首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A protein fraction from rat liver cytoplasm, precipitable at 50-95% saturation of ammonium sulphate, binds phosphatidic acid from mitochondrial and microsomal membranes. Protein-bound phosphatidic acid was eluted from Sephadex G-75 in fractions corresponding to a molecular weight of about 10 000. No such binding was observed with mitochondrial soluble proteins, either total or precipitated with ammonium sulphate between 50 and 95% saturation. The transfer of phosphatidic acid from microsomes to mitochondria was increased by liver cytoplasmic proteins precipitable at 50-95% saturation of ammonium sulphate but not with mitochondrial soluble proteins. This increase by cytoplasmic proteins was pronounced in 200 mM sucrose but was negligible in 100 mM KCI where the spontaneous transfer was quite high. Cytoplasmic proteins stimulated the synthesis of cardiolipin and phosphatidylglycerol in mitochondria deprived of the outer membrane but not in intact mitochondria when phosphatidic acid was supplied either by microsomes or liposomes. It is suggested that the transfer of phosphatidic acid from the outer to the inner mitochondrial membrane is not mediated by transfer proteins but occurs either by direct contact of the membranes or as free diffusion through the aqueous phase.  相似文献   

2.
Transfer of phosphatidic acid from the outer to the inner membrane within intact rat liver mitochondria was assessed by measuring the ratio of lipid 32P to the marker enzyme of the outer membrane, rotenone-insensitive NADH-cytochrome c reductase, in the outer and inner membrane fractions obtained after incubation of mitochondria under conditions for net synthesis of [32P]phosphatidic acid. This transfer was found to proceed with time, to occur only under high ionic strength of the external medium and to be insensitive to N-ethylmaleimide and factors reducing the number of contact sites between the two mitochondrial membranes. These results are interpreted as supporting the idea that phosphatidic acid transport within the mitochondrion occurs as free diffusion through the aqueous phase and not being mediated by phospholipid transfer protein(s).  相似文献   

3.
Phospholipid exchange reactions within the liver cell   总被引:45,自引:32,他引:13  
1. Isolated rat liver mitochondria do not synthesize labelled phosphatidylcholine from CDP-[(14)C]choline or any phospholipid other than phosphatidic acid from [(32)P]phosphate. The minimal labelling of phosphatidylcholine and other phosphoglycerides can be attributed to microsomal contamination. However, when mitochondria and microsomes are incubated together with [(32)P]phosphate, the phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine of the reisolated mitochondria become labelled, suggesting a transfer of phospholipids between the two fractions. 2. When liver microsomes or mitochondria containing labelled phosphatidylcholine are independently incubated with the opposite un-labelled fraction, there is a substantial and rapid exchange of the phospholipid between the two membranes. Exchange of phosphatidylinositol also occurs rapidly, whereas phosphatidylethanolamine and phosphatidic acid exchange only slowly. There is no corresponding transfer of marker enzymes. The transfer of phosphatidylcholine does not occur at 0 degrees , and there is no requirement for added substrate, ATP or Mg(2+), but the omission of a heat-labile supernatant fraction markedly decreases the exchange. 3. After intravenous injection of [(32)P]phosphate, short-period labelling experiments of the individual phospholipids of rat liver microsomes and mitochondria in vivo give no evidence for a similar exchange process. However, the incubation of isolated microsomes and mitochondria with [(32)P]phosphate also fails on reisolation of the fractions to demonstrate a precursor-product relationship between the individual phospholipids of the two membranes. 4. The intraperitoneal injection of [(32)P]phosphate results in a far greater proportion of the dose entering the liver than does intravenous administration. After intraperitoneal administration of [(32)P]phosphate the specific radioactivities of the individual phospholipids are in the order microsomes > outer mitochondrial membrane > inner mitochondrial membrane. 5. The incorporation of (32)P into cardiolipin is very slow both in vivo and in vitro. After labelling in vivo the radioactivity in the cardiolipin persists compared with that of the other phospholipids, whose specific radioactivities in the microsomes and mitochondrial fragments decay at a similar rate to that of the acid-soluble phosphate pool. 6. The possibility of phospholipid exchange processes occurring in the liver cell in vivo is discussed, and it is suggested that only a small but highly labelled part of the endoplasmic-reticulum lipoprotein pool is involved in the transfer.  相似文献   

4.
The discovery of the sterol carrier and lipid transfer proteins was largely a result of the findings that cells contained cytosolic factors which were required either for the microsomal synthesis of cholesterol or which could accelerate the transfer or exchange of phospholipids between membrane preparations. There are two sterol carrier proteins present in rat liver cytosol. Sterol carrier protein 1 (SCP1) (Mr 47 000) participates in the microsomal conversion of squalene to lanosterol, and sterol carrier protein 2 (SCP2) (Mr 13 500) participates in the microsomal conversion of lanosterol to cholesterol. In addition SCP2 also markedly stimulates the esterification of cholesterol by rat liver microsomes, as well as the conversion of cholesterol to 7 alpha-hydroxycholesterol - the major regulatory step in bile acid formation. Also, SCP2 is required for the intracellular transfer of cholesterol from adrenal cytoplasmic lipid inclusion droplets to mitochondria for steroid hormone production, as well as cholesterol transfer from the outer to the inner mitochondrial membrane. SCP2 is identical to the non-specific phospholipid exchange protein. While SCP2 is capable of phospholipid exchange between artificial donors/acceptors, e.g. liposomes and microsomes, it does not enhance the release of lipids other than unesterified cholesterol from natural donors/acceptors, e.g. adrenal lipid inclusion droplets, and will not enhance exchange of labeled phosphatidylcholine between lipid droplets and mitochondria. Careful comparison of SCP2 and fatty acid binding protein (FABP) using six different assay procedures demonstrates separate and distinct physiological functions for each protein, with SCP2 participating in reactions involving sterols and FABP participating in reactions involving fatty acid binding and/or transport. Furthermore, there is no overlap in substrate specificities, i.e. FABP does not possess sterol carrier protein activity and SCP2 does not specifically bind or transport fatty acid. The results described in the present review support the concept that intracellular lipid transfer is a highly specific process, far more substrate-specific than suggested by the earlier studies conducted using liposomal techniques.  相似文献   

5.
The effects of HDL1 lipoprotein infusion on biliary lipid secretion were studied in thein vitro model of rat perfused liver. A strong increase in bile flow was observed during and after lipoprotein infusion. This caused a significant rise in cholesterol, phospholipid and bile salt secretions. However, only the percentage of cholesterol increased with respect to the other bile lipids. The changes observed in the cholesterol/phospholipid molar ratio values of liver membrane subfractions (i.e., liver plasma membrane, mitochondria plus lysosomes and microsomes) isolated from the perfused rat liver after HDL1 administration were not significant.  相似文献   

6.
The relationship between the neutral lipid and phospholipid metabolism and some structure-function peculiarities of regenerating rat liver endoplasmic reticulum membranes (13 hours after surgery, i.e., corresponding to the G1-period of the cell cycle) was studied. There was an increase in the degree of the endoplasmic reticulum membrane development and the nonesterified fatty acid (NFA) and triglyceride (TG) content in regenerating rat liver microsomes. The relative specific radioactivity of neutral lipid and phospholipid fractions in regenerating rat liver microsomes was lower than in control animals, presumably due to the high rate of the microsomal lipid exchange in the regenerating liver with other cell organelles. The changes in the lipid content and rate of their metabolism in the regenerating rat liver were associated with the increase in the membrane microviscosity and the decrease in the activity of the membrane-bound enzyme (glucose-6-phosphatase). The differences in the time-dependent changes in the synthesis and metabolism of lipids in the NFA and TG fractions may be regarded as an endogenous factor determining the structure-function peculiarities of endoplasmic reticulum membranes.  相似文献   

7.
Export of mitochondrially synthesized lysophosphatidic acid   总被引:1,自引:0,他引:1  
We have previously demonstrated that the properties of mitochondrial glycerophosphate acyltransferase are in keeping with the asymmetric distribution of fatty acids found in naturally occurring cell glycerophospholipids. We are now examining if mitochondria can export lysophosphatidic acid and if it is converted to other phospholipids by the microsomes. Rat liver mitochondria were incubated for 3 min with [2-3H]-sn-glycerol 3-phosphate, palmityl-CoA, and N-ethylmaleimide in the acyltransferase assay medium. In the absence of bovine serum albumin in the medium, greater than 80% of the phospholipids sedimented with the mitochondria. In the presence of the albumin, the lysophosphatidic acid was present entirely in the supernatant fluid. The very little phosphatidic acid that was formed sedimented with the mitochondria. Addition of microsomes to the supernatant fluid followed by a further incubation of 5 min converted 61% of the lysophosphatidic acid to phosphatidic acid which sedimented with the microsomes. When mitochondria and microsomes were incubated together in the assay medium containing albumin and N-ethylmaleimide, the product contained more phosphatidic and less lysophosphatidic acid. When the subcellular components were reisolated by differential centrifugation, 70% of the phosphatidic acid sedimented with the microsomes and the lysophosphatidic acid stayed in the postmicrosomal supernatant. Thus, under appropriate conditions mitochondrially produced lysophosphatidic acid can leave the organelles and this phospholipid can be converted to phosphatidic acid by the microsomes.  相似文献   

8.
1. The effect of chronic ethanol consumption on the level of the t-butyl hydroperoxide (Bu'OOH)-induced lipid peroxidation in rat liver homogenate and subcellular fractions was measured using chemiluminescence technique and malondialdehyde formation. 2. It was shown that under the action of ethanol the rate of lipid peroxidation was decreased in the whole and "postnuclear" liver homogenates. 3. Ethanol significantly decreased the intensity of lipid peroxidation in microsomes, but did not affect the Bu'OOH-dependent process in mitochondria. 4. The level of lipid peroxidation was reduced after incubation of the total particulate fraction (mitochondria plus microsomes) with the undialysed cytosol from ethanol-treated rat liver. Dialysis of the cytosol prevented depressive effect of ethanol treatment on lipid peroxidation. 5. Reduced glutathione (0.1-1.0 mM) was shown to decrease the rate of lipid peroxidation in rat liver microsomes, but did not affect its level in mitochondria. 6. Pyrazole injections to rats reduced and phenobarbital treatment increased the level of the Bu'OOH-dependent lipid peroxidation in liver microsomes. 7. The data obtained indicate that the Bu'OOH-dependent lipid peroxidation is not an appropriate marker of the ethanol-induced oxidative stress in rat liver cells.  相似文献   

9.
The fatty acid composition of phospholipids of mitochondria and microsomes from rat liver and hepatoma 27 was investigated. Basing on the fatty acid and phospholipid composition the unsaturation of the lipid bilayer of the intracellular membranes was calculated. The unsaturation of the phospholipids of the hepatoma mitochondria and microsomes was found to be much lower than that of the corresponding rat liver membranes. The lipid bilayer of the rat liver and hepatoma plasma membranes was shown to be more saturated than that of the intracellular membranes.  相似文献   

10.
Changes in lipid composition and function of subcellular organelles have been described in transplanted and primary tumours. We examine here the fatty acid composition of individual phospholipids (PL) in hyperplastic nodules and primary hepatoma induced by diethylnitrosamine (DEN), compared to that of normal liver and of transplantable Yoshida AH-130 hepatoma. Phosphatidylcholine and phosphatidylethanolamine fatty acid composition in mitochondria and microsomes from primary hepatoma were markedly different from normal liver; C18:0/C18:1 ratio was lower and the ratio between monosaturated and polyunsaturated fatty acids was higher. Linoleic acid content of mitochondrial cardiolipin, usually very high in normal rat liver, was notably lower in primary hepatoma. Cholesterol/phospholipid ratio in both microsomes and mitochondria from DEN-induced hepatoma was higher than in normal liver. Hyperplastic nodules showed no changes in cholesterol content whereas modifications in fatty acid composition were already observable. These modifications of membrane structure may be related to the functional changes found in nodular cells. Changes in fatty acid composition of membrane phospholipids, occurring in both primary hepatoma and preneoplastic nodules, might be one of the causes for decreased rate of lipid peroxidation peculiar to these tissues.  相似文献   

11.
The effects of normobaric hyperoxia on both microsomal membrane fluidity and mechanism of phospholipid synthesis in rabbit liver and kidney have been studied. Hyperoxia induces in both organs an impairment of de novo synthesis of glycerolipids which could be due to an inactivation of acyltransferase activities involved in the initial formation of phosphatidic acid. The ability to replace phospholipid fatty acids by reacylation mechanism decreases slightly in the hyperoxic kidney, while it does not change in the hyperoxic liver. Concerning the effect of high arterial pO2 on microsomal membrane fluidity, the hyperoxic liver shows a more fluid environment within the membrane core of microsomes; however, no difference was shown in that of microsomal membrane core of hyperoxic kidney. An insight into the lipid composition of microsomes indicates that liver microsomal membranes have lower cholesterol content and higher unsaturation degree of phospholipid fatty acids, whereas hyperoxic kidney microsomes become more saturated and did not show any difference in their cholesterol content. In both hyperoxic liver and kidney microsomes, phospholipid content decreases in agreement with the depression of phosphatidic acid biosynthesis. These results are discussed in relation to the values of microsomal membrane microviscosity obtained.  相似文献   

12.
A phospholipid exchange lipoprotein from the postmicrosomal supernatant of rat hepatoma 27, which stimulated in vitro the exchange of sphingomyelin between mitochondria and microsomes, was found. Sphingomyelin is incorporated into the mitochondria under incubation of this complex with rat liver mitochondria (in which sphingomyelin is absent) an microsomes. Under the same conditions the phospholipid exchange lipoproteins of rat liver do not transfer sphingomyelin form microsomes to mitochrondria.  相似文献   

13.
The phospholipid exchange in vitro between mitochondria and microsomes from rat liver and rat hepatoma 27 was investigated. On incubation with a postmicrosomal protein fraction the phospholipid exchange between subcellular fractions of the tumor was found to proceed much faster and less specific than between mitochondria and microsomes from normal liver. These results indicate that the earlier demonstrated lipid dedifferentiation of tumor cell membranes may be connected with an altered transmembrane phospholipid exchange in vivo.  相似文献   

14.
The topography of formation and migration of phosphatidic acid (PA) in the transverse plane of rat liver mitochondrial outer membrane (MOM) were investigated. Isolated mitochondria and microsomes, incubated with sn-glycerol 3-phosphate and an immobilized substrate palmitoyl-CoA-agarose, synthesized both lyso-PA and PA. The mitochondrial and microsomal acylation of glycerophosphate with palmitoyl-CoA-agarose was 80-100% of the values obtained in the presence of free palmitoyl-CoA. In another series of experiments, both free polymyxin B and polymyxin B-agarose stimulated mitochondrial glycerophosphate acyltransferase activity approximately 2-fold. When PA loaded mitochondria were treated with liver fatty acid binding protein, a fifth of the phospholipid left the mitochondria. The amount of exportable PA reduced with the increase in the time of incubation. In another approach, PA-loaded mitochondria were treated with phospholipase A(2). The amount of phospholipase A(2)-sensitive PA reduced when the incubation time was increased. Taken together, the results suggest that lysophosphatidic acid (LPA) and PA are synthesized on the outer surface of the MOM and that PA moves to the inner membrane presumably for cardiolipin formation.  相似文献   

15.
Investigations have been carried out on phospholipid-transfer activity of the cytosol and the phospholipid composition of subcellular membranes from human liver and primary liver carcinoma. In both human liver and primary liver carcinoma cytosolic fractions, the transfer activity for phosphatidylcholine (PC), phosphatidylethanolamine (PE) and sphingomyelin has been observed for the first time. The transfer rate of PC and PE in normal human liver was almost equal, whereas sphingomyelin-transfer activity was much slower. In carcinoma cells, the transfer activity for PE and PC was significantly enhanced, while sphingomyelin transfer remained unchanged. Comparative investigations with HepG2 cultured cells have revealed a high PE-transfer activity in this cell line. Parallel with the phospholipid-transfer activity modifications in neoplasic cells, changes in the phospholipid composition of microsomes and mitochondria have been observed. The content of PC and PE in hepatocarcinoma cells was decreased in microsomes, while in the mitochondria it was increased. The possible role of the phospholipid-transfer proteins in the maintenance of membrane composition and structure is discussed.  相似文献   

16.
Bilirubin may be transported within intracellular membranes of the hepatocyte and may undergo membrane-membrane transfer to gain access to the conjugating enzyme UDP-glucuronyltransferase in the endoplasmic reticulum. We have demonstrated previously that the lipid composition of liposomal membranes incorporating bilirubin substrate influences the rate of transfer and glucuronidation of bilirubin by hepatic microsomes. To examine the mechanism(s) of substrate transfer, we incorporated radiolabelled bilirubin into small unilamellar model membranes of egg phosphatidylcholine or natural phospholipids in the proportions present in native hepatic microsomes. The rate at which bilirubin was transferred to rat liver microsomes and glucuronidated was then examined in the presence of various endogenous compounds that promote membrane fusion. For bilirubin substrate in membranes of egg phosphatidylcholine, the addition of Ca2+ (2 mM) increased the microsomal glucuronidation rate, whereas retinol enhanced microsomal conjugation rates for bilirubin in membranes of both lipid compositions. When the transfer of [3H]bilirubin from dual-labelled liposomes to microsomes was enhanced by Ca2+ or retinol, there was no associated increase in [14C]phospholipid transfer. Thus it appears likely that bilirubin is transferred to the endoplasmic reticulum by rapid cytosolic diffusion or membrane-membrane collisions, rather than by membrane fusion; this process may be modulated by changes in the lipid microenvironment of the substrate or the effective intracellular concentrations of Ca2+ or retinol. The observation that polymyxin B induced concomitant membrane-membrane transfer of [3H]bilirubin and [14C]phospholipid suggests that under certain circumstances membrane fusion or aggregation may promote the movement of lipophilic substrates in hepatocytes.  相似文献   

17.
Studies were carried out to determine the level of ascorbate-Fe2+ dependent lipid peroxidation of mitochondria and microsomes isolated from liver and heart of rat and pigeon. Measurements of chemiluminescence indicate that the lipid peroxidation process was more effective in mitochondria and microsomes from rat liver than in the same organelles obtained from pigeon. In both mitochondria and microsomes from liver of both species a significant decrease of arachidonic acid was observed during peroxidation. The rate C18:2 n6/C20:4 n6 was 4.5 times higher in pigeon than in rat liver. This observation can explain the differences noted when light emission and unsaturation index of both species were analysed. A significant decrease of C18:2 n6 and C20:4 n6 in pigeon liver mitochondria was observed when compared with native organelles whereas in pigeon liver microsomes only C20:4 n6 diminished. In rat liver mitochondria only arachidonic acid C20:4 n6 showed a significant decrease whereas in rat liver microsomes C20:4 n6 and C22:6 n3 decreased significantly. However changes were not observed in the fatty acid profile of mitochondria and microsomes isolated from pigeon heart. In the heart under our peroxidation conditions the fatty acid profile does not appear to be responsible for the different susceptibility to the lipid peroxidation process. The lack of a relationship between fatty acid unsaturation and sensitivity to peroxidation observed in heart suggest that other factor/s may be involved in the protection to lipid peroxidation in microsomes and mitochondria isolated from heart.  相似文献   

18.
The phospholipid/protein ratios of rat liver peroxisomes, mitochondria and microsomes were determined and found to be 257 +/- 26, 232 +/- 20 and 575 +/- 20 nmol.mg-1, respectively. After correction for the loss of soluble protein, a peroxisomal ratio of 153 nmol.mg-1 was calculated. Organelle fractions were treated with sodium carbonate, whereafter membrane fragments containing integral membrane proteins were pelleted. For the membrane fractions of peroxisomes, mitochondria and microsomes phospholipid/protein ratios of 1054 +/- 103, 1180 +/- 90 and 1050 +/- 50 nmol.mg-1 were found, whereas 26 +/- 2, 20 +/- 2 and 49 +/- 2% of the organelle protein was recovered in these membrane fractions, respectively. The phospholipid composition of the different organelle fractions were determined, but no large differences were obtained, except for cardiolipin that was found only in the mitochondrial fraction. After sodium carbonate treatment virtually all enzymatic activity of the enzymes tested was lost. Therefore Triton X-114 phase separation was used to obtain the peroxisomal membrane components. In this fraction 42.9 +/- 3.5% of the protein and 90.2 +/- 3.7% of the phospholipid was found. Enzymatic activity of two integral membrane proteins was recovered for over 90% in the membrane fraction, whereas activity of two matrix proteins was mainly found in the soluble fraction. Urate oxidase, the peroxisomal core protein, behaved differently and was recovered mainly with the membrane components. Recoveries of enzymatic activities after the Triton X-114 phase separation varied from 45 to 116%, and together with the good separation that was obtained between soluble proteins and integral membrane proteins this method provides a useful alternative for the isolation of membrane components.  相似文献   

19.
Detailed lipid analyses of human and rat liver microsomes revealed interesting differences. It was found that human liver microsomes contain twice as much lipid as those from the rat. This increased lipid content is not associated with an increase in content of a particular lipid class; human liver microsomes contain higher amounts of each of the lipid classes. Human and rat liver microsomes differ especially in the essential fatty acid composition of total lipids and phospholipids: human liver microsomes contain more linoleic acid and less arachidonic acid than those of the rat. Such a pattern of distribution of fatty acids is similar to that previously reported for human liver mitochondria and has not been reported for other species. Although the previously reported for human liver mitochondria and has not been reported for other species. Although the unsaturation of lipids is lower in human than in rat liver microsomes, spin label studies revealed a higher fluidity in human membranes. It is suggested that this might arise from a lesser immobilization of lipids by proteins in human liver subcellular membranes.  相似文献   

20.
Radiolabeled phosphatidate and diglyceride were prepared bound to rat liver microsomes. These compounds were used as substrates in studies of diglyceride acyltransferase, cholinephosphotransferase, and CTP:phosphatidic acid cytidylyltransferase. Optimum incubation conditions for these reactions in microsomes from normal male rats are described. High fructose diets were fed to rats for 11 days; this resulted in an increased rate of neutral lipid formation from sn-glycerol-3-phosphate by liver microsomal preparations. This was attributed, in part, to a previously reported increase in liver phosphatidate phosphatase activity. The significance of this increase is supported by the finding of a fall in microsomal phosphatidate content and a doubling in microsomal diglyceride. In addition, diglyceride acyltransferase measured with microsomal-bound diglyceride was increased twofold with no equivalent change in cholinephosphotransferase activity. Such a change should result in preferential triglyceride formation from the increased microsomal diglyceride pool. CTP:phosphatidic acid cytidylytransferase activity was depressed by the high fructose diet. These combined alterations would lead to an accelerated hepatic triglyceride formation, a result found in vivo during high fructose feeding. The high fructose diet decreased slightly the total microsomal phospholipid content and markedly depressed phosphatidylethanolamine levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号