meiotic delay, as detected by the delayed degeneration of polar bodies, and increases linearly with dose. Both phenomena are, therefore, stochastic and can be referred to the binding of the chemical on tubulin high-affinity sites, which is known to cause tubulin depolymerization in a colchicine-like way.  相似文献   

15.
Inhibition of Eg5 represents a novel approach for the treatment of cancer. Here, we report the synthesis and structure-activity relationship of S-trityl-L-cysteine (STLC) derivatives as Eg5 inhibitors. Some of these derivatives such as 4f demonstrated enhanced inhibitory activity against Eg5 and induced mitotic arrest with characteristic monoastral spindles in HeLa cells.  相似文献   

16.
The mitotic kinesin Eg5 (or KSP) is a crucial player in the development and function of the mitotic spindle. Inhibition of this protein leads to cell cycle arrest and apoptosis without interfering with other microtubule-dependent processes. Therefore, it is a potential target in cancer therapy. Here, we report the synthesis and biological evaluation of a small library of molecules based on the structure of the known Eg5 inhibitor HR22C16. One of these derivatives (compound trans-24) proved to be a potent and specific Eg5 inhibitor.  相似文献   

17.
Cochran JC  Gilbert SP 《Biochemistry》2005,44(50):16633-16648
The ATPase mechanism of kinesin superfamily members in the absence of microtubules remains largely uncharacterized. We have adopted a strategy to purify monomeric human Eg5 (HsKSP/Kinesin-5) in the nucleotide-free state (apoEg5) in order to perform a detailed transient state kinetic analysis. We have used steady-state and presteady-state kinetics to define the minimal ATPase mechanism for apoEg5 in the absence and presence of the Eg5-specific inhibitor, monastrol. ATP and ADP binding both occur via a two-step process with the isomerization of the collision complex limiting each forward reaction. ATP hydrolysis and phosphate product release are rapid steps in the mechanism, and the observed rate of these steps is limited by the relatively slow isomerization of the Eg5-ATP collision complex. A conformational change coupled to ADP release is the rate-limiting step in the pathway. We propose that the microtubule amplifies and accelerates the structural transitions needed to form the ATP hydrolysis competent state and for rapid ADP release, thus stimulating ATP turnover and increasing enzymatic efficiency. Monastrol appears to bind weakly to the Eg5-ATP collision complex, but after tight ATP binding, the affinity for monastrol increases, thus inhibiting the conformational change required for ADP product release. Taken together, we hypothesize that loop L5 of Eg5 undergoes an "open" to "closed" structural transition that correlates with the rearrangements of the switch-1 and switch-2 regions at the active site during the ATPase cycle.  相似文献   

18.
Eg5 is a kinesin-like motor protein required for mitotic progression in higher eukaryotes. It is thought to cross-link antiparallel microtubules, and provides a force required for the formation of a bipolar spindle. Monastrol causes the catastrophic collapse of the mitotic spindle through the allosteric inhibition of Eg5. Utilizing a truncated Eg5 protein, we employ difference infrared spectroscopy to probe structural changes that occur in the motor protein with monastrol in the presence of either ADP or ATP. Difference FT-IR spectra of Eg5-monastrol-nucleotide complexes demonstrate that there are triggered conformational changes corresponding to an interconversion of secondary structural elements in the motor upon interaction with nucleotides. Notably, conformational changes elicited in the presence of ADP are different from those in the presence of ATP. In Eg5-monastrol complexes, exchange of ADP is associated with a decrease in random structure and an increase in alpha-helical content. In contrast, formation of the Eg5-monastrol-ATP complex is associated with a decrease in alpha-helical content and a concomitant increase in beta-sheet content. One or more carboxylic acid residues in Eg5 undergo unique changes when ATP, but not ADP, interacts with the motor domain in the presence of monastrol. This first direct dissection of inhibitor-protein interactions, using these methods, demonstrates a clear disparity in the structural consequences of monastrol in the presence of ADP versus ATP.  相似文献   

19.
In a high-throughput screening effort, a series of tetrahydroisoquinolines was identified as modest inhibitors of human Eg5. A medicinal chemistry optimization effort led to the identification of R-4-(3-hydroxyphenyl)-N,N-7,8-tetramethyl-3,4-dihydroisoquinoline-2(1H)-carboxamide (32a) as a potent inhibitor of human Eg5 (ATPase IC50 104 nM) with good anti-proliferative activity in A2780 cells (IC50 234 nM).  相似文献   

20.
Gasic  Srdjan  Mihola  Ondrej  Trachtulec  Zdenek 《Mammalian genome》2022,33(4):590-605
Mammalian Genome - Aneuploidy (abnormal chromosome number) accompanies reduced ovarian function in humans and mice, but the reasons behind this concomitance remain underexplored. Some variants in...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号