首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
2.
Translational regulation of mammalian ornithine decarboxylase by polyamines   总被引:19,自引:0,他引:19  
Ornithine decarboxylase, which catalyses the formation of putrescine, is the first and rate-limiting enzyme in the biosynthesis of polyamines in mammalian cells. The enzyme is highly regulated, as indicated by rapid changes in its mRNA and protein during cell growth. Here we report that ornithine decarboxylase is regulated at the translational level by polyamines in difluoromethylornithine-resistant mouse myeloma cells that overproduce the enzyme due to amplification of an ornithine decarboxylase gene. When such cells are exposed to putrescine or other polyamines, there is a rapid and specific decrease in the rate of synthesis of ornithine decarboxylase, assayed by pulse-labeling. Neither the cellular content of ornithine decarboxylase mRNA nor the half-life of ornithine decarboxylase protein is affected. Our results indicate that polyamines negatively regulate the translation of ornithine decarboxylase mRNA, thereby controlling their own synthesis.  相似文献   

3.
Ornithine decarboxylase (ODC, EC 4.1.1.17) expression is subject to negative feedback regulation by the polyamines. The results of previous studies favor either translational or post-translational regulation. To facilitate further analysis of the mechanism by which polyamines affect ODC expression we have used a cell line (L1210-DFMOr) that overproduces ODC. This cell line was isolated by selection for resistance to the antiproliferative effect of the ODC inhibitor alpha-difluoromethylornithine (DFMO). These cells respond similarly to polyamine depletion and repletion as do their wild-type counterparts. When L1210-DFMOr cells were grown in the presence of 20 mM DFMO (i.e., when their polyamine content was reduced to an extent that still permitted a normal growth rate) ODC represented 4-5% of the soluble protein synthesized. After transfer of the cells to a medium lacking DFMO (i.e., when their polyamine pools were repleted), the rate of incorporation of [35S]methionine into ODC was one order of magnitude lower. Since this difference in incorporation of radioactivity into ODC remained the same irrespective of the pulse-label time used (between 2 and 20 min) it is likely to represent a true difference in ODC synthesis rate. Consequently, the pulse-label experiments cannot be explained by rapid degradation of the enzyme during the labeling period. The difference in ODC synthesis rate was not accompanied by a corresponding difference in the steady-state level of ODC mRNA. Analyses of the distribution of ODC mRNA in polysome profiles did not demonstrate any major difference between cells grown in the absence or presence of DFMO, even though the ODC synthesis rate differed by as much as 10-fold. However, the distribution of the ODC mRNA in the polysome profiles indicated that the message was poorly translated. Thus, most of the ODC mRNA was present in fractions containing ribosomal subunits or monosomes. Inhibition of elongation by cycloheximide treatment resulted in a shift of the ODC mRNA from the region of the gradient containing ribosomal subunits to that containing mono- and polysomes, indicating that most of the ODC mRNA was accessible to translation. Taken together these data lend support to a translational control mechanism which involves both initiation and elongation.  相似文献   

4.
Cell growth and differentiation require the presence of optimal concentrations of polyamines. Ornithine decarboxylase (ODC) catalyses the first and rate-controlling step in polyamine synthesis. In studies using cultures of Ehrlich ascites-tumour cells, we have shown that the expression of ODC is subject to feedback regulation by the polyamines. A decrease in the cellular polyamine concentration results in a compensatory increase in the synthesis of ODC, whereas an increase in polyamine concentration results in suppression of ODC synthesis. These changes in ODC synthesis were attributed to changes in the efficiency of ODC mRNA translation, because the steady-state amount of ODC mRNA remained constant. We now show that the number of ribosomes associated with ODC mRNA is low, and that the increase in ODC mRNA translation takes place without a shift in the distribution of ODC mRNA towards larger polysomes. This finding indicates that the polyamines regulate the efficiency of ODC mRNA translation by co-ordinately affecting the rates of initiation and elongation. By analysing ODC mRNA translation in vitro, using a rabbit reticulocyte lysate, polyadenylated RNA from a cell line with an amplified ODC gene, and a monospecific anti-ODC antibody, we also show that spermidine, but not putrescine, exerts a direct regulatory effect on ODC synthesis.  相似文献   

5.
The effect of spermidine and spermine on the translation of the mRNAs for ornithine decarboxylase and S-adenosylmethionine decarboxylase was studied using a reticulocyte lysate system and specific antisera to precipitate these proteins. It was found that the synthesis of these key enzymes in the biosynthesis of polyamines was much more strongly inhibited by the addition of polyamines than was either total protein synthesis or the synthesis of albumin. Translation of the mRNA for S-adenosylmethionine decarboxylase was maximal in a lysate which had been substantially freed from polyamines by gel filtration. Addition of 80 microM spermine had no significant effect on total protein synthesis and stimulated albumin synthesis but reduced the production of S-adenosylmethionine decarboxylase by 76%. Similarly, addition of 0.8 mM spermidine reduced the synthesis of S-adenosylmethionine decarboxylase by 82% while albumin and total protein synthesis were similar to that found in the gel-filtered lysate. Translation of ornithine decarboxylase mRNA was greater in the gel-filtered lysate than in the control lysate but synthesis of ornithine decarboxylase was stimulated slightly by low concentrations of polyamines and was maximal at 0.2 mM spermidine or 20 microM spermine. Higher concentrations were strongly inhibitory with a 70% reduction occurring at 0.8 mM spermidine or 150 microM spermine. Further experiments in which both polyamines were added together confirmed that the synthesis of ornithine and S-adenosylmethionine decarboxylases were much more sensitive to inhibition by polyamines than protein synthesis as a whole. These results indicate that an important part of the regulation of polyamine biosynthesis by polyamines is due to a direct inhibitory effect of the polyamines on the translation of mRNA for these biosynthetic enzymes.  相似文献   

6.
7.
8.
9.
The regulation of ornithine decarboxylase (ODC) activity by the polyamine derivatives N1,N8-bis(ethyl)-spermidine and N1,N12-bis(ethyl)spermine was studied using a line of L1210 cells resistant to alpha-difluoromethylornithine (D-R cells), which contain very high levels of ODC, and a synthetic mRNA prepared from a plasmid containing an insert corresponding to ODC mRNA adjacent to an SP6 RNA polymerase promoter. Studies in which ODC protein was labeled in the D-R cells by exposure to [35S]methionine indicated that the polyamine derivatives and their physiological counterparts led to an increased rate of degradation of ODC and to a rapid reduction in ODC synthesis without affecting the content of ODC mRNA. Direct evidence that the polyamine derivatives act by inhibiting the translation of the ODC mRNA was obtained by studying their effects on the translation of ODC mRNA in reticulocyte lysates. This translation was strongly inhibited by the addition of N1,N8-bis(ethyl)spermidine, spermidine, N1,N12-bis(ethyl)spermine, or spermine but was not affected much by putrescine. The inhibition of the translation of ODC mRNA by either of the bis(ethyl) polyamine derivatives occurred at concentrations which stimulated total protein synthesis showing the selectivity of the reduction in ODC. The effects of polyamine derivatives and polyamines on translation of the plasmid-derived ODC mRNA were identical with those found with the D-R L1210 cell mRNA. This synthetic ODC mRNA lacks 261 bases of the 5'-leader sequences and 200 bases plus the poly(A) section from the 3'-nontranslated sequence. Therefore, these regions appear not to influence sensitivity of the ODC mRNA to inhibition of translation by polyamine derivatives.  相似文献   

10.
S-Adenosylmethionine decarboxylase (AdoMetDC) activity was elevated 18.8-fold in Swiss 3T3 fibroblasts which were depleted of cellular polyamines by using the inhibitor difluoromethylornithine (DFMO). Although the cellular level of AdoMetDC mRNA and the half-life of active AdoMetDC protein were also increased (4.3- and 1.5-fold respectively), together they could not account for the magnitude of the increase in AdoMetDC activity. These data suggested that the translation of AdoMetDC mRNA must be increased in the polyamine-depleted cells to account fully for the elevation in activity. The cellular distribution of AdoMetDC mRNA was examined in the polyamine-depleted cells, and it was found almost exclusively associated with large polysomes. In contrast, AdoMetDC mRNA in untreated controls was very heterogeneous, with the proportion associated with monosomes equal to that associated with large polysomes. The shift of the AdoMetDC message into large polysomes occurred within 18 h after addition of DFMO to the cultures and could be reversed by adding exogenous putrescine. The effect of polyamine depletion on AdoMetDC translation was specific, since there was no change in the distribution in polysomes of either actin mRNA or the translationally controlled mRNA encoding ribosomal protein S16 in the DFMO-inhibited cells. Thus the translational efficiency of AdoMetDC mRNA in vivo is regulated either directly or indirectly by the concentration of intracellular polyamines through a mechanism involving translational initiation, which results in a change in the number of ribosomes associated with this mRNA.  相似文献   

11.
Uptake of exogenous polyamines by the unicellular green alga Chlamydomonas reinhardtii and their effects on polyamine metabolism were investigated. Our data show that, in contrast to mammalian cells, Chlamydomonas reinhardtii does not contain short-living, high-affinity polyamine transporters whose cellular level is dependent on the polyamine concentration. However, exogenous polyamines affect polyamine metabolism in Chlamydomonas cells. Exogenous putrescine caused a slow increase of both putrescine and spermidine and, vice versa, exogenous spermidine also led to an increase of the intracellular levels of both spermidine and putrescine. No intracellular spermine was detected under any conditions. Exogenous spermine was taken up by the cells and caused a decrease in their putrescine and spermidine levels. As in other organisms, exogenous polyamines led to a decrease in the activity of ornithine decarboxylase, a key enzyme of polyamine synthesis. In contrast to mammalian cells, this polyamine-induced decrease in ornithine decarboxylase activity is not mediated by a polyamine-dependent degradation or inactivation, but exclusively due to a decreased synthesis of ornithine decarboxylase. Translation of ornithine decarboxylase mRNA, but not overall protein biosynthesis is slowed by increased polyamine levels.  相似文献   

12.
It has long been known that polyamines play an essential role in the proliferation of mammalian cells, and the polyamine biosynthetic pathway may provide an important target for the development of agents that inhibit carcinogenesis and tumor growth. The rate-limiting enzymes of the polyamine pathway, ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (AdoMetDC), are highly regulated in the cell, and much of this regulation occurs at the level of translation. Although the 5' leader sequences of ODC and AdoMetDC are both highly structured and contain small internal open reading frames (ORFs), the regulation of their translation appears to be quite different. The translational regulation of ODC is more dependent on secondary structure, and therefore responds to the intracellular availability of active eIF-4E, the cap-binding subunit of the eIF-4F complex, which mediates translation initiations. Cell-specific translation of AdoMetDC appears to be regulated exclusively through the internal ORF, which causes ribosome stalling that is independent of eIF-4E levels and decreases the efficiency with which the downstream ORF encoding AdoMetDC protein is translated. The translation of both ODC and AdoMetDC is negatively regulated by intracellular changes in the polyamines spermidine and spermine. Thus, when polyamine levels are low, the synthesis of both ODC and AdoMetDC is increased, and an increase in polyamine content causes a corresponding decrease in protein synthesis. However, an increase in active eIF-4E may allow for the synthesis of ODC even in the presence of polyamine levels that repress ODC translation in cells with lower levels of the initiation factor. In contrast, the amino acid sequence that is encoded by the upstream ORF is critical for polyamine regulation of AdoMetDC synthesis and polyamines may affect synthesis by interaction with the putative peptide, MAGDIS.  相似文献   

13.
14.
Translational regulation of ornithine decarboxylase by polyamines   总被引:12,自引:0,他引:12  
L Persson  I Holm  O Heby 《FEBS letters》1986,205(2):175-178
  相似文献   

15.
16.
Differentiation of mouse neuroblastoma cells has been shown to be accompanied by changes in polyamine metabolism and a decrease in polyamine content. We have previously shown that alpha-difluoromethyl ornithine, a suicide inhibitor of ornithine decarboxylase (ODC, EC 4.1.1.17) and suboptimal concentrations of dibutyryl cAMP (0.1 to 0.2 mM) are effective in inducing the differentiation of mouse Neuro-2a (N2a) neuroblastoma cells. Exogenously added putrescine or spermidine can block the action of DFMO and dibutyryl cAMP, suggesting that polyamines may play a regulatory role in neuroblastoma differentiation. We have now isolated from N2a cells a clonal variant line, DF-40, whose ODC gene has been amplified by 40-fold. The DF-40 cells overproduced the ODC enzyme and contained very high levels of putrescine, spermidine and spermine. Treatment of DF-40 cells with dibutyryl cAMP or DFMO/dibutyryl cAMP led to a more than 80% reduction in polyamine content. Such a decrease did not cause the DF-40 cells to differentiate. Polyamine content in the treated DF-40 cells was still comparable or higher than that in the undifferentiated N2a cells. In contrast, serum-deprivation induced full differentiation of DF-40 cells. Levels of polyamine in the differentiated DF-40 cells, however, were also found to be comparable to that in the undifferentiated N2a cells. Exogenously added polyamines could not block the differentiation of DF-40 cells induced by serum-deprivation, suggesting that the action of polyamines in regulating neuroblastoma differentiation may depend on the presence of serum factors.  相似文献   

17.
R Autelli  I Holm  O Heby  L Persson 《FEBS letters》1990,260(1):39-41
The rate-controlling enzyme in polyamine synthesis, ornithine decarboxylase (ODC), is subject to feedback regulation by the polyamines at the level of translation. In the present study we used a cell-free translation system to further investigate the mechanism by which this regulation occurs. Lysates of ODC-overproducing cells were capable of synthesizing large amounts of ODC. The degree of initiation was poor in the lysates and the synthesis of ODC was mainly a result of continued elongation of peptide chains on pre-initiated ribosomes. By determining the amount of ODC produced in the lysate, we obtained an estimate of the number of ribosomes that were actively translating ODC mRNA at the moment of lysis. Using this polysomal run-off assay we demonstrated that the polyamine-mediated regulation of ODC synthesis occurs without any change in the number of ribosomes associated with the message. This finding indicates that the polyamines exert a coordinate effect on initiation and elongation.  相似文献   

18.
19.
Oligodeoxynucleotides 18 nucleotides in length having sequences complementary to regions spanning the initiation codon regions of ornithine decarboyxlase or S-adenosylmethionine decarboxylase mRNAs were tested for their ability to inhibit translation of these mRNAs. In reticulocyte lysates, a strong and dose dependent reduction of ornithine decarboyxlase synthesis in response to mRNA from D-R L1210 cells was brought about by 5-AAAGCT GCTCATGGTTCT-3 which is complementary to the sequence from - 6 to + 12 of the mRNA sequence but there was no inhibition by 5-TGCAGCTTCCATCACCGT-3. Conversely, the latter oligodeoxynucleotide which is complementary to the sequence from – 6 to + 12 of the mRNA of S-adenosyl methionine decarboxylase was a strong inhibitor of the synthesis of this enzyme in response to rat prostate mRNA and the antisense sequence from ornithine decarboxylase had no effect. The translation of ornithine decarboxylase mRNA in a wheat germ system was inhibited by the antisense oligodeoxynucleotide at much lower concentration than those needed in the reticulocyte lysate suggesting that degradation of the hybrid by ribonuclease H may be an important factor in this inhibition. These results indicate that such oligonucleotides may be useful to regulate cellular polyamine levels and as probes to study control of mRNA translation.Abbreviations ODC ornithine decarboxylase - AdoMetDC S-adenosylmethionine decarboxylase - DFMO difluoromethylornithine  相似文献   

20.
Daily administration of dicyclohexylamine (DCHA), an inhibitor of spermidine synthase, to neonatal rats produced a dose-dependent depletion of brain spermidine, accompanied by a rise in putrescine and spermine. Despite continued DCHA treatment, levels of all three polyamines returned toward normal within two weeks. alpha-Difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase, had a much more profound and persistent effect on spermidine and also depleted putrescine throughout drug administration; furthermore, DFMO prevented both the elevation of putrescine caused by DCHA and the eventual restitution of spermidine levels. Although a similar pattern of effects was seen in the heart, the time course of onset of DCHA-induced alterations in polyamine levels and the rapidity of subsequent adaptation were considerably different from those in brain. The net activity of DCHA toward polyamines in developing tissues thus involves the direct actions of the drug on spermidine synthesis in combination with compensatory metabolic adjustments made by each tissue to polyamine depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号