首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
An enzyme that transfers galactose from UDP-Gal to ganglioside GM2 (Tay-Sachs ganglioside) was concentrated 50 times in Golgi apparatus from rat liver relative to total homogenates. This enzyme required detergents or phospholipids as dispersing agents. Of the numerous detergents tested, sodium taurocholate and Triton CF-54 were most effective in stimulating the reaction. Cardiolipin alone was more effective than any of the detergents tested in stimulating enzyme activity. The pH optimum for the reaction varied with the nature of the dispersing agent. With sodium taurocholate, Triton CF-54 and cardiolipin, the pH optima were 6.2, 5.9, and 5.6, respectively. The enzyme had a nearly absolute requirement for Mn2+, with maximum activity being attained at a concentration of 15 mM Mn2+. Other divalent or trivalent cations were either less effective than Mn2+ or inhibited the transferase reaction. The Km values calculated for UDP-Gal and GM2 were 1.1 X 10(-4) M and 9.9 X 10(-5) M, respectively. The enzyme could not be dissociated from Golgi apparatus fractions by treatment with ultrasound, indicating that it is tightly associated with the membrane and not part of the luminal contents. The newly synthesized GM2, the product of the reaction, was incorporated into or became tightly associated with the membranes of the Golgi apparatus.  相似文献   

2.
CMP-N-acetylneuraminate:lactosylceramide alpha-2,3-sialyltransferase is tightly associated with the luminal side of the Golgi membrane as is its lipid substrate, lactosylceramide. In order to understand the kinetics, properties, and regulation of this enzyme, it is necessary to alter the amount and type of substrate in the membrane while minimizing changes in the membrane environment or in the conformation of the enzyme. Therefore, nonspecific lipid transfer protein, which accelerates the transfer of phospholipids, cholesterol, and glycosphingolipids between membranes was used to study the properties and kinetics of rat liver CMP-N-acetylneuraminate:lactosylceramide sialyltransferase. These results are compared to those obtained in parallel experiments using detergent-solubilized substrate. Enzyme activity was increased four- to fivefold by transfer protein and was consistently higher than the activity measured in the presence of detergents. In contrast to the results obtained with detergents, the enzyme activity increased linearly with both Golgi protein and with incubation time for up to 60 min. The Km values for the water-soluble substrate, CMP-neuraminic acid, were virtually identical when determined in the presence of transfer protein (0.23 mM) or detergents (0.27 mM). On the other hand, the apparent Km values for the lipophilic substrate, lactosylceramide, were markedly different when determined in the presence of transfer protein (47.9 microM) or in the presence of detergents (1.2 microM). These observations suggest that transfer protein is a useful tool to study the properties and kinetics of membrane-bound enzymes when both the enzyme and substrate are components of the same membrane.  相似文献   

3.
Lauryldimethylamine oxide (LDAO) was employed in the purification of the GM3 ganglioside forming enzyme, CMP-sialic acid:lactosylceramide alpha 2-3 sialyltransferase (SAT-1) (4). This detergent has advantages over the typically employed Triton detergents in the solubilization and stabilization of this sialyltransferase. Crude protein fractions solubilized from rat liver Golgi by several such detergents are very similar in composition as determined by two-dimensional gel electrophoresis. However, LDAO appears to activate and stabilize SAT-1 activity. It is possible that SAT-1 activation involves the structurally similar hydrophobic moieties and quaternary amino groups of LDAO and phosphatidylcholine.  相似文献   

4.
Previous studies have shown a strong correlation between reduced levels of GM3 ganglioside and an increase in the oncogenic transformation of cultured cells. CMP-sialic acid:lactosylceramide sialyltransferase, which catalyzes GM3 synthesis, was characterized in cultured hamster fibroblasts (NIL-8) with respect to substrate binding, pH optimum, detergent requirements, metal ion requirements, activity during cell cycle phases and activity during cell growth phases. The apparent Km values for CMP-sialic acid and lactosylceramide were 0.16 and 0.11 mM, respectively. The enzyme required Mn2+ (15 mM) for maximal, but Mg2+ and Ca2+ were able to substitute to a lesser extent. Triton CF-54 (0.3%, w/v) compared to other nonionic detergents gave the greatest enzyme activation, while ionic detergents inhibited the enzyme. A broad pH optimum (4.5-8.0) was obtained, with maximum activity at pH 6.5 in cacodylate-HCl buffer. No buffer effects on enzyme activity were seen. Sialyltransferase activity was found to be highest in the M and G1 phases of the cell cycle and in the contact-inhibited phase of cell growth.  相似文献   

5.
We report a method for the isolation of enriched fractions of intact Golgi apparatus from neurons of 10- to 12-day-old rat brains. Neurons were prepared according to a modified method of Farooq and Norton [J. Neurochem. 31, 887-894 (1978)]. Golgi-enriched fractions were obtained after centrifugation of postmitochondrial supernatants in a discontinuous sucrose gradient. Golgi fractions 1 and 2, recovered at the interfaces of 28-34% and 34-36% sucrose densities, respectively, were examined with morphometric and enzymatic methods. Morphometric analyses showed that 21-34% of fraction 1 and 11-29% of fraction 2 consisted of intact Golgi apparatus. Lysosomes, mitochondria, ribosomes, and rough endoplasmic reticulum contaminated fraction 1 (6-10%) and fraction 2 (14-26%). Golgi fraction 1 showed a 25- to 65-fold enrichment over neurons of UDP Gal:GlcNAc galactosyltransferase, CMP-sialic acid:lactosylceramide sialyltransferase, and PAPS:cerebroside sulfotransferase activities. Golgi fraction 2 showed a 8- to 23-fold enrichment over neurons of the activities of the above glycolipid- and glycoprotein-synthesizing enzymes. The activities of the possible marker enzymes rotenone-insensitive NADH-cytochrome c reductase, succinate-cytochrome c reductase, and arylsulfatase were low or minimally elevated in the Golgi fractions. A sevenfold enrichment of Na+, K+-ATPase activities was found in the Golgi fractions. This is consistent either with significant plasma membrane contamination or with the presence of this enzyme in the neuronal Golgi apparatus.  相似文献   

6.
Glycolipid transport between compartments of the Golgi apparatus has been reconstituted in a cell free system. Transport of lactosylceramide (galactose beta 1-4-glucose-ceramide) was followed from a donor to an acceptor Golgi population. The major glycolipid in CHO cells is GM3 (sialic acid alpha 2-3 galactose beta 1-4-glucose-ceramide). Donor membranes were derived from a Chinese hamster ovary (CHO) cell mutant (Lec2) deficient in the Golgi CMP-sialic acid transporter, and therefore contained lactosylceramide as the predominant glycolipid. Acceptor Golgi apparatus was prepared from another mutant, Lec8, which is defective in UDP-Gal transport. Thus, glucosylceramide is the major glycolipid in Lec8 cells. Transport was measured by the incorporation of labeled sialic acid into lactosylceramide (present originally in the donor) by transport to acceptor membranes, forming GM3. This incorporation was dependent on ATP, cytosolic components, intact membranes, and elevated temperature. Donor membranes were prepared from Lec2 cells infected with vesicular stomatitus virus (VSV). These membranes therefore contain the VSV membrane glycoprotein, G protein. Donor membranes derived from VSV-infected cells could then be used to monitor both glycolipid and glycoprotein transport. Transport of these two types of molecules between Golgi compartments was compared biochemically and kinetically. Glycolipid transport required the N- ethylmaleimide sensitive factor previously shown to act in glycoprotein transport (Glick, B. S., and J. E. Rothman. 1987. Nature [Lond.]. 326:309-312; Rothman, J. E. 1987. J. Biol. Chem. 262:12502-12510). GTP gamma S inhibited glycolipid and glycoprotein transport similarly. The kinetics of transport of glycolipid and glycoprotein were also compared. The kinetics of transport to the end of the pathway were similar, as were the kinetics of movement into a defined transport intermediate. It is concluded that glycolipid and glycoprotein transport through the Golgi occur by similar if not identical mechanisms.  相似文献   

7.
The possible occurrence of sialyltransferase activity in the plasma membranes surrounding nerve endings (synaptosomal membranes) was studied, using calf brain cortex. The synaptosomal membranes were prepared by an improved procedure which provided: (a) a ?nerve ending fraction” consisting of at least 85% well-preserved nerve endings and containing only small quantities of membranes of intracellular origin; (b) a ?synaptosomal membrane fraction” carrying high amounts of authentic plasma membrane markers (Na+-K+ ATPase, 5′-nucleotidase, sialidase, gangliosides) with values of specific activity four to fivefold higher than those in the ?nerve ending fraction” and very small amounts of cerebroside sulphotransferase, marker of the Golgi apparatus, and of other markers of intracellular membranes (rotenone-insensitive NADH and NADPH: cytochrome c reductases), the specific activities of which were, respectively, 0.5- and 0.7-fold that in the ?nerve ending fraction”. Thus the preparation of synaptosomal membranes used had the characteristics of plasma membranes and carried a negligible contamination of membranes of intracellular origin. The distribution of sialyltransferase activity in the main brain subcellular fractions (microsomes; P2 fraction; nerve ending fraction; mitochondria) resembled most closely that of thiamine pyrophosphatase, the enzyme known to be linked to the Golgi apparatus and the plasma membranes and of acetylcholine esterase, the enzyme known to be linked to either intracellular or plasma membranes. The enrichment of sialyltransferase activity in the ?synaptosomal membrane fraction”, referred to the ?nerve ending fraction”, was practically the same as that exhibited by authentic plasma membrane markers. All this is consistent with the hypothesis that in calf brain cortex sialyltransferase has two different subcellular locations: one at the level of intracellular structures, most likely the Golgi apparatus (as described by other authors), the other in the synaptosomal plasma membranes. The basic properties (pH optimum, V/S, V/t and V/protein relationships) and detergent requirements of the synaptosomal membrane-bound sialyltransferase were established. The highest enzyme activities were recorded on exogenous acceptors, lactosylceramide and ds -fetuin. The Km values for CMP-NeuNAc were different using lactosylceramide and ds -fetuin as acceptor substrates (0.57 and 0.135 mm , respectively); the thermal stability of the enzyme acting on glycolipid acceptor was higher than that on the glycoprotein acceptor; the effect of detergents was different when using glycoprotein from glycolipid acceptors; no competition was observed between lactosylceramide and ds -fetuin. Thus the synaptosomal membranes carry at least two different sialyltransferase activities: one acting on lactosylceramide (and glycolipid acceptors), the other working on ds -fetuin (and glycoprotein acceptors). Ganglioside GM3 was recognized as the product of synaptosomal membrane-bound sialyltransferase activity working on lactosylceramide as acceptor substrate.  相似文献   

8.
We attempted to establish within which organelle UDP-Glc:ceramide beta 1----1'glucosyltransferase (GlcT) is located and moreover to obtain information about its orientation on intracellular membranes as well as that of UDP-Gal:glucosylceramide beta 1----4galactosyltransferase (GalT-2) and CMP-NeuAc:lactosylceramide alpha 2----3sialyltransferase (SAT-1). An extremely purified Golgi apparatus fraction was the only liver fraction where a ceramide-dependent formation of glucosylceramide could be demonstrated. This Golgi fraction, mainly constituted by stacks of intact cisternae which retained the same topographical orientation as in vivo, was then incubated with liposomal dispersions of glycosphingolipid-glycosyltransferase acceptors in reaction mixtures containing all the requirements for enzyme activity but no detergent. Under such conditions, SAT-1 and other late acting glycosyltransferases were over 90% latent, while both GlcT and GalT-2 were just as active as in the detergent-containing assay; they were still inhibited by EDTA. Sepharose-immobilized ceramide and Sepharose-immobilized glucosylceramide were found to be suitable acceptors for GlcT and GalT-2, respectively, still using intact Golgi cisternae as the enzyme source. Moreover, a part of GlcT and GalT-2 activity was released from intact Golgi cisternae upon cathepsin D treatment. These results provide strong evidence that GlcT and GalT-2 face the cytoplasmic side of the Golgi apparatus, whereas SAT-1 and the other late acting enzymes face the luminal side.  相似文献   

9.
M Trinchera  A Fiorilli  R Ghidoni 《Biochemistry》1991,30(10):2719-2724
The presence and subcellular localization of UDP-Gal:glucosylceramide beta 1----4galactosyltransferase (GalT-2) was investigated in rat liver. For this purpose, purified Golgi apparatus, endoplasmic reticulum, and plasma membrane fractions were prepared from the liver and used as the enzyme source for detecting GalT-2. A pure Golgi apparatus, highly enriched in many glycosyltransferases, was the only fraction where GalT-2 was measurable. The reaction product formation rate under appropriate assay conditions, which requires high detergent concentration and Mn2+, was low but comparable with that of other glycosyltransferases. The product formation was stimulated by exogenously added acceptor GlcCer, donor UDP-Gal, and Golgi protein. The reaction product was a single spot that was identified by chromatographic behavior, sensitivity to beta-galactosidase, and permethylation studies as Gal beta 1----4Glc beta 1----1'Cer (lactosylceramide). A metabolic experiment, performed by determining the glycosphingolipids which became radioactive in the above subcellular fractions prepared from the liver of animals treated with glucose-labeled glucosylceramide, further indicated that the in vivo glycosylation of glucosylceramide takes place in the Golgi apparatus.  相似文献   

10.
Treatment with neuronal growth factor (NGF) results in the growth of neuronal processes by PC12 cells and a concomitant 70% increase in the area of the Golgi apparatus. To define the observed morphologic changes in biochemical terms, we investigated the effect of NGF treatment on some Golgi and lysosomal enzyme activities of PC12 cells. Enzyme activities characteristic of the Golgi apparatus, lysosomes, plasma membranes, mitochondria, and endoplasmic reticulum were measured in cell homogenates, in post-mitochrondrial supernatants, and in Golgi-enriched fractions from control and from NGF-stimulated PC12 cells. Treatment of PC12 cells with NGF did not change the level of the Golgi activity of UDPGal:GlcNAc galactosyltransferase while that of CMP-sialic acid:lactosylceramide sialyltransferase was increased three- to fivefold in all fractions studied. For lysosomal enzymes, NGF treatment resulted in a two- to threefold higher level of arylsulfatase activity compared to either acid phosphatase or acid alpha-mannosidase activities. These results indicate that there is a selective increase of at least one Golgi and one lysosomal activity as a result of NGF stimulation of PC12 cells. Both of these enzymes are involved in glycolipid metabolism. It is possible that the dramatic morphologic changes observed during NGF-induced differentiation of PC12 cells are associated not only with increased synthesis in the Golgi apparatus of plasma membrane components such as gangliosides, but also with increased degradation in lysosomes of other plasma membrane components such as sulfatide.  相似文献   

11.
CMP-sialic acid:lactosylceramide alpha 2,3-sialyltransferase (SAT-1) has been purified approximately 40,000-fold to apparent homogeneity from rat liver Golgi. The enzyme was solubilized from Golgi vesicles in 5% lauryldimethylamine oxide and "partially" purified by affinity chromatography twice on CMP-hexanolamine and once on lactosylceramide aldehyde-Sepharose 4B. Final purification was achieved by immunoaffinity chromatography on M12GC7-Gel 10. The M12GC7 monoclonal antibody specifically inhibits and immunoprecipitates SAT-1 activity. Identification of the protein, with an apparent molecular weight by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of about 60,000 daltons, was confirmed by Western blot and immunodetection with M12GC7. SAT-1 specifically catalyzes the transfer of N-acetylneuraminic acid (NeuAc, sialic acid) to lactosylceramide (Gal beta 1-4Glc beta 1-O-ceramide), forming GM3 ganglioside. Studies on substrate specificity indicate that the preferred acceptors have the general structure saccharide beta 1-O-ceramide, a disaccharide being preferred to a monosaccharide. SAT-1 is a glycoprotein. The carbohydrate moieties are detected with specific lectins. Deglycosylation of SAT-1 with N-glycanase results in an increase in a 43,000-dalton band. The two-dimensional electrophoretogram of SAT-1 indicates a pI range of 5.7-6.2 for the 60,000-dalton protein.  相似文献   

12.
1. The choice of a suitable detergent for solubilization of UDP-glucose collagen glucosyltransferase (GGT) activities from chick embryo liver has been investigated. Several detergents were used (zwitterionic detergent as Chaps, and non-ionic detergents as Triton X-100, Nonidet P 40, Brij 35). 2. All the detergents with GGT activities were tested in Golgi apparatus, smooth and rough endoplasmic reticulum (SER, RER). 3. 80-100% GGT Golgi apparatus activity was easily solubilized at low concentrations in surfactant (0.5 mg/ml). 25-78% of SER and RER GGT activities were extracted at this concentration. 4. A higher level of detergent (5 mg/ml) was necessary to release all GGT activities of SER and RER. Protein extraction was identical to GGT activities.  相似文献   

13.
The thiamine pyrophosphatase (the enzyme [s] catalyzing the release of inorganic phosphate with thiamine pyrophosphate as the substrate) activities of Golgi apparatus-, plasma membrane-, endoplasmic reticulum-, and mitochondria-rich fractions from rat liver were compared at pH 8. Activity was concentrated in the Golgi apparatus fractions, which, on a protein basis, had a specific activity six to eight times that of the total homogenates or purified endoplasmic reticulum fractions. However, only 1–3% of the total activity was recovered in the Golgi apparatus fractions under conditions where 30–50% of the UDPgalactose:N-acetylglucosamine-galactosyl transferase activity was recovered. Considering both recovery of galactosyl transferase and fraction purity, we estimate that approximately 10% of the total thiamine pyrophosphatase activity of the liver was localized within the Golgi apparatus, with a specific activity of about ten times that of the total homogenate. Cytochemically, reaction product was found in the cisternae of the endoplasmic reticulum as well as in the Golgi apparatus. This is in contrast to results obtained in most other tissues, where reaction product was restricted to the Golgi apparatus. Thus, enzymes of rat liver catalyzing the hydrolysis of thiamine pyrophosphate, although concentrated in the Golgi apparatus, are widely distributed among other cell components in this tissue.  相似文献   

14.
Porcine thymus lactosylceramide beta-galactosidase was purified by a simple procedure. In the final step of isoelectric focusing the enzyme was separated into two peaks of pI 6.3 (peak I) and 7.0 (peak II), which showed 3,600- and 4,000-fold enhancement of lactosylceramide-hydrolysing activity, respectively. The two peaks had identical mobility on polyacrylamide gel electrophoresis. The apparent molecular weight was 34,000. Neither monosialoganglioside (GM1) nor galactosylceramide was hydrolysed by the purified enzyme fractions. The optimal pH was at 4.6, and sodium taurocholate was essential for the reaction. The apparent Km was 2.3 x 10-5 M. The reaction was stimulated by sodium chloride and linoleic acid, while it was strongly inhibited by Triton X-100 and bovine serum albumin. Galactosylceramide, p-nitrophenyl beta-galactoside, and p-nitrophenol were weak inhibitors. No effects of GM1 and galactose were observed on the hydrolysis of lactosylceramide.  相似文献   

15.
Six naturally occurring and three synthetic molecular species of lactosylceramide (LacCer) were used to examine the molecular species specificity of CMP-N-acetylneuraminate:lactosylceramide alpha 2,3-sialyltransferase in a Golgi-rich fraction of rat liver. The enzyme molecular species specificity was determined either in the presence of nonspecific lipid transfer protein or in the presence of detergents. Assays performed in the presence of transfer protein showed that for those lactosylceramide molecular species with either d18:1 or d18:0 long chain base the enzyme activity decreased linearly as the effective carbon number of the fatty acid increased. An increase in the carbon number of the long chain base decreased the activity of the enzyme twice as much as a corresponding increase in the carbon number of the fatty acid. On the other hand, when the enzyme activity was assayed in the presence of detergents, there was no significant difference in activity among the various molecular species of lactosylceramide based upon the carbon number of the fatty acid or on the presence of a double bond in the long chain base. However, the decrease in enzyme activity with an increase in the carbon number of the long chain base persisted. These results demonstrate that sialyltransferase has binding specificity with respect to the long chain base, but not the fatty acid. The apparent molecular species towards the fatty acid is related to the aqueous solubility of the various LacCer molecular species.  相似文献   

16.
By conventional electron microscopy we observed in mitotic HeLa cells the structures termed Golgi clusters by Lucocq et al. (J. Cell Biol. 104, 865-874 (1987)) and interpreted by them as clusters of vesicular remnants of the Golgi apparatus. Golgi clusters consist of tubular and vesicular profiles about 50 nm in diameter, sometimes associated with larger 250 nm vesicles. When cultures of HeLa cells were incubated for 60 min or 120 min with medium containing high specific activity horseradish peroxidase (HRP) at 10 mg/ml we found that the membrane-bound compartments in the Golgi clusters in mitotic cells contained heavy deposits of HRP reaction product. Neither interphase nor mitotic HeLa cells contain an endogenous peroxidase activity. We concluded that Golgi clusters are an endocytic compartment and confirmed this by showing that Golgi clusters could be labeled with two other endocytic tracers--bovine serum albumin conjugated to colloidal gold and transferrin conjugated to HRP. When cultures were incubated with HRP for only 15 min most of the Golgi clusters in the mitotic cells were either unlabeled or consisted of a mixture of HRP-labeled and unlabeled profiles. Since during mitosis endocytosis is inhibited this was the expected result. When interphase HeLa cells were incubated with Brefeldin A (BFA), the Golgi apparatus disassembled and immunofluorescence microscopy showed that 1,4 beta galactosyltransferase had relocated to the endoplasmic reticulum. When cells in the presence of BFA and lacking the Golgi apparatus were allowed to endocytose HRP and then entered mitosis, typical HRP-labeled Golgi clusters were seen in the mitotic cells. It is therefore highly unlikely that these structures contain membrane derived from the Golgi cisternae that are sensitive to BFA, including in HeLa cells those containing galactosyltransferase. Finally, we found that interphase HeLa cells incubated with okadaic acid contain structures that are morphologically indistinguishable from Golgi clusters but can be labeled by endocytic tracer. Taken together, this evidence indicates that most, if not all, of the membrane-bound compartments in Golgi clusters are tubular early endosomes.  相似文献   

17.
In order to clarify the mechanisms of ganglioside biosynthesis and transport we intravenously administered a liposomal dispersion of radiolabelled lactosylceramide (LacCer) to rats and then followed the time course of the individual gangliosides which became radioactive in the Golgi-apparatus and plasma-membrane fractions prepared from the liver. After administration of radiolabelled LacCer the liver retained a substantial amount of radioactivity, which was distributed among an organic phase (mainly residual LacCer), a fraction containing low-Mr substances (mainly 3H2O) and a ganglioside fraction. The hepatocytes were found to provide the bulk of gangliosides biosynthesized from exogenous LacCer. After subcellular fractionation, the total radioactive gangliosides increased in the Golgi apparatus up to 8 h, to then decrease and practically disappear at 24 h; in the plasma membranes they were progressively concentrated, accounting for high absolute values. Ganglioside patterns were greatly modified with time in both the Golgi apparatus and plasma membrane, but without significant differences between them. Biosynthesis in the Golgi apparatus and accumulation in the plasma membrane of each individual ganglioside followed a precursor-product relationship. The obtained results indicated that once a ganglioside is biosynthesized in the Golgi apparatus, it is in part made available for translocation to the plasma membrane, which rapidly occurs, and is in part retained in the Golgi apparatus, where it acts as a precursor for the biosynthesis of more glycosylated gangliosides.  相似文献   

18.
Lactosylceramide synthase is an enzyme that catalyzes the transfer of galactose from UDP-Gal to glucosylceramide, and thus participates in the biosynthesis of most glycolipids in mammals. We have isolated and sequenced the cDNA clone encoding human lactosylceramide synthase. The deduced amino acid sequence of the human lactosylceramide synthase showed 94.2% identity with rat lactosylceramide synthase. Northern blotting analysis revealed that lactosylceramide synthase mRNA was expressed in various tissues, with the highest level in brain and adrenal gland.  相似文献   

19.
Form A of the beta-D-galactoside alpha 2----3 sialyltransferase from porcine submaxillary glands was incorporated into liposomes. Incorporation was achieved by gel filtration of the enzyme in the presence of octylglucoside-phospholipid micelles. As detergent was removed during gel filtration, liposomes (average diameter, 370 A) with bound enzyme were formed and emerged unretarded from the column. The recovery of enzyme activity in the liposomes was about 40% of the initial activity starting with as little as 9 micrograms of transferase. Chromatography on Sepharose CL6B and sucrose density gradient centrifugation confirmed the association of enzyme with liposomes. In contrast to Form A, Form B of the sialyltransferase, which lacks the proposed lipid-binding domain of Form A, cannot be incorporated into liposomes. Form A of the transferase was also incorporated into liposomes composed of phosphatidylcholine, cholesterol, and a mixture of phospholipids from the membranes of the Golgi apparatus from porcine submaxillary glands. Although the transferase was distributed about equally on the internal and external surface of the phosphatidylcholine liposomes, most of the transferase was on the external surface in liposomes containing cholesterol (72%) or in liposomes containing Golgi apparatus phospholipids (88%). The enzyme bound to phosphatidylcholine liposomes was shown by kinetic analysis to have the same activity as that found in the presence of activity-stimulating detergents such as Triton X-100. Enzyme incorporated into cholesterol-containing liposomes had the same activity. In contrast, enzyme bound to liposomes formed from the Golgi apparatus mixed phospholipids had a lower activity, but one similar to that of the transferase in Golgi apparatus membranes. These studies suggest that the composition of a biological membrane may well influence the orientation of the transferase in the membrane as well as modulate its enzymic activity.  相似文献   

20.
Enzymatic activities associated with Golgi apparatus-, endoplasmic reticulum-, plasma membrane-, mitochondria-, and microbody-rich cell fractions isolated from rat liver were determined and used as a basis for estimating fraction purity. Succinic dehydrogenase and cytochrome oxidase (mitochondria) activities were low in the Golgi apparatus-rich fraction. On the basis of glucose-6-phosphatase (endoplasmic reticulum) and 5'-nucleotidase (plasma membrane) activities, the Golgi apparatus-rich fraction obtained directly from sucrose gradients was estimated to contain no more than 10% endoplasmic reticulum- and 11% plasma membrane-derived material. Total protein contribution of endoplasmic reticulum, mitochondria, plasma membrane, microbodies (uric acid oxidase), and lysosomes (acid phosphatase) to the Golgi apparatus-rich fraction was estimated to be no more than 20–30% and decreased to less than 10% with further washing. The results show that purified Golgi apparatus fractions isolated routinely may exceed 80% Golgi apparatus-derived material. Nucleoside di- and triphosphatase activities were enriched 2–3-fold in the Golgi apparatus fraction relative to the total homogenate, and of a total of more than 25 enzyme-substrate combinations reported, only thiamine pyrophosphatase showed a significantly greater enrichment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号