首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maize endosperms accumulate during development a large amount of storage proteins (zeins). The rate of zein accumulation is under the control of several regulatory genes. Two of these, the opaque-2 and opaque-6 mutants, lower the zein level, thus improving the nutritional quality of maize meals. An endosperm protein of Mr 32 000 (b-32) appears to be correlated with the zein level. The b-32 protein is encoded by the opaque-6 gene which, in turn, is activated by opaque-2. We report the purification, amino-acid composition and peptide map of b-32 protein. Furthermore we demonstrate that the protein exists as a monomer likely located in the soluble cytoplasm. As a step towards the isolation of a complementary-DNA clone for b-32 protein, the purification of its corresponding mRNA is described.Abbreviations b-32 endosperm protein of Mr 32000 - cDNA complementary DNA - EDTA ethylenediaminetetraacetic acid - O2, O6 opaque 2, opaque-6 genes - PMSF phenylmethylsulfonylfluoride - RSP reduced soluble proteins - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

2.
Maize endosperm was homogenized in a cytoskeleton-stabilizing buffer, filtered and layered on gradients of 20–80% sucrose and analyzed by monitoring their UV absorbance. A major peak of UV-light absorbing material was detected on the gradient, at about 60–65% sucrose (density of approximately 1.3 g·ml−1). Biochemical, fluorescence microscopic, and immunoblot analyses of this peak showed that it consisted of protein bodies associated with actin, membranes, and RNA (ribosomes). Seeds of wild type and opaque-2 mutant were then homogenized, the homogenate was modified using detergents and/or cytoskeleton-disrupting agents, and centrifuged on sucrose gradients. In wild type maize endosperm, detergent treatment caused the major peak (protein bodies) to increase in density so that they sediment further down the gradient. However, in opaque-2 the protein bodies formed a broader, but smaller peak which, upon treatment with detergent, generated protein bodies which pelleted to the bottom of the gradient. Analysis of gradient fractions by gel electrophoresis and immuno-blotting showed that both the wild type and the mutant had cytoskeleton proteins in the upper regions (soluble, non-polymerized microfilaments and microtubules) as well as in the peak regions. Comparisons of both the UV-absorbance profiles and the immunoblot data suggest that the protein bodies from the two maize types associate differently with the membranes and the cytoskeleton.  相似文献   

3.
Summary Phenotypic revertants from several kinds of mutations, including deletions, have been detected by pollen analysis at the wx and Adh loci in maize. Mutations in these genes give phenotypic revertants with median frequencies of 0.7 and 0.5×10–5, respectively. However, the nature of such revertants can only be analyzed following their recovery from conventional matings. In the current study large seed populations derived from crosses involving several bz (bronze) locus mutations in maize were examined for reversion to a Bz (purple) expression. Deletion, insertion and point mutations were included in the study. Principally, over 2 million gametes of the bz-R mutation, which is shown here to be associated with a 340 base pair deletion within the transcribed region of the gene, have been screened for reversion. No revertants from it or any of the other bz mutations have been recovered, even though a total of almost 5 million gametes from homoallelic crosses have been examined to date. Results from seed analysis are discussed in reference to those from pollen analysis in maize.  相似文献   

4.
5.
6.
Zein accumulation patterns during mutant and normal maize endosperm development were determined. Accompanying an increase in the number of floury-2 alleles present in the endosperm was a well-defined stepwise depression in zein accumulation. Analysis of the zein accumulated in endosperms containing zero, one, two, and three doses of the floury-2 allele by sodium dodecylsulfate-polyacrylamide gel electrophoresis revealed a proportionate reduction in the two major zein components, Z1 and Z2. In contrast, the relative proportions of the minor zein bands were altered. Membrane-bound polysomes isolated from kernels of floury-2 and normal maize were predominantly large size classes. The presence of increasing numbers of the floury-2 allele in the endosperm decreased recovery of membrane-bound polysomal material in a stepwise fashion. However, major alterations in polysome size-class distributions were not observed. The reduction in membrane-bound polysome material correlated linearly with reductions in in vitro zein synthesis and in vivo zein accumulation.  相似文献   

7.
Summary The seed storage proteins of maize (Zea mays L.) are synthesized during endosperm development on membrane-bound polyribosomes. These proteins, collectively called zeins, are translocated into the lumen of the rough endoplasmic reticulum, where they assemble into protein bodies. Protein body formation in normal genotypes occurs via an ordered deposition of the various types of zeins, and leads to the formation of spherical structures with a diameter of about 1 m. These structures consist of a central core that contains predominantly -zein; this central region is surrounded by a peripheral layer of - and -zeins, and the entire structure is bounded by rough endoplasmic reticulum.In the endosperm mutant floury-2 the levels of all classes of zeins are reduced; these kernels exhibit an opaque phenotype instead of the vitreous phenotype observed in normal genotypes. In contrast to the discrete, spherical protein bodies which are formed in normal maize endosperm, the protein bodies within floury-2 endosperm are irregular and the zeins are disorganized; patches of - and -zeins occur within irregularly lobed clusters of -zein within the lumen of the rough endoplasmic reticulum. The implications of this aberrant distribution are discussed, both with respect to protein body development and kernel characteristics.Abbreviations BSA bovine serum albumin - DAP days after pollination - IgG immunoglobulin G  相似文献   

8.
Recessive allelic variations were investigated at 3 microsatellite (SSR) sites within theO2 gene by using 14 inbredo2 lines and a wild-type line in maize. Among the 15 lines, allelic variations were observed at umc1066, phi057, and phi112 sites. Two alleles were found at the umc1066 site—a recessive allele with 2 perfect GCCAGA repeats and a dominant allele with 3 perfect repeats. Three alleles were found at the phi057 site—2 recessive alleles with 3 and 5 perfect GCC repeats, respectively, and another with 4 perfect repeats consistent with a dominant allele. At least 4 alleles exist at the phi112 site—among which 1 recessive allele has a 1-bp deletion, another has a 15-bp deletion, and other has no PCR products compared to the dominant allele; all the alleles have unchanged AG repeats. The phi057 site in exon 6 was identified to be a hypervariable region in the coding sequence of the02 gene, in addition to the 2 hypervariable regions in exon 1 previously reported. The primary mechanisms underlying the variations in repeat numbers and regions flanking the SSR within theO2 gene appear to be unequal crossing over and replication slippage. Furthermore, base substitution of SSR motif can create heteroalleles and modify the repeat number of SSR. The lysine content of kernel in theO2 ando2 lines correlates to a considerable extent with nucleotide variations at the umc1066, phi057, and phi112 sites. Our study suggests that it is best to use the 3 markers together in molecular marker-assisted selection for high-lysine maize materials.  相似文献   

9.
C. R. Lending 《Protoplasma》1996,195(1-4):68-77
Summary The seed storage proteins of maize (Zea mays L.) are synthesized during endosperm development on membrane-bound polyribosomes. Protein body formation in normal genotypes occurs via a sequential deposition of the various types of zeins, and leads to the formation of spherical structures with a diameter of about l m. In the endosperm mutantopaque-2 the level of one zein class is reduced; these kernels exhibit an opaque phenotype instead of the vitreous phenotype displayed in normal genotypes, presumably due to the decrease in total zein protein at the time of desiccation. Previous microscopic examination ofopaque-2 protein bodies at 22 DAP (days after pollination) showed that the protein bodies were morphologically similar to those of normal genotypes. However, the endosperm ofopaque-2 maize at 14 DAP contains tubular arrays within the rough endoplasmic reticulum. These tubular arrays are tightly associated with the developing protein bodies. Long strands of tubules, sometimes 10 m in length, are observed in the endosperm, and partially formed protein bodies often seem to be forming directly from these tubular arrays. No immunostaining is associated with this tubular material when any of the anti-zein antibodies are used.Abbreviations BSA bovine serum albumin - DAP days after pollination - IgG immunoglobulin G Dedicated to Professor Eldon H. Newcomb in recognition of his contributions to cell biology  相似文献   

10.
Quality Protein Maize (QPM) is a name given to genetically modified opaque-2 maize with hard endosperm. The opaque-2 mutation conditions a reduction in the amount of zein seed storage protein; zeins are deficient in the essential amino acids lysine and tryptophan, and mutant seed have a higher nutritional value. To utilize the potential of opaque-2 maize, elite inbreds can be converted to o2/o2 forms and subsequently to hard endosperm opaque-2. Since opaque-2 is recessive and endosperm specific, conventional backcross procedures to convert elite inbreds to opaque-2 forms are inefficient. To alleviate this problem, a marker-assisted selection procedure was developed for the Texas A&M University Quality Protein Maize breeding program. Hybridization of an O2 cDNA probe to blots of DNA from plants carrying O2 and o2 alleles showed that restriction fragment length polymorphisms (RFLPs) exist between the W64A o2 allele and O2 alleles of Mo17 and TX5855 inbred lines. To identify the opaque2 genotypes in segregating populations, an RFLP marker assay combining the O2 cDNA probe and HindIII-digestion of genomic DNA was developed. The effectiveness of the O2 RFLP marker assay was tested under field conditions using F2 and backcross populations of several hard endosperm opaque-2 lines. A comparison of the genotypes identified by RFLP analysis with the seed phenotypes of the next generation indicated that this procedure is accurate and can be used for identifying O2/O2, O2/o2, and o2/o2 genotypes of individual juvenile plants in breeding populations.  相似文献   

11.
Summary The two components of theBg-rbg transposable element system of maize have been cloned. TheBg element, isolated from the mutable allelewx-m32 :: Bg is inserted in the intron of theWaxy (Wx) gene between exons 12 and 13. The length of the element is of 4869 bp.Bg has 5 by terminal inverted repeats, and generates upon insertion an 8 by direct duplication of the target sequence. Both ends of theBg element contain a 76 by direct repeat adjacent to the terminal inverted repeats. The hexamer motif TATCGkC G is here repeated several times in direct or inverse orientation. Therbg element was isolated from the mutable alleleo2m(r) where it is located in the promoter region of theOpaque-2 (O2) gene.rbg is approximately 4.5 kb in length, has terminal inverted repeats identical to those of theBg element, and is also flanked by an 8 by direct duplication at the target site. LikeBg, rbg carries the 76 by direct repeats. Restriction enzyme analysis reveals that, compared toBg, the receptor element is distinguishable by small deletion and insertion events. Sequence data indicate that not more than 75% homology exists at the DNA level between therbg element and the autonomousBg element.  相似文献   

12.
The molecular defect in an opaque-2 (o2) mutant, previously characterized as a null allele, has been identified as containing an insertion of the transposable element of the Bergamo (Bg) family. Restriction mapping and partial sequence analysis of the Bg in the o2 null allele indicates that this element is distinct from the previously described Bg as well as the defective Bg (rbg) of the o2m(r) allele. It is, however, inserted at the same site in O2 as the rbg of 62m(r) and can transpose when Bg is present. This study shows that, depending on genetic background, this allele may not behave as a stable null which could dramatically influence the conclusions drawn from experiments based on this particular mutant.  相似文献   

13.
14.
The function of the Waxy locus in starch synthesis in maize endosperm   总被引:1,自引:0,他引:1  
The soluble adenosine diphosphate glucose-starch glucosyltransferase of maize (Zea mays L.) endosperm uses adenosine diphosphate glucose as a sole substrate, but the starch granule-bound nucleoside diphosphate glucose-starch glucosyltransferase utilizes both adenosine diphosphate glucose and uridine diphosphate glucose. The soluble glucosyltransferase can be bound to added amylose or to maize starch granules that contain amylose. However, binding of the soluble enzyme to the starch granules does not change its substrate specificity to that of the natural starch granule-bound glucosyltransferase. Furthermore, the soluble glucosyltransferase bound to starch granules can be removed by repeated washing without a change in specificity. The bound glucosyltransferase can be released by mechanical disruption of starch granules, and the released enzyme behaves in a manner similar to that of the bound enzyme in several respects. These observations suggest that the soluble and bound glucosyltransferases are different enzymes. The starch granule-bound glucosyltransferase activity is linearly proportional to the number of Wx alleles present in the endosperm. This is compatible with the hypothesis that the Wx allele is a structural gene coding for the bound glucosyltransferase, which is important for the normal synthesis of amylose.Journal Paper No. 4818 of the Purdue University Agricultural Experiment Station.  相似文献   

15.
The lysin content in maize endosperm protein is considered to be one of the most important traits for determining the nutritional quality of food and feed. Improving the protein quality of the maize kernel depends principally on finding a mutant with a higher lysine content. Two high-lysine mutant lines with opaque endosperm, QCL3024 and QCL3021, were isolated from a self-cross population derived from Robertsons Mutator stocks. The gene controlling this mutation is temporarily termed opaque-16 (o16). In order to illuminate the genetic locus and effect of the o16 gene, two F2:3 populations, one developed from a cross between QCL3024 and QCL3010 (a wild type line) and another from a cross between Qi205 (opaque-2 line) and QCL3021, were created, and F3 seeds from the F2 plants in the two populations were evaluated for lysine content. The distributions of lysine content and tests for their normality indicate that the lysine content in the two populations is regulated by the major gene of o16 and genes of o2 and o16, respectively. Based on two data sets of the linkage maps of the F2 plant marker genotypes and the lysine content of F3 seeds originating from the two F2:3 populations, the o16 gene was located within 5 cM, at either 3 or 2.2 cM from umc1141 in the interval between umc1121 and umc1141 on the long arm of chromosome 8, depending on the recombination rate in the two populations as determined by composite interval mapping. According to the data of the F2:3 population constructed from the o2 and o16 lines, the double recessive mutant effect was analyzed. The average lysine content of the F3 o2o2o16o16 families identified by the umc1066 and umc1141 markers was approximately 30% higher than that of the F3 o2o2 and o16o16 families, respectively. The lysine content of seven F3 families among nine F3 double recessive mutant families showed different increments, with an average increase of some 6% compared with that of the maternal o2 line. The potential application of the o16 mutant for maize high-lysine breeding may be to combine it with the o2 mutant bearing modifier genes, thus obtaining a mutant with much higher lysine content. For the purpose of pyramiding the o16 with o2 genes, the availability of closely linked markers of the o16 and o2 loci will facilitate marker-assisted selection and greatly reduce breeding time and effort.  相似文献   

16.
The nucleotide sequence of a full-length ribosomal P2 protein cDNA from maize was determined and used for a sequence comparison with the P2 and P1 proteins from other organisms. The integration of these data into a phylogenetic tree shows that the P proteins separated into the subspecies P1 and P2 before the eukaryotic kingdoms including plants developed from their ancestor.  相似文献   

17.
The phosphoenolpyruvate carboxylase from maize leaf was strongly inhibited by 2-phosphoglycollate. The pH of the reaction did not influence the extent of inhibition by 2-phosphoglycollate. The kinetic analysis of the inhibition data by Lineweaver-Burk method showed that 2-phosphoglycollate inhibition was competitive with respect to phosphoenolpyruvate. The secondary plot of the data showed nonlinearity indicating that there may be two 2-phosphoglycollate binding sites with Ki values of 0.4 mM and 0.16 mM. The biphasic nature of the inhibition was also evident when the data were plotted using the method of Dixon. 2-phosphoglycollate inhibition was uncompetitive with respect to Mg2+ suggestting that it binds only to enzyme-Mg2+ complex.  相似文献   

18.
Summary The catalase of maize scutella is coded for by two loci, Cat1 and Cat2, which are differentially expressed in this tissue during early seedling growth. Two variant lines have been previously identified in which the developmental program for the expression of the Cat2 structural gene in the scutellum has been altered. Line R6–67 exhibits higher than normal levels of CAT-2 catalase in this tissue after four days of postgerminative growth. This phenotype is controlled by a temporal regulatory gene designated Car1. Line A16 exhibits a CAT-2 null phenotype. Further analysis of Car1 verifies the initial indication that it is trans-acting and exhibits strict tissue (scutellum) specificity. A screen of other available inbred lines uncovered eight additional catalase high-activity lines. All eight lines exhibit significantly higher than normal levels of CAT-2 protein. Two of these lines have been shown to be regulated by Car1 as in R6–67. Another line (A338) uncovered during the screen exhibits a null phenotype for CAT-2 protein and resembles A16. Catalase activity levels are low in the scutellum and no CAT-2 CRM (cross-reacting material) is present in the tissues of this line. Also, unlike most maize lines, CAT-2 cannot be induced in the leaf tissue of A338 upon exposure to light. Finally, a single line (A337), demonstrating a novel catalase developmental program, was identified.  相似文献   

19.
Summary Pseudomonas solanacearum, the causal agent of bacterial wilt, has been classified into three races based on host range and into five biovars based on physiological properties. Strains of race 3 belong exclusively to biovar 2 and primarily affect potatoes. Although this race is thought to have originated in the Andean highlands, it has unusual physiological properties that make it a potential threat to potatoes grown at the cooler latitudes worldwide. Consequently, there is need for a rapid and sensitive method for detection of race 3 strains. We have used subtractive hybridization to enrich for race 3-specific DNA sequences in total race 3 genomic DNA, and thereby obtained a 2 kb clone homologous to DNA from all 28 race 3 strains tested, but with only five of 90 non-race 3 strains. In addition, two larger regions of the genome, containing a minimum of 23 kb of DNA, are also specific for race 3. Deletion of this DNA did not affect virulence. This race 3-specific DNA is a potentially useful diagnostic tool for the detection of race 3 strains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号