共查询到20条相似文献,搜索用时 0 毫秒
1.
Faisal Chaudhry Dennis Breitsprecher Kristin Little Grigory Sharov Olga Sokolova Bruce L. Goode 《Molecular biology of the cell》2013,24(1):31-41
Actin filament severing is critical for the dynamic turnover of cellular actin networks. Cofilin severs filaments, but additional factors may be required to increase severing efficiency in vivo. Srv2/cyclase-associated protein (CAP) is a widely expressed protein with a role in binding and recycling actin monomers ascribed to domains in its C-terminus (C-Srv2). In this paper, we report a new biochemical and cellular function for Srv2/CAP in directly catalyzing cofilin-mediated severing of filaments. This function is mediated by its N-terminal half (N-Srv2), and is physically and genetically separable from C-Srv2 activities. Using dual-color total internal reflection fluorescence microscopy, we determined that N-Srv2 stimulates filament disassembly by increasing the frequency of cofilin-mediated severing without affecting cofilin binding to filaments. Structural analysis shows that N-Srv2 forms novel hexameric star-shaped structures, and disrupting oligomerization impairs N-Srv2 activities and in vivo function. Further, genetic analysis shows that the combined activities of N-Srv2 and Aip1 are essential in vivo. These observations define a novel mechanism by which the combined activities of cofilin and Srv2/CAP lead to enhanced filament severing and support an emerging view that actin disassembly is controlled not by cofilin alone, but by a more complex set of factors working in concert. 相似文献
2.
J Yu C Wang S J Palmieri B K Haarer J Field 《The Journal of biological chemistry》1999,274(28):19985-19991
In the yeast, Saccharomyces cerevisiae, adenylyl cyclase consists of a 200-kDa catalytic subunit (CYR1) and a 70-kDa subunit (CAP/SRV2). CAP/Srv2p assists the small G protein Ras to activate adenylyl cyclase. CAP also regulates the cytoskeleton through an actin sequestering activity and is directed to cortical actin patches by a proline-rich SH3-binding site (P2). In this report we analyze the role of the actin cytoskeleton in Ras/cAMP signaling. Two alleles of CAP, L16P(Srv2) and R19T (SupC), first isolated in genetic screens for mutants that attenuate cAMP levels, reduced adenylyl cyclase binding, and cortical actin patch localization. A third mutation, L27F, also failed to localize but showed no loss of either cAMP signaling or adenylyl cyclase binding. However, all three N-terminal mutations reduced CAP-CAP multimer formation and SH3 domain binding, although the SH3-binding site is about 350 amino acids away. Finally, disruption of the actin cytoskeleton with latrunculin-A did not affect the cAMP phenotypes of the hyperactive Ras2(Val19) allele. These data identify a novel region of CAP that controls access to the SH3-binding site and demonstrate that cytoskeletal localization of CAP or an intact cytoskeleton per se is not necessary for cAMP signaling. 相似文献
3.
Palmgren S Ojala PJ Wear MA Cooper JA Lappalainen P 《The Journal of cell biology》2001,155(2):251-260
Twinfilin is a ubiquitous actin monomer-binding protein that regulates actin filament turnover in yeast and mammalian cells. To elucidate the mechanism by which twinfilin contributes to actin filament dynamics, we carried out an analysis of yeast twinfilin, and we show here that twinfilin is an abundant protein that localizes to cortical actin patches in wild-type yeast cells. Native gel assays demonstrate that twinfilin binds ADP-actin monomers with higher affinity than ATP-actin monomers. A mutant twinfilin that does not interact with actin monomers in vitro no longer localizes to cortical actin patches when expressed in yeast, suggesting that the ability to interact with actin monomers may be essential for the localization of twinfilin. The localization of twinfilin to the cortical actin cytoskeleton is also disrupted in yeast strains where either the CAP1 or CAP2 gene, encoding for the alpha and beta subunits of capping protein, is deleted. Purified twinfilin and capping protein form a complex on native gels. Twinfilin also interacts with phosphatidylinositol 4,5-bisphosphate (PI[4,5]P2), and its actin monomer-sequestering activity is inhibited by PI(4,5)P2. Based on these results, we propose a model for the biological role of twinfilin as a protein that localizes actin monomers to the sites of rapid filament assembly in cells. 相似文献
4.
Previously, we reported that the yeast cytoplasmic thiol peroxidase type II isoform (cTPx II), a member of the TSA/AhpC family, showed a very low peroxidase activity when compared with other cytoplasmic yeast isoforms, and that cTPx II mutant (cTPx II Delta) showed a severe growth retardation compared with that of the wild-type cells. To reveal the physiological function of cTPx II in yeast cell growth, we searched for proteins which react with cTPx II. In this study, we identified a novel interaction between cTPx II and CSR1p using the yeast two-hybrid system. CSR1p (SFH2p) has been known to be one member of Sec14 homologous (SFH2) proteins. SFH2p exhibits phosphatidylinositol transfer protein activity. Interestingly, we found that cTPx II selectively bound to SFH2p among the five types of SFH proteins and Sec14p. The interaction required the dimerization of cTPx II. In addition, SFH2p also specifically bound to cTPx II among the yeast thiol peroxidase isoforms. The selective interaction of the dimer form of cTPx II (the oxidized form) with SFH2p was also confirmed by glutathione S-transferase pull-down and immunoprecipitation assays. The growth retardation, clearly reflected by the length of the lag phase, of cTPx II Delta was rescued by deleting SFH2p in the cTPx II Delta strain. The SFH2 Delta strain did not show any growth retardation. In addition, the double mutant showed a higher susceptibility to oxidative stress. This finding provides the first in vivo demonstration of the specific interaction of cTPx II with SFH2p in an oxidative stress-sensitive manner and a novel physiological function of the complex of cTPx II and SFH2p. 相似文献
5.
In vivo interaction of the adapter protein CD2-associated protein with the type 2 polycystic kidney disease protein, polycystin-2 总被引:5,自引:0,他引:5
Lehtonen S Ora A Olkkonen VM Geng L Zerial M Somlo S Lehtonen E 《The Journal of biological chemistry》2000,275(42):32888-32893
We identified a developmentally regulated gene from mouse kidney whose expression is up-regulated in metanephrogenic mesenchyme cells when they are induced to differentiate to epithelial cells during kidney organogenesis. The deduced 70.5-kDa protein, originally named METS-1 (mesenchyme-to-epithelium transition protein with SH3 domains), has since been cloned as a CD2-associated protein (CD2AP). CD2AP is strongly expressed in glomerular podocytes, and the absence of CD2AP in mice results in congenital nephrotic syndrome. We have found that METS-1/CD2AP (hereafter referred to as CD2AP) is expressed at lower levels in renal tubular epithelial cells in the adult kidney, particularly in distal nephron segments. Independent yeast two-hybrid screens using the COOH-terminal region of either CD2AP or polycystin-2 as bait identified the COOH termini of polycystin-2 and CD2AP, respectively, as strong interacting partners. This interaction was confirmed in cultured cells by co-immunoprecipitation of endogenous polycystin-2 with endogenous CD2AP and vice versa. CD2AP shows a diffuse reticular cytoplasmic and perinuclear pattern of distribution, similar to polycystin-2, in cultured cells, and the two proteins co-localize by indirect double immunofluorescence microscopy. CD2AP is an adapter molecule that associates with a variety of membrane proteins to organize the cytoskeleton around a polarized site. Such a function fits well with that hypothesized for the polycystin proteins in renal tubular epithelial cells, and the present findings suggest that CD2AP has a role in polycystin-2 function. 相似文献
6.
Misfolding and aggregation of normally soluble proteins into amyloid fibrils and their deposition and accumulation underlies a variety of clinically significant diseases. Fibrillar aggregates with amyloid-like properties can also be generated in vitro from pure proteins and peptides, including those not known to be associated with amyloidosis. Whereas biophysical studies of amyloid-like fibrils formed in vitro have provided important insights into the molecular mechanisms of amyloid generation and the structural properties of the fibrils formed, amyloidogenic proteins are typically exposed to mild or more extreme denaturing conditions to induce rapid fibril formation in vitro. Whether the structure of the resulting assemblies is representative of their natural in vivo counterparts, thus, remains a fundamental unresolved issue. Here we show using Fourier transform infrared spectroscopy that amyloid-like fibrils formed in vitro from natively folded or unfolded beta(2)-microglobulin (the protein associated with dialysis-related amyloidosis) adopt an identical beta-sheet architecture. The same beta-strand signature is observed whether fibril formation in vitro occurs spontaneously or from seeded reactions. Comparison of these spectra with those of amyloid fibrils extracted from patients with dialysis-related amyloidosis revealed an identical amide I' absorbance maximum, suggestive of a characteristic and conserved amyloid fold. Our results endorse the relevance of biophysical studies for the investigation of the molecular mechanisms of beta(2)-microglobulin fibrillogenesis, knowledge about which may inform understanding of the pathobiology of this protein. 相似文献
7.
Mammalian homolog of the yeast cyclase associated protein, CAP/Srv2p, regulates actin filament assembly 总被引:4,自引:0,他引:4
Control of cell shape and motility requires rearrangements of the actin cytoskeleton. One cytoskeletal protein that may regulate actin dynamics is CAP (cyclase associated protein; CAP/Srv2p; ASP-56). CAP was first isolated from yeast as an adenylyl cyclase associated protein required for RAS regulation of cAMP signaling. In addition, CAP also regulates the actin cytoskeleton primarily through an actin monomer binding activity. CAP homologs are found in many eukaryotes, including mammals where they also bind actin, but little is known about their biological function. We, therefore, designed experiments to address CAP1 regulation of the actin cytoskeleton. CAP1 localized to membrane ruffles and actin stress fibers in fixed cells of various types. To address localization in living cells, we constructed GFP-CAP1 fusion proteins and found that fusion proteins lacking the actin-binding region localized like the wild type protein. We also performed microinjection studies with affinity-purified anti-CAP1 antibodies in Swiss 3T3 fibroblasts and found that the antibodies attenuated serum stimulation of stress fibers. Finally, CAP1 purified from platelets through a monoclonal antibody affinity purification step stimulated the formation of stress fiber-like filaments when it was microinjected into serum-starved Swiss 3T3 cells. Taken together, these data suggest that CAP1 promotes assembly of the actin cytoskeleton. 相似文献
8.
P Even?s P García De Frutos S Linse B Dahlb?ck 《European journal of biochemistry》1999,266(3):935-942
Anticoagulant protein S interacts with the complement regulatory protein C4b-binding protein (C4BP) via its sex-hormone-binding globulin (SHB6)-like region, which contains two globular (G) domains. Similar G domains are found in Gas6, a protein homologous to protein S, which is not known to bind C4BP or to have any anticoagulant activity. To determine the relative importance of the two G domains in protein S for C4BP protein binding, three recombinant protein S chimeras were produced having either of the two globular domains, or the whole SHB6-like globulin region, replaced by corresponding parts from Gas6. The chimeras were tested for binding to immobilized C4BP using surface-plasmon-resonance technology and microtiter plate-based assays. In both systems, chimeras containing either only globular domains G1 or G2 from protein S were found to bind C4BP. Binding was stimulated by Ca2+ in a manner similar to that found for wild-type protein S. The affinities for C4BP of both chimeras containing individual G domains from protein S, were lower than that of wild-type protein S. Chimera II, containing the G1 domain from protein S, consistently bound C4BP more efficiently than chimera I, which had the protein S-derived G2 domain. The chimera containing the whole SHB6-like globulin region from Gas6 interacted considerably more weakly with C4BP. Our results demonstrate that both G domains of protein S are involved in the interaction between protein S and C4BP and that full affinity binding is dependent on contributions from both domains. 相似文献
9.
Bimodal interaction between replication-protein A and Dna2 is critical for Dna2 function both in vivo and in vitro
下载免费PDF全文

We have previously shown that replication- protein A (RPA), the heterotrimeric single-stranded DNA binding protein of eukaryotes, plays a role in Okazaki fragment processing by acting as a molecular switch between the two endonucleases, Dna2 and Fen1, to ensure the complete removal of primer RNAs in Saccharomyces cerevisiae. The stimulation of Dna2 endonuclease activity by RPA requires direct protein–protein interaction. In this report we have analyzed genetically and biochemically the interaction of Dna2 with RPA. RFA1, the gene encoding the large subunit of RPA, displayed allele-specific interactions with DNA2 that included synthetic lethality and intergenic complementation. In addition, we identified physical and functional interactions between these proteins and found that RPA binds Dna2 predominantly through its large subunit, Rpa1. Consistent with the mapping of synthetic lethal mutations, robust interaction localizes to the C-termini of these proteins. Moreover, the N-terminal domains of Dna2 and Rpa1 appear to be important for a functional interaction because the N-terminal domain of RPA1 was required to maximally stimulate Dna2 endonuclease activity. We propose that a bimodal interaction of Dna2 with Rpa1 is important for Dna2 function both in vivo and in vitro. The relevance of each interaction with respect to the function of the Dna2 endonuclease activity is discussed. 相似文献
10.
A cyclase-associated protein regulates actin and cell polarity during Drosophila oogenesis and in yeast 总被引:5,自引:0,他引:5
BACKGROUND: A polarised cytoskeleton is required to pattern cellular space, and for many aspects of cell behaviour. While the mechanisms ordering the actin cytoskeleton have been extensively studied in yeast, little is known about the analogous processes in other organisms. We have used Drosophila oogenesis as a model genetic system in which to investigate control of cytoskeletal organisation and cell polarity in multicellular eukaryotes. RESULTS: In a screen to identify genes required for Drosophila oocyte polarity, we isolated a Drosophila homologue of the yeast cyclase-associated protein, CAP. Here we show that CAP preferentially accumulates in the oocyte, where it inhibits actin polymerisation. CAP also has a role in oocyte polarity, as cap mutants fail to establish the proper, asymmetric distribution of mRNA determinants within the oocyte. Similarly in yeast, loss of CAP causes analogous polarity defects, altering the distribution of actin filaments and mRNA determinants. CONCLUSIONS: This study identifies CAP as a new effector of actin dynamics in Drosophila. As CAP controls the spatial distribution of actin filaments and mRNA determinants in both yeast and Drosophila, we conclude that CAP has an evolutionarily conserved function in the genesis of eukaryotic cell polarity. 相似文献
11.
12.
Knapp S Zamai M Volpi D Nardese V Avanzi N Breton J Plyte S Flocco M Marconi M Isacchi A Caiolfa VR 《Journal of molecular biology》2001,306(5):1179-1189
The formation of a complex between beta-catenin and members of the TCF/LEF family of high-mobility group proteins is a key regulatory event in the wnt-signaling pathway, essential for embryonal development as well as the growth of normal and malignant colon epithelium. We have characterized the binding of TCF4 to human beta-catenin by steady-state intrinsic fluorescence quenching experiments, surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). Binding studies in solution and in heterogeneous phase showed that TCF4 binds reversibly to beta-catenin with an affinity (KB) of 3(+/-1) 10(8) M(-1). Site-directed mutagenesis, together with calorimetric measurements, revealed that residue D16 in TCF4 plays a crucial role in high-affinity binding. Mutation of this residue to alanine resulted in a decrease of KB by two orders of magnitude as well as a significant reduction in binding enthalpy. Binding of TCF4 to beta-catenin gave rise to a large negative enthalpy change at 25 degrees C (-29.7 kcal/mol). Binding enthalpies were strongly temperature dependent, which resulted in the determination of a large heat capacity change upon binding of -1.5 kcal/(mol K). The molecular events that take place upon complex formation are discussed using the measured thermodynamic data together with the crystal structure of the beta-catenin arm repeat region/TCF complex. 相似文献
13.
The carrier of uridine transport in hamster cells in culture is highly susceptible to the inhibitory effect of probes like S-benzylated derivatives of mercaptopurine nucleosides. The interaction between the probes and the carrier is competitive and reversible and it takes place at a site different from the substrate binding site. The Ki for the most potent derivative p-nitrobenzyl-6-mercaptoinosine is 0.15 n Molar at 20 degrees C. The effect of the probes is interpreted in terms of conformational change induced on the carrier upon binding of the probe. The carrier assumes distinct conformations depending on whether it is probe-free (form A) or probe bound (form B). Kinetic as well as chemical evidence supports the predictions of the allosteric carrier model. A single component of kinetics is observed either in the absence of inhibitor (Km form A) or at high concentrations of inhibitor (Km form B). A two component kinetics is observed at intermediate concentrations of inhibitor (some carriers in form B and others in form A). The two forms have distinct Km values for uridine: form A50 muMolar and form B 250 muMolar. Two forms have also different susceptibilities to the action of organomercurials: form A is insensitive whereas form B is highly inhibited by the chemical modified of SH groups. The existence of putative allosteric sites in carriers is discussed in terms of modifier sites capable of modulating transport activities as a result of specific membrane-ligand interactions. 相似文献
14.
Yap CC Muto Y Kishida H Hashikawa T Yano R 《Biochemical and biophysical research communications》2003,301(4):1122-1128
Inside cells, membrane proteins are localized at particular surface domains to perform their precise functions. Various kinds of PDZ domain proteins have been shown to play important roles in the intracellular trafficking and anchoring of membrane proteins. In this study, we show that delta2 glutamate receptor is interacting with S-SCAM/MAGI-2, a PDZ domain protein localized in the perinuclear region and postsynaptic sites of cerebellar Purkinje cells. The binding is regulated by PKC (protein kinase-C) mediated phosphorylation of the receptor with a unique repetitive structure in S-SCAM/MAGI-2. Co-expression of both proteins resulted in drastic changes of the receptor localization in COS7 cells. These results show a novel regulatory mechanism for the binding of PDZ domain proteins and suggest that the interaction between delta2 receptor and S-SCAM/MAGI-2 may be important for intracellular trafficking of the receptor. 相似文献
15.
16.
17.
Alpha4 is a regulatory subunit of the protein phosphatase family of enzymes and plays an essential role in regulating the catalytic subunit of PP2A (PP2Ac) within the rapamycin-sensitive signaling pathway. Alpha4 also interacts with MID1, a microtubule-associated ubiquitin E3 ligase that appears to regulate the function of PP2A. The C-terminal region of alpha4 plays a key role in the binding interaction of PP2Ac and MID1. Here we report on the solution structure of a 45-amino acid region derived from the C-terminus of alpha4 (alpha45) that binds tightly to MID1. In aqueous solution, alpha45 has properties of an intrinsically unstructured peptide although chemical shift index and dihedral angle estimation based on chemical shifts of backbone atoms indicate the presence of a transient α-helix. Alpha45 adopts a helix-turn-helix HEAT-like structure in 1% SDS micelles, which may mimic a negatively charged surface for which alpha45 could bind. Alpha45 binds tightly to the Bbox1 domain of MID1 in aqueous solution and adopts a structure consistent with the helix-turn-helix structure observed in 1% SDS. The structure of alpha45 reveals two distinct surfaces, one that can interact with a negatively charged surface, which is present on PP2A, and one that interacts with the Bbox1 domain of MID1. 相似文献
18.
19.
20.
Protein profiling and characterization of protein interactions in biological samples ultimately require indicator-free methods of signal detection, which likewise offer an opportunity to distinguish specific interactions from nonspecific protein binding. Here we describe a new 3-dimensional protein microchip for detecting biomolecular interactions with matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS); the microchip comprises a high-density array of methacrylate polymer elements containing immobilized proteins as capture molecules and directly interfaces with a commercially available mass spectrometer. We demonstrated the performance of the chip in three types of experiments by detecting antibody-antigen interactions, enzymatic activity, and enzyme-inhibitor interactions. MALDI-MS biochip-based tumor necrosisfactor alpha (TNF-alpha) immunoassays demonstrated the feasibility of detecting antigens in complex biological samples by identifying molecular masses of bound proteins even at high nonspecific protein binding. By detecting model interactions of trypsin with trypsin inhibitors, we showed that the protein binding capacity of methacrylate polymer elements and the sensitivity of MALDI-MS detection of proteins bound to these elements surpassed that of other 2- and 3-dimensional substrates tested Immobilized trypsin retained functional (enzymatic) activity within the protein microchip and the specificity of macromolecular interactions even in complex biological samples. We believe that the underlying technology should therefore be extensible to whole-proteome protein expression profiling and interaction mapping. 相似文献