首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fourier transform infrared (FTIR) spectroscopy has been used to examine the conformationally sensitive amide I' bands of calmodulin and troponin C. These are observed to undergo a sequence of spectroscopic changes which reflect conformational rearrangements that take place when Ca2+ is bound. Calmodulin and troponin C show similar though not identical changes on Ca2+ binding, and the effect of Mg2+ on troponin C is quite different from that of Ca2+. Both proteins show absorption maxima in the amide I' region at 1644 cm-1 which is significantly lower in frequency than has been generally observed for proteins that contain a high percentage of alpha-helix. It is proposed that an unusually high proportion of the helices in the structures of these proteins are distorted from the normal alpha-helical configuration such that the carbonyl stretching frequencies are lowered. It is further proposed that the shift to lower frequency is due to backbone carbonyl groups in the distorted helices that form strong hydrogen bonds with solvent molecules. A decrease in intensity at 1654 cm-1, the normal frequency assignment for alpha-helical structure, is observed as Ca2+ binds to calmodulin and troponin C. This suggests that Ca2+ binding results in a net decrease in "normal" alpha-helix conformation. There is a corresponding increase in intensity of the band at 1644 cm-1, possibly due to an increase in distorted helix content, allowing for a net increase in helix consistent with circular dichroism estimates of the Ca2+-dependent changes in helix content in calmodulin.  相似文献   

2.
The electronic absorption and circular dichroism spectra of the complex formed by acridine orange with poly-α,L -glutamic acid in the α-helix conformation have been measured in aqueous solution over a range of glutamate residue-to-dye ratios. Three Cotton effects (circular dichroism bands) associated with the long wavelength absorption band of acridine orange at 4950 A. are induced by complex formation between the dye and the polypeptide, and further circular dichroism bands are observed in the ultraviolet region associated with the 2700 A., but not with the 2950 A. absorption band of the dye. The induced optical activity is found to be relatively insensitive to the glutamate residue-to-dye ratio and to be more dependent upon the ionic strength of the solution. By Measuring the circular dichroism spectrum of the complex in aqueous solution under streaming conditions with the light propagated along the direction of flow the observed circular dichroism bands are assigned to electronic transitions polarized parallel or perpendicular to the axis of the polypeptide α-helix. From the spectroscopic data it is inferred that the dye aggregate in the L -PGA–AO complex has the form of a left-handed superhelix bound to the core of the right-handed α-helix of poly-α,L -glutamic acid. It is shown that the longer and the shorter of the in-plane axes of the dye molecule are probably orientated respectively at a small angle, and radially, with respect to the axis of the α-helix in the complex.  相似文献   

3.
常染色体隐性小脑症(Autosomal recessive primary microcephaly, MCPH)是一种与大脑缩小和智力缺陷有关的神经发育障碍。 ASPM(abnormal spindle-like microcephaly-associated)是最常见的MCPH的致病基因,但其潜在机制尚不清楚。我们发现钙调蛋白(calmodulin, CaM)通过与ASPM的IQ区域相互作用而对ASPM的功能有重要的调控作用。我们纯化了ASPM IQ区域和CaM的复合物,并通过分子排阻色谱结合多角度静态光散射(SEC-MALS)和圆二光谱(CD)实验发现了ASPM和apo_CaM的结合比例为1:8。有趣的是,在Ca2+存在时,ASPM的IQ区域与Ca2+_CaM的结合比例变为了1:7。此外,通过比较不同条件下(Ca2+存在与否)的CD光谱,ASPM-CaM复合物显示出Ca2+依赖性的热稳定性变化。综上所述,我们的研究揭示了Ca2+诱导的ASPM-CaM相互作用的调节机制。  相似文献   

4.
The electronic absorption and circular dichroism spectra of the DNA-acridine orange complex have been measured over a range of ionic strength, pH, and DNA phosphate to dye (P/D) ratios. Three circular dichroism bands associated with the long wavelength absorption band of acridine orange are induced on complex formation with DNA. Two of the dichroism bands, due mainly to dimeric dye molecules, are favored by low ionic strength, low pH (3.2), and a low P/D ratio (~3), while the third, deriving primarily from monomeric dye, is optimum at high ionic strength, neutral pH, and a larger P/D ratio (9). The data suggest that monomeric acridine orange binds to DNA in the form of a left-handed helical array with four dye molecules per turn, while the bound dimer has a skewed sandwich conformation which is itself dissymmetric. The stereochemical relations between the bound monomer dye and the DNA are consistent with a modified intercalation model for the DNA-acridine complex.  相似文献   

5.
Serum gelsolin, a Ca2+-dependent protein regulating the length of actin filaments, undergoes conformational changes upon binding Ca2+. These were detected and analyzed by several approaches including ultraviolet difference spectroscopy, circular dichroism studies, analytical ultracentrifugation, thiol group titration, and limited proteolytic digestions. The effect of Ca2+ binding on the UV absorption difference spectrum and the near-UV circular dichroism spectrum was consistent with changes in the environments of tyrosine and phenylalanine residues. In the presence of Ca2+, the S0(20),w value decreased from 5.3 to 4.7. This latter result implies a transformation to a more asymmetric molecular shape. Gelsolin contained only two accessible thiol groups per mole of protein, one of which was titratable in the native protein; it was more accessible to 5,5'-dithiobis(2-nitrobenzoic acid) in the absence than in the presence of Ca2+. The limited digestion of gelsolin from serum and bovine aorta smooth muscle by two different proteases, chymotrypsin and trypsin, proceeded much faster in the presence of Ca2+ than in its absence with the production of three main fragments of about 40K, 32K, and 21K. This fragment mixture was found still able to shorten F-actin in a Ca2+-dependent manner; this severing activity was expressed by the isolated 40K peptide. Gelsolin was cross-linked to F- and G-actin by the zero-length cross-linker 1-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide (EDC), generating a covalent 130K binary complex (actin1-gelsolin1) followed by a covalent 180K ternary complex (actin2-gelsolin1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
In an effort to elucidate the mechanism of calmodulin regulation of muscle contraction, we investigated the interaction between calmodulin and troponin components in the presence of Ca2+ or Sr2+ by the use of ultracentrifugation methods and polyacrylamide-gel electrophoresis. Skeletal-muscle troponin C bound to troponin I and dissociated it from the tropomyosin-actin complex in the presence of Ca2+ or Sr2+. When troponin T was absent, calmodulin bound to troponin I and dissociated it from the tropomyosin-actin complex in the presence of Ca2+ or Sr2+. When troponin T was present, calmodulin hardly bound to troponin I even in the presence of bivalent cations. Trifluoperazine, a calmodulin antagonist, inhibited the bivalent-cation-dependent interaction between calmodulin and troponin I. Calmodulin migrated more slowly in the presence of Sr2+ than it did in the presence of EGTA but faster than it did in the presence of Ca2+ on polyacrylamide-gel electrophoresis under non-denaturing conditions. It is concluded that troponin T is not required in the calmodulin regulation of muscle contraction because troponin T inhibits the bivalent-cation-dependent interaction between calmodulin and troponin I and because calmodulin binds to troponin I and dissociates it from the tropomyosin-actin complex in a bivalent-cation-dependent manner. Sr2+-induced exposure of the hydrophobic region enables calmodulin to bind to troponin I, as is the case with Ca2+.  相似文献   

7.
Induced optical activity in poly-L-lysine-methyl orange system   总被引:1,自引:0,他引:1  
M Hatano  M Yoneyama  Y Sato  Y Kawamura 《Biopolymers》1973,12(10):2423-2426
The absorption and cicular dichroism spectra of the complex of poly-L -lysine (PLL) in the random coil form with methyl orange (MO) have been measured in aqueous solution. A new absorption band is observed at the shorter wavelength compared with that of the free dye. Although MO does not show a formation of dimer or aggregation with an increase in concentration, circular dichroism bands are observed at the wavelength corresponding to the wavelength of the new absorption band. These induced circular dichroism bands may arise from the dimeric MO molecules bound to PLL in the random coil form. The main contribution to the interaction between MO molecules is shown to be the electro static interaction. The observed circular dichroism spectra and the configuration of dimeric MO molecules bound to PLL can be explained by the dipole couping mechanism.  相似文献   

8.
The interaction of acridine orange with dermatan and chondrotin sulfates results in the formation of complexes containing bound dye molecules ordered into dissymmetric arrays. Complexes containing an excess of available disaccharide residues compared to dye are completely soluble, and exhibit biphasic circular dichroism bands. Analysis of the dependence of the extrinsic circular dichrosim on dye aggregation indicates the presence of extended dye stacks bound to the glycosaminoglycan. Complexes formed in solutions containing an excess of dye are only partially soluble, and exhibit circular dichroism spectra having band shifts and intensity changes relative to the soluble complexes. The latter complexes show a sharp drop in induced circular dichroism with temperature, due to a cooperative change in the structure of the complex. The structural order of the dye–glycosaminoglycan complex may differ from the intrinsic structure of the glycosaminoglycan itself in dilute solution.  相似文献   

9.
Y H Huang  C W Luo  L C Yu  S T Chu    Y H Chen 《Biophysical journal》1995,69(5):2084-2089
The protein conformation of a mouse seminal vesicle autoantigen was studied by circular dichroism spectroscopy. At pH 7.4, the spectrum in the UV region appears as one negative band at 217 nm and one positive band at 200 nm. This together with the predicted secondary structures indicates no helices but a mixture of beta form, beta turn, and unordered form in the protein molecule. The conformation is stable even at pH 10.5 or 3.0. The spectrum in the near-UV region consists of fine structures that are disturbed in acidic or alkaline solution. The environments around Trp2 and Trp82 of this protein were studied by intrinsic fluorescence and solute quenching. They give an emission peak at 345 nm, and about 87% of them are accessible to quenching by acrylamide. Correlating the quenching effect of CsCl and Kl on the protein fluorescence to the charged groups along the polypeptide chain suggests the difference in the "local charge" around the two tryptophan residues. The presence of ZnCl2 in the protein solution effects no change in the circular dichroism but perturbs the fluorescence due to Trp82. Analysis of the fluorescence data suggests a Zn(2+)-binding site on the protein, which cannot coordinate with both Ca2+ and Mg2+. The association constant for the complex formation is 1.35 x 10(5) +/- 0.04 x 10(5) M-1 at pH 7.4.  相似文献   

10.
Calcineurin (CN), a Ca(2+)/calmodulin (CaM)-dependent serine/threonine protein phosphatase, is a heterodimer composed of a catalytic subunit (CNA) and a regulatory subunit (CNB). The activity of CNA is under the control of two functionally distinct, but structurally similar Ca(2+)-regulated proteins, CaM and CNB. The crystal structure of the holoenzyme reveals that the N-terminus and C-terminus of CNB and the N-terminus of CNA each have a long arm not involved in the active site. We constructed a fusion of the genes of CaM, CNB and CNA in that order using linker primers containing six and ten codons of glycine. A single-chain CaM-CNB-CNA (CBA) complex was expressed and purified to near homogeneity. The single-chain complex was fully soluble, and had biochemical properties and kinetic parameters similar to single-chain CNB-CNA (BA) activated by CaM. It was not regulated by CaM and CNB, but was strongly stimulated by Mn2+, Ni2+ and Mg2+. Intrinsic fluorescence spectroscopy of the complex showed a change in the environment of tryptophan in the presence of Ca2+ and circular dichroism (CD) spectropolarimetry revealed an increase in alpha-helical content. Our findings suggest that fusion of CaM, CNB and CNA does not prevent the structural changes required for their functioning; in particular, CaM within the complex could still interact correctly with CN in the presence of Ca2+.  相似文献   

11.
Interaction of ethidium bromide with DNA. Optical and electrooptical study   总被引:7,自引:0,他引:7  
C Houssier  B Hardy  E Fredericq 《Biopolymers》1974,13(6):1141-1160
The binding of ethidium bromide to DNA has been studied by various optical methods. From fluorescence polarization studies, and film, electric linear dichroism, and circular dichroism spectra, we propose assignments of the absorption bands of the dye, which are discussed in connection with wave-mechanical calculations recently reported. The optical activity induced in the dye absorption bands upon binding to DNA was attributed to various origins depending on the electronic transition considered. The visible absorption band displayed a circular dichroism due to the asymmetry of the binding site and independent of the amount of binding. The transition identified at 378 nm from the circular dichroism and electric dichroism observations was thought to be due to a magnetic-dipole transition. It remained constant with increasing amounts of dye bound. The main ultraviolet band showed circular dichroism characteristics corresponding to exciton interactions between dye molecules bound to neighboring sites. The electric dichroism observed for the strongly bound dye molecules indicated that the phenanthridinium ring of ethidium bromide was probably not perfectly parallel to the DNA base planes. When the amount of dye bound to DNA exceeded the maximum amount compatible with the exclusion of adjacent binding sites, the electric dichroism decreased owing to the appearance of externally bound dye molecules with no contribution to the dichroism. Sonicated DNA was used to study the lengthening of the DNA molecule upon complexation. Although the viscosity of the complexes increased with the amount of binding, the rotational diffusion coefficient measured by the electric birefringence relaxation was not detectably affected. The absence of variation in the electric birefringence with the binding indicated that the DNA base stacking remained unaltered.  相似文献   

12.
Hydrophobic regions function in calmodulin-enzyme(s) interactions   总被引:17,自引:0,他引:17  
Certain naturally occurring lipids (phosphatidylinositol, phosphatidylserine, arachidonic acid) and sodium dodecyl sulfate activate at least two calmodulin-dependent enzymes, bovine brain 3':5'-cyclic nucleotide phosphodiesterase and chicken gizzard myosin light chain kinase in the absence of Ca2+. 2-p-Toluidinyl-naphthalene-6-sulfonate (TNS), which is often used as a probe for hydrophobic groups of proteins, inhibits these two calmodulin-dependent enzymes. Kinetic analysis of inhibition of chicken gizzard myosin kinase by TNS revealed a competitive fashion against calmodulin-induced activation. The interaction between TNS and purified bovine brain calmodulin as demonstrated in the appearance of TNS fluorescence in the presence of 3 microM or more of calcium ion was not observed in the presence of 2 mM EGTA. This suggests that TNS is able to bind to calmodulin in the presence of Ca2+. Moreover, a calmodulin-interacting agent N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide suppressed the TNS fluorescence induced by complex formation with calmodulin in the presence of Ca2+. These results suggest that when Ca2+ binds to the high affinity sites of calmodulin, it induces a conformational change which exposes hydrophobic groups, and the calmodulin is then capable of activating calmodulin-dependent enzymes. We propose that hydrophobic properties of Ca2+-calmodulin are important for the activation of Ca2+-calmodulin-dependent enzymes.  相似文献   

13.
Small-angle X-ray and neutron scattering data were used to study the solution structure of calmodulin complexed with a synthetic peptide corresponding to residues 577-603 of rabbit skeletal muscle myosin light chain kinase. The X-ray data indicate that, in the presence of Ca2+, the calmodulin-peptide complex has a structure that is considerably more compact than uncomplexed calmodulin. The radius of gyration, Rg, for the complex is approximately 20% smaller than that of uncomplexed Ca2+.calmodulin (16 vs 21 A), and the maximum dimension, dmax, for the complex is also about 20% smaller (49 vs 67 A). The peptide-induced conformational rearrangement of calmodulin is [Ca2+] dependent. The length distribution function for the complex is more symmetric than that for uncomplexed Ca2+.calmodulin, indicating that more of the mass is distributed toward the center of mass for the complex, compared with the dumbell-shaped Ca2+.calmodulin. The solvent contrast dependence of Rg for neutron scattering indicates that the peptide is located more toward the center of the complex, while the calmodulin is located more peripherally, and that the centers of mass of the calmodulin and the peptide are not coincident. The scattering data support the hypothesis that the interconnecting helix region observed in the crystal structure for calmodulin is quite flexible in solution, allowing the two lobes of calmodulin to form close contacts on binding the peptide. This flexibility of the central helix may play a critical role in activating target enzymes such as myosin light chain kinase.  相似文献   

14.
A Ca(2+)-responsive monolayer protein membrane was prepared by developing calmodulin and bovine serum albumin at the air-water interface and by conjugating them with a bifunctional agent. In the case of the BSA monolayer, complex formation with Mg2+ generated a larger change in surface pressure than that with Ca2+. On the other hand, a drastic change in surface pressure was observed for the conjugated thin membrane associated with Ca2+ than that associated with Mg2+. Due to a drastic change in the conformation of calmodulin, the conjugated protein film changes its morphology (STM image), depending on Ca2+ concentration: the extended structure in the presence of Ca2+ transforms to a shrinked structure in the absence of Ca2+. The largest surface pressure change was detected when calmodulin was mixed with an equimolar amount of bovine serum albumin.  相似文献   

15.
A large-scale preparation method for bovine brain 28-kDa cholecalcin-like protein is described. Flow dialysis binding studies revealed that the protein binds at least 3 mol of Ca2+/mol of protein. The protein undergoes conformational changes on binding calcium as shown by UV differential absorption spectroscopy, near and far UV circular dichroism, and intrinsic fluorescence. Circular dichroism (CD) studies in the far UV indicate an apparent increase in helical content in the presence of Ca2+. The effect of calcium on the protein structure is nearly maximum for 1 Ca2+ bound/protein molecule. UV differential absorption studies on the binding of the Ca2+ agonist Tb3+ and Tb3+ luminescence induced by energy Trp----Tb3+ transfer indicate that Tb3+ binds to two higher affinity Ca2+-binding sites. These sites are probably very close to the single Trp residue. Analysis of the fluorescence parameters of the single tryptophan residue in the apoprotein and its accessibility to ionic and neutral quenchers suggests that this residue is located in a highly hydrophobic domain on the protein surface.  相似文献   

16.
The interaction between bovine testes calmodulin and rabbit fast skeletal muscle myosin light chain kinase was investigated with the zero-length cross-linking reagent N,N'-dicyclohexylcarbodiimide. A cross-linked product of 110 kDa was produced only in the presence of Ca2+. The reaction mixture was separated on diethylaminoethyl cellulose, and a fraction containing the cross-linked complex of calmodulin and myosin light chain kinase was found to have an elevated kinase activity in the absence of Ca2+, which constituted approximately 50% of the maximally stimulated kinase activity of control, and additional kinase activity in the presence of Ca2+, which constituted the remaining 50% of control activity. Calmodulin added exogenously to the cross-linked complex had no effect on the measured Ca2+ dependence or the maximal extent of kinase activity, which is consistent with the cross-linking of calmodulin in close proximity to a regulatory region of myosin light chain kinase. Moreover, the results are consistent with a mechanism whereby the association of calmodulin is sufficient to stimulate kinase activity and the binding of Ca2+ to bound calmodulin increases catalytic efficiency.  相似文献   

17.
Interactions of trifluoperazine (TFP) with S100 proteins, EF-hand type Ca2+-binding proteins, in the presence of Ca2+ and Zn2+ were studied with induced circular dichroism (CD) and fluorescence spectra. The positive CD bands of TFP were induced at around 265 nm by adding either S100a or S100a0 protein in the presence of Ca2+. No CD band of TFP was, however, induced by adding S100b protein in the presence of Ca2+. Addition of Zn2+ to the TFP/S100 protein solutions did not induce any CD band at all. The fluorescence intensity of 2-p-toluidinylnaphthalene 6-sulfonate (TNS) bound to S100a or S100a0 protein decreased by adding TFP in the presence of Ca2+, while that bound to S100b protein decreased by adding TFP in the presence of Zn2+, indicating that TFP binds to S100a protein and S100a0 protein in a Ca2+-dependent manner and to S100b protein in a Zn2+-dependent manner. From these results together with other experimental findings it was suggested that (1) TFP binds to S100a protein and S100a0 protein in the presence of Ca2+, with half-saturation points of 18 and 3 microM, respectively, (2) TFP binds to S100b protein only in the presence of Zn2+, (3) alpha-subunit of S100 protein binds to TFP specifically in a Ca2+-dependent manner and beta-subunit in a Zn2+-dependent manner.  相似文献   

18.
Analysis of circular dichroism spectra made it possible to offer a method for estimation of tetracycline solutions contamination with metal ions. By its sensitivity the method is much superior to the spectrophotometric one used at present for determination of the antibiotic purity. In the latter method formation of complexes with metals is traced by batochromic displacement of the absorption spectra. The new method is rapid, relatively selective and requires comparatively small quantities of the substance for the analysis, which provides its use under both laboratory and manufacture conditions. The method is based on identification of the circular dichroism spectra of tetracycline complexes with metals in the long wavelength region. The presence of the circular dichroism concervative bands with strictly defined extremums in the spectra of tetracycline low acid solutions contaminated by multiply charged metal ions allowed vs. the circular dichroism spectra of pure tetracycline sample to conclude that the solution contained admixtures and to suggest their nature. It was shown that the charge, ion radius and tetracycline:metal relation were the factors defining the mark and location of the dichroism band extremums. At lambda(extr)-410-415 nm the tetracycline complexes with light metal ions such as Mg2+, Al3+ and Ca2+ were detected by the circular dichroism negative band in the spectra, while the complexes with heavy metal ions such as Sc3+, Sr3+, Cu3+, Cd3+, Ba2+, Y3+ and the cerium subgroup lanthanides were detected by the circular dichroism positive band. The tetracycline complexes with the lanthanides of the second half of the yttrium subgroup (Ho(3+)-Lu3+) were characterized by the presence of the circular dichroism minimum at lambda(min)-425 nm. When the tetracycline concentration was above 1.5 x 10(-3) M, multiligand complexes with circular dichroism negative extremum at lambda(min)-400 nm formed.  相似文献   

19.
The possible structural changes of the calmodulin-trifluoperazine (TFP) complex caused by Ca2+ binding have been analyzed by microcalorimetric titrations. Titrations of calmodulin with Ca2+ in the presence of 8-fold molar excess TFP have been made both in the absence and presence of Mg2+, at pH 7.0, and at 5, 15, and 25 degrees C. At high concentrations of TFP calmodulin forms a complex with TFP even in the absence of Ca2+. The reaction of the calmodulin-TFP complex with Ca2+ is exothermic, both in the presence and absence of Mg2+. In the presence of Mg2+ the reaction is driven almost entirely by a favorable enthalpy change. The magnitudes of the hydrophobic and internal vibrational contributions to the heat capacity and entropy changes of this complex on Ca2+ binding have been estimated by the empirical method of Sturtevant (Sturtevant, J. M. (1977) Proc. Natl. Acad. Sci. U. S. A. 74, 2236-2240). In the presence of Mg2+, the vibrational as well as hydrophobic entropy is slightly increased in a parallel manner by Ca2+ binding to each of the binding sites. In contrast, when Mg2+ is absent, the hydrophobic entropy gradually increases on Ca2+ binding, but the vibrational entropy decreases. These changes of entropy indicate the assembling of non-polar groups on the surface of the complex and suggest that the overall structure is loosened in the presence of Mg2+, but tightened in the absence of Mg2+.  相似文献   

20.
In highly purified rat liver plasma membrane preparations, membrane-bound calmodulin was phosphorylated by a membrane-bound protein kinase using [gamma-32P]ATP as phosphate donor. Maximum phosphorylation of calmodulin occurred in the absence of calcium ion, but was significantly decreased in its presence. Plasma membrane-bound calmodulin was identified by the following criteria: (i) extraction from the membrane by EGTA, (ii) stimulation of the activity of the Ca2+-calmodulin-dependent enzyme, (3':5'AMP)-phosphodiesterase, by the EGTA extract, and (iii) electrophoretic comigration of EGTA-extracted protein with standard bovine brain calmodulin, both in the presence and the absence of Ca2+. Phosphorylation of the plasma membrane-bound calmodulin was shown by electrophoretic comigration of the 32P-labelled molecule with bovine brain calmodulin, the absence of phosphorylation of this protein band in calmodulin-depleted membranes, and a Western blot of the phosphorylated band using a calmodulin antibody. Treatment of plasma membrane preparations with sheep anticalmodulin serum prevented the phosphorylation of the calmodulin band. Phosphocalmodulin, which could be partially extracted from the membrane by EGTA, comigrated with bovine brain calmodulin in polyacrylamide gel electrophoresis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号