首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The epimeric specificity of the catalytic site of rabbit muscle phosphofructokinase was investigated by testing three ketose phosphates as alternate substrates. These (and their epimeric carbons) included: D-psicose-6-P (C-3), D-tagatose-6-P (C-4), and L-sorbose-6-P (C-5). The Michaelis constants (and relative maximal velocities) were: 3.0 mM (45%), 0.054 mM (104%), and 11 mM (15%), respectively. Under the same conditions, D-fructose-6-P had a Km of 0.043 mM and an arbitrary Vmax of 100%. The low affinity of the enzyme for D-psicose-6-P indicates that the L configuration at C-3 is required for effective binding, a specificity similar to several other fructose-metabolizing enzymes. The D configuration at C-5 is also important for tight binding and the proper orientation of the phosphate group of the substrate. The kinetic constants of D-tagatose-6-P were identical with those of D-fructose-6-P, within experimental error. Thus, the configuration at C-4 is not essential for activity; an indication that D-tagatose may be utilized in mammalian tissues. A novel method for the synthesis of D-psicose-6-P and an improved procedure for the synthesis of D-tagatose-6-P are described. All products and intermediates were characterized unequivocally by chemical and physical methods.  相似文献   

2.
The steady state kinetics and effects of salts on chicken breast phosphoglycerate mutase have been examined. The enzyme can catalyze three phosphoryl transfer reactions: mutase, bisphosphoglycerate phosphatase, and bisphosphoglycerate synthase. The mutase rate was measured in the favorable direction (Keq = glycerate-3-P/glycerate-2-P approximately equal to 12) using [2T]glycerate-2-P as substrate. The bisphosphoglycerate phosphatase activity was studied in the presence of the activator, glycolate-2-P. The latter is an analog of the glycerate-P's and appears to act as an abortive mutase substrate. The kinetic pattern obtained with both activities is that of a ping-pong mechanism with inhibition by the second substrate occurring at a lower concentration than the Km value for that substrate. The kinetic parameters for the mutase determined in 50 mM N-[tris(hydroxymethyl)methyl-2-amino]ethanesulfonate (TES)/sodium buffer containing 0.1 M KCl, pH 7.5, 25 degrees C are: Km glycerate-2,3-P2, 0.069 micron; Km glycerate-2-P, 14 micron; Km glycerate-3-P approximately 200 micron; Ki glycerate-2-P, 4 micron. The kinetic parameters for the phosphatase reaction in 50 mM triethanolamine/Cl- buffer, pH 7.5, 25 degrees C are: Km glycerate-2,3-P2, 0.065 micron:Km glycolate-2P, 479 micron; Ki glycolate-2-P, 135 micron. The enzyme is sensitive to changes in the ionic environment. Increasing salt concentrations activate the phosphatase in the presence of glycolate-2-P by decreasing the apparent Km of glycerate-2,3-P2. The effects are due to the anionic component and Cl- greater than acetate greater than TES. The same salts are competitive inhibitors with respect to glycolate-2-P. With high levels of KCl that produce a 30-fold decrease in the apparent maximal velocity due to competition with glycolate-2-P, the Km of glycerate-2,3-P2 remains low. These observations lead us to postulate that each monophosphoglycerate substrate has a separate site on the enzyme and that glycerate-2,3-P2 can bind to either site. The binding of anions to one site of the nonphosphorylated enzyme allows an increase in the on and off rates of glycerate-2,3-P2 at the alternate site. Salts inhibit the mutase reaction. The Km of glycerate-2,3-P2 is increased as is that of glycerate-2-P. The effect on the Km of glycerate-2,3-P2 is attributed to an increase in the off rate/on rate ratio for glycerate-2,3-P2. The bisphosphoglycerate synthase reaction is shown to require added glycerate-3-P. The equilibrium between enzyme and glycerate-1,3-P2 is favorable (Kdiss less than or equal 7 X 10(-8) M) and suggests that in the absence of a separate synthase this reaction may have functional significance.  相似文献   

3.
The sn-glycerol-3-phosphate (glycerol-phosphate) acyltransferase of Escherichia coli was purified to near homogeneity and its activity reconstituted with phospholipids (Green, P.R., Merrill, A.M., Jr. and Bell, R.M. (1981) J. Biol. Chem. 256, 11151-11159). The competency of glycerol-P analogues to serve as inhibitors and as substrates was investigated. Dihydroxyacetone-P, ethyleneglycol-P, 1,3-propanediol-P, 3,4-dihydroxybutylphosphonate and DL-glyceraldehyde-3-P were inhibitors of the reconstituted purified glycerol-phosphate acyltransferase. The kinetics of inhibition, while formally of the mixed type, most closely resembled that of a simple competitive inhibition with respect to glycerol-3-P. Inorganic phosphate was also found to be a competitive inhibitor. All of the glycerol-3-P analogues except DL-glyceraldehyde-3-P were substrates. Of these, dihydroxyacetone-P proved to be the best substrate. The secondary hydroxyl was not necessary for activity. Glycerol-phosphate acyltransferase catalyzed the hydrolysis of palmitoyl-CoA in the presence of DL-, but not D-glyceraldehyde-3-P. This suggests that the gem diol of L-glyceraldehyde-3-P may be a substrate, and that the acylated adduct may be unstable. The enzyme was inactivated by phenylglyoxal and butanedione, suggesting that arginine may be at or near the active site.  相似文献   

4.
The 5'-deoxy-5'-iodo-substituted analogs of adenosine and inosine are cytotoxic to tumor cells that have high activities of 5'-methylthioadenosine phosphorylase and purine nucleoside phosphorylase, respectively (Savarese, T.M., Chu, S-H., Chu, M.Y., and Parks, R. E., Jr. (1984) Biochem. Pharmacol. 34, 361-367). 5-Iodoribose 1-phosphate (5-IRib-1-P), the common intracellular metabolite of these 5'-iodonucleosides, has been synthesized enzymatically from 5'-deoxy-5'-iodoadenosine via adenosine deaminase from Aspergillus oryzae and human erythrocytic purine nucleoside phosphorylase. The purification and chemical properties of 5-IRib-1-P are described. The analog sugar phosphate inhibited purine nucleoside phosphorylase from human erythrocytes, phosphoglucomutase from rabbit muscle, and 5'-methylthioadenosine phosphorylase from Sarcoma 180 cells with Ki values of 26, 100, and 9 microM, respectively. Enzymes that react with 5-phosphoribosyl 1-pyrophosphate (P-Rib-PP), P-Rib-PP amidotransferase, hypoxanthine-guanine phosphoribosyltransferase, adenine phosphoribosyltransferase, and orotate phosphoribosyltransferase-orotidylate decarboxylase from extracts of Sarcoma 180 cells, were inhibited with Ki values of 49, 465, 307, and 275 microM, respectively. 5-IRib-1-P had no effect on P-Rib-PP synthetase. Since the Ki values of the analog sugar phosphate for 5'-methylthioadenosine phosphorylase and P-Rib-PP amidotransferase are much lower than the Km values of the natural substrates, Pi or P-Rib-PP which are reported to be present at nonsaturating concentrations under physiological conditions, these enzymes could be significantly inhibited by 5-IRib-1-P in intact cells.  相似文献   

5.
Homogeneous wild type and feedback-resistant forms of the biosynthetic sn-glycerol 3-phosphate (glycerol-P) dehydrogenase of Escherichia coli (EC1.1.1.8) were subjected to two-substrate kinetic analysis. The kinetics of the NADPH-dependent reduction of dihydroxyacetone phosphate (dihydroxyacetone-P) and of the NADP-dependent oxidation of glycerol-P indicate that these reactions proceed by a sequential mechanism. Glycerol-P was a competitive inhibitor with respect to dihydroxyacetone-P for both enzymes. The wild type and feedback-resistant glycerol-P dehydrogenases had Ki values for glycerol-P of 4.4 micrometer and 43 micrometer, respectively. Therefore, the sensitivity of the wild type activity and reduced sensitivity of the feedback-resistant activity, both noted previously in crude extracts, were inherent properties of the enzymes. The patterns of product inhibition for both enzymes were identical, and the difference in the inhibition constants for glycerol-P occurred without significant alteration of any other kinetic constant determined. Kinetic mechanisms consistent with the patterns of product inhibition violated Haldane relationships and other kinetic relationships. These discrepancies suggest that glycerol-P inhibition occurs at a site distinct from the active site. The pH dependencies of the Km for dihydroxyacetone-P and the Ki for glycerol-P were markedly different suggesting the existence of an allosteric site. The addition of glycerol-P in the presence of NADPH stabilized both enzymes against thermal inactivation. Half-maximal stabilization was provided by 5 micrometer and 50 micrometer glycerol-P for the wild type and feedback-resistant enzymes, respectively. These kinetic data, considered in conjunction with previous physiologic and genetic data, indicate that the synthesis of glycerol-P is regulated in vivo by glycerol-P inhibition of the glycerol-P dehydrogenase. The data suggest that glycerol-P inhibition occurs at an allosteric, regulatory site.  相似文献   

6.
An assay method for glyceraldehyde-3-phosphate dehydrogenase in which none of the primary products accumulate and which gives linear kinetics under physiological conditions has been developed. It is based on the use of the 1,3-diphosphoglycerate produced by the enzyme for the formation of NADPH, while the NADH produced is recycled with an auxiliary system. Revised Km values at pH 7.4 for the muscle (rabbit and rat) enzyme are: glyceraldehyde-3-P, 50 μM; NAD, 100 μM; Pi, 10 mM. The rat erythrocyte enzyme gave similar values except for glyceraldehyde-3-P which was 300 μM. Cooperativity for NAD+ tends to be positive but is a variable parameter.  相似文献   

7.
The N-linked oligosaccharides on three lysosomal enzymes in Dictyostelium discoideum were found to contain mannose 6-phosphomethyl residues. We have identified and partially characterized a novel S-adenosylmethionine-dependent methyltransferase that is probably responsible for the synthesis of this unusual diester from Man-6-P. The enzyme selectively methylates the phosphate group of Man-6-P (Km 4.3 mM). Glucose-6-P and fructose-1-P are relatively poor acceptors; however, the enzyme is inactive against a broad array of other phosphorylated compounds. Using model di-, tri-, and pentasaccharide acceptors that include portions of the three different branches of high mannose-type oligosaccharides, we found that the enzyme prefers terminal alpha 1----2-linked Man-6-P residues (Km 0.15-1.25 mM) found on the known phosphorylated branches. The enzyme is membrane bound, has a neutral pH optimum and cofractionates on sucrose gradients with GlcNAc-1-P transferase, which resembles its mammalian counterpart, and is, presumably, the first enzyme in the phosphorylation pathway. Based on the substrate specificity and colocalization with GlcNAc-1-P transferase, the phosphate methyltransferase is likely to be responsible for the generation of mannose-6-phosphomethyldiester on Dictyostelium oligosaccharides.  相似文献   

8.
The NAD-dependent glycerol-3-phosphate dehydrogenase (glycerol-3-phosphate:NAD+ oxidoreductase; EC 1.1.1.8; G3P DHG) was purified 178-fold to homogeneity from Saccharomyces cerevisiae strain H44-3D by affinity- and ion-exchange chromatography. SDS-PAGE indicated that the enzyme had a molecular mass of approximately 42,000 (+/- 1,000) whereas a molecular mass of 68,000 was observed using gel filtration, implying that the enzyme may exist as a dimer. The pH optimum for the reduction of dihydroxyacetone phosphate (DHAP) was 7.6 and the enzyme had a pI of 7.4. NADPH will not substitute for NADH as coenzyme in the reduction of DHAP. The oxidation of glycerol-3-phosphate (G3P) occurs at 3% of the rate of DHAP reduction at pH 7.0. Apparent Km values obtained were 0.023 and 0.54 mM for NADH and DHAP, respectively. NAD, fructose-1,6-bisphosphate (FBP), ATP and ADP inhibited G3P DHG activity. Ki values obtained for NAD with NADH as variable substrate and FBP with DHAP as variable substrate were 0.93 and 4.8 mM, respectively.  相似文献   

9.
The effects of added polyamines on carbamylphosphate (carbamyl-P):glucose phosphotransferase and glucose-6-phosphate (Glc-6-P) phosphohydrolase activities of rat hepatic D-Glc-6-P phosphohydrolase (EC 3.1.3.9) of intact and detergent-treated microsomes have been investigated. With the former preparation, in the presence of 1.4 mM phosphate substrate and 90 mM D-glucose (phosphotransferase), 1 mM spermine, spermidine, and putrescine activated Glc-6-P phosphohydrolase 67%, 57%, and 35%, respectively. Carbamyl-P:glucose phosphotransferase, under comparable conditions, was activated 57%, 34%, and 18%. NH+4 (0.25--5.0 mM) produced at best but a minor activation (0--14%), while poly(L-lysine) (Mr = 3400; degree of polymerization 16) equimolar relative to other polyamines with respect to ionized free amino groups activated the hydrolase 358% and the transferase 222%. Treatment of microsomes with the detergent deoxycholate reduced, but did not abolish, polyamine-induced activation. The stimulatory effects of polyamines persisted in the presence of excess catalase, indicating their independence from H2O2 formation; and were eliminated in the presence of Ca2+. Kinetic analysis revealed that all tested polyamines decreased the apparent Michaelis constant values for carbamyl-P and Glc-6-P, but had no effect on the Km for glucose. Poly(L-lysine) increased the V value for both Glc-6-P phosphohydrolase and apparent V values for phosphotransferase extrapolated to infinite concentrations of either carbamyl-P or glucose. The other tested polyamines elevated only this last velocity parameter. It is proposed that a major mechanism by which polyamines activate glucose-6-phosphatase-phosphotransferase is through their electrostatic interactions with phospholipids of the membrane of the endoplasmic reticulum of which this enzyme is a part. Conformational alterations thus induced may in turn affect catalytic behavior. It is suggested that polyamines, or similar positively charged peptides, might participate in the cellular regulation of synthetic and hydrolytic activities of glucose-6-phosphatase.  相似文献   

10.
G J Ruijter  J Visser 《Biochimie》1999,81(3):267-272
Phosphoglucose isomerase (PGI) was purified from Aspergillus niger and the in vitro kinetic properties of the enzyme were related to its functioning in vivo. A new assay method was developed to study the forward reaction making use of mannitol 1-P dehydrogenase as the coupling enzyme. In this simple assay system mannitol 1-P dehydrogenase converts fructose 6-P and NADH to mannitol 1-P and NAD+, respectively. At pH 7.5 the Km for glucose 6-P was 0.48 mM, whereas the Km for fructose 6-P was 0.32 mM. The pentose phosphate pathway intermediates 6-phosphogluconate and erythrose 4-P (E4P) were competitive inhibitors of PGI with Ki values of approximately 0.2 mM and 1 microM respectively. In citric acid producing A. niger mycelium inhibition by 6-phosphogluconate is of minor physiological significance (10% inhibition). Since E4P could not be detected by an existing procedure, a novel assay was developed based on the strong inhibition of PGI by E4P. Although the new assay is very sensitive (detection limit 25 pmol), E4P could still not be detected in metabolite extracts indicating that a very low level of E4P is present in the cells. Using in vitro kinetics and concentrations of intracellular metabolites the in vivo activity of PGI was calculated and closely matched the steady state glycolytic flux observed during citric acid production.  相似文献   

11.
Analogs of glycerol-3-phosphate were tested as substrates or inhibitors of the glycerol-3-phosphate acyltransferases of mitochondria and microsomes. (rac)-3,4-Dihydroxybutyl-1-phosphonate, (rac)-glyceraldehyde 3-phosphate, (rac)-3-hydroxy-4-oxobutyl-1-phosphonate, (1S,3S)-1,3,4-trihydroxybutyl-1-phosphonate, and (1R,3S)-1,3,4 trihydroxybutyl-1-phosphonate were competitive inhibitors of both mitochondrial and microsomal sn-glycerol-3-phosphate acyltransferase activity. An isosteric analog of dihydroxyacetone phosphate, 4-hydroxy-3-oxobutyl-1-phosphonate, was a much stronger competitive inhibitor of the microsomal than the mitochondrial enzyme. Phenethyl alcohol was a noncompetitive inhibitor of both the microsomal and the mitochondrial acyltransferases. The product of the mitochondrial acyltransferase reaction with (rac)-3,4-dihydroxybutyl-1- phosphonate was almost exclusively (rac)-4-palmitoyloxy-3-hydroxybutyl-1-phosphonate. The microsomal acylation reaction generated both the monoacyl product and (S)-3,4-dipalmitoyloxybutyl-1-phosphonate. The apparent Km for (S)-3,4-dihydroxybutyl-1-phosphonate was 2.50 and 1.38 mM for the mitochondrial and microsomal enzymes, respectively.  相似文献   

12.
A study of the reverse reaction of rat brain hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) has been performed using a photometric method based on a mutarotase-glucose oxidase-peroxidase-chromogen system to trap and visualize glucose, plus a glycerol kinase-glycerol system to trap ATP. Glucose 6-phosphate or 2-deoxyglucose 6-phosphate were used as phosphoryl donors at different concentrations of ADP. Variation of glucose 6-phosphate concentrations resulted in a biphasic curve from which apparent Km and Ki values of ca. 0.2 mM were calculated. In contrast, variation of 2-deoxyglucose 6-phosphate concentrations resulted in Michaelian kinetics with an apparent Km of 2 mM. The Km value for MgADP was 16 mM irrespective of the nature and concentration of the hexose 6-phosphate substrate. These results are fully consistent with an allosteric site for glucose 6-phosphate as an explanation for the inhibition of animal hexokinases by glucose 6-P and further indicate that the maximal rate is the parameter affected. From these observations and previous knowledge, the possible occurrence in animal hexokinases of a regulatory site for ATP to account for the competition between glucose 6-phosphate and ATP in the forward reaction is postulated.  相似文献   

13.
When either 3H-labeled L-glyceraldehyde or 3H-labeled L-glyceraldehyde 3-phosphate (GAP) was added to cultures of Escherichia coli, the phosphoglycerides were labeled. More than 81% of the label appeared in the backbone of the phosphoglycerides. Chromatographic analyses of the labeled phosphoglycerides revealed that the label was normally distributed into phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin. These results suggest that L-glyceraldehyde is phosphorylated and the resultant L-GAP is converted into sn-glycerol 3-phosphate (G3P) before being incorporated into the bacterial phosphoglycerides. Cell-free bacterial extracts catalyzed an NADPH-dependent reduction of L-GAP to sn-G3P. The partially purified enzyme was specific for L-GAP and recognized neither D-GAP nor dihydroxyacetone phosphate as a substrate. NADH could not replace NADPH as a coenzyme. The L-GAP:NADPH oxidoreductase had an apparent Km of 28 and 35 microM for L-GAP and NADPH, respectively. The enzyme was insensitive to sulfhydryl reagents and had a pH optimum of approximately 6.6. The phosphonic acid analog of GAP, 3-hydroxy-4-oxobutyl-1-phosphonate, was a substrate for the reductase, with an apparent Km of 280 microM.  相似文献   

14.
The nonglycolytic, anaerobic organism Veillonella parvula M4 has been shown to contain an active pyruvate kinase. The enzyme was purified 126-fold and was shown by disc-gel electrophoresis to contain only two faint contaminating bands. The purified enzyme had a pH optimum of 7.0 in the forward direction and exhibited sigmoidal kinetics at varying concentrations o-f phosphoenol pyruvate (PEP), adenosine 5'-monophosphate (AMP), and Mg-2+ ions with S0.5 values of 1.5, 2.0, and 2.4 mM, respectively. Substrate inhibition was observed above 4 m PEP. Hill plots gave slope values (n) of 4.4 (PEP), 2.8 (adenosine 5'-diphosphate), and 2.0 (Mg-2+), indicating a high degree of cooperativity. The enzyme was inhibited non-competitively by adenosine 5'-triphosphate (Ki = 3.4 mM), and this inhibition was only slightly affected by increasing concentration of Mg-2+ ions to 30 mM. Competitive inhibition was observed with 3-phosphoglycerate, malate, and 2,3-diphosphoglycerate but only at higher inhibitor concentrations. The enzyme was activated by glucose-6-phosphate (P), fructose-6-P, fructose-1,6-diphosphate (P2), dihydroxyacetone-P, and AMP; the Hill coefficients were 2.2, 1.8, 1.5, 2.1, and 2.0, respectively. The presence of each these metabolites caused substrate velocity curves to change from sigmoidal to hyperbolic curves, and each was accompanied by an increase in the maximum activity, e.g., AMP greater than fructose-1,6-P2 greater than dihydroxyacetone-P greater than glucose-6-P greater than fructose-6-P. The activation constants for fructose-1,6-P2, AMP, and glucose-6-P were 0.3, 1.1, and 5.3 mM, respectively. The effect of 5 mM fructose-1,6-P2 was significantly different from the other compounds in that this metabolite was inhibitory between 1.2 and 3 mM PEP. Above this concentration, fructose-1,6-P2 activated the enzyme and abolished substrate inhibition by PEP. The enzyme was not affected by glucose, glyceraldehyde-3-P, 2-phosphoglycerate, lactate, malate, fumerate, succinate, and cyclic AMP. The results suggest that the pyruvate kinase from V. parvula M4 plays a central role in the control of gluconeogenesis in this organism by regulating the concentration of PEP.  相似文献   

15.
Phosphodiesteric cleavage of phosphatidylinositol-4,5-bisphosphate (PtdIns-4,5-P2) is required for transmembrane signaling by chemoattractants in human polymorphonuclear leukocytes (PMN). Considering the importance of PtdIns-4,5-P2 as a reservoir for second messenger substances, we have characterized the enzyme system that synthesizes this phospholipid in human PMN, consisting of kinases for phosphatidylinositol (PtdIns) and phosphatidylinositol-4-phosphate (PtdIns-4-P). The preferred phosphate donor for both enzymes was ATP as compared with GTP. The respective Km for ATP for PtdIns kinase and PtdIns-P kinase were 0.049 +/- 0.013 and 0.062 +/- 0.005 mM and for GTP were 0.242 +/- 0.016 and 0.186 +/- 0.037 mM. PtdIns stimulated the activity of PtdIns kinase to a greater extent than PtdIns-4-P kinase. PtdIns-4-P inhibited the activity of detergent-solubilized PtdIns kinase and stimulated particulate PtdIns-4-P kinase, whereas both enzymes exhibited substrate inhibition to PtdIns-4,5-P2. Mg2+ was the preferred cation for both enzymes, but the apparent Km values (4.1 +/- 0.9 mM for PtdIns kinase and 1.0 +/- 0.7 mM for PtdIns-4-P kinase) were significantly different (p less than 0.005). Mn2+ partially substituted for Mg2+, and both enzymes were inhibited by Ca2+. The polyamine spermine stimulated PtdIns-4-P kinase activity to a greater extent and at lower concentrations than PtdIns kinase. PtdIns kinase was easily solubilized in both Triton X-100 and Nonidet P-40, whereas PtdIns-4-P kinase remained in a detergent-nonextractable membrane fraction. These findings demonstrate that the enzyme system in human PMN that forms PtdIns-4,5-P2 is composed of two distinct enzymes with similar characteristics.  相似文献   

16.
White RH  Xu H 《Biochemistry》2006,45(40):12366-12379
A biosynthetic pathway is proposed for creating 6-deoxy-5-ketofructose-1-phosphate (DKFP), a precursor sugar for aromatic amino acid biosynthesis in Methanocaldococcus jannaschii. First, two possible routes were investigated to determine if a modified, established biosynthetic pathway could be responsible for generating 6-deoxyhexoses in M. jannaschii. Both the nucleoside diphosphate mannose pathway and a pathway involving nucleoside diphosphate derivatives of fructose-1-P, fructose-2-P, or fructose-1,6-bisP were tested and eliminated. The established pathways did not produce the expected intermediates nor did the anticipated enzymes have the predicted enzymatic activities. Because neither anticipated pathway could produce DKFP, M. jannaschii glucose-6-P metabolism was studied in detail to establish exactly how glucose-6-P is converted into DKFP. This detailed analysis showed that methylglyoxal and a fructose-1-P- or fructose-1,6-bisP-derived dihydroxyacetone-P fragment are key intermediates in DKFP production. Glucose-6-P readily converts to fructose-6-P, which in turn converts to fructose-1,6-bisP. Fructose-6-P and fructose-1,6-bisP convert into glyceraldehyde-3-P (Ga-P-3), which converts into methylglyoxal by a 2,3-elimination of phosphate. The MJ1585-derived enzyme catalyzes the condensation of methylglyoxal with a dihydroxyacetone-P fragment, which is derived from fructose-1-P and/or fructose-1,6-bisP, generating DKFP. The elimination of phosphate from Ga-P-3 proceeds by both enzymatic and chemical routes in cell extracts, producing sufficient concentrations of methylglyoxal to support the reaction. This work is the first report of methylglyoxal functioning in central metabolism.  相似文献   

17.
Previous work from this laboratory has shown that 5-thio-d-glucose is a competitive inhibitor for active transport of d-glucose. The present work indicates that the thiosugar analog and its 1-phosphate can also interfere with d-glucose 6-P formation.5-Thio-d-glucose serves as a substrate for yeast hexokinase with a Km of 4 mm, and V of 8.8 nmol/min/μg of protein. The analog competitively inhibits d-glucose phosphorylation with a Ki of 20 mm.5-Thio-d-glucose 1-P can act as a substrate for rabbit skeletal muscle phosphoglucomutase with a Km of 60 μm and V of 0.17 μmol/min/μg of protein. Thus, 5-thio-d-glucose 1-P behaves as a near metabolic analog of d-glucose 1-P. 5-Thio-d-glucose 1-P is a competitive inhibitor of d-glucose 1-P conversion to the 6-P with a Ki of 16.2 μm.5-Thio-d-glucose 6-P produced by phosphorylation of 5-thio-d-glucose and by conversion from 5-thio-d-glucose 1-P was identified by chromatographic mobility and by color reactions.  相似文献   

18.
The kinetic properties of Trypanosoma brucei brucei triose-phosphate isomerase are compared with those of the commercially available rabbit muscle and yeast enzymes and with published data on the chicken muscle enzyme. With glyceraldehyde 3-phosphate as substrate Km = 0.25 +/- 0.05 mM and kcat = 3.7 X 10(5) min-1. With dihydroxyacetone phosphate as substrate Km = 1.2 +/- 0.1 mM and kcat = 6.5 X 10(4) min-1. The pH dependence of Km and Vmax at 0.1 M ionic strength is in agreement with the results published for the yeast and chicken muscle enzymes. At ionic strength below 0.05 M the effect of a charged group specific for the trypanosomal enzyme and absent from the yeast and rabbit muscle enzymes becomes detectable. This effect significantly increases Km whereas Vmax becomes slightly higher. Trypanosomal triose-phosphate isomerase is inhibited by sulphate, phosphate and arsenate ions, by 2-phosphoglycolate and a number of documented inhibitors in the same concentration range as are the other triose-phosphate isomerases. The trypanocidal drug, Suramin inhibits T. brucei and rabbit muscle triose-phosphate isomerase to the same extent while leaving the yeast enzyme relatively unaffected.  相似文献   

19.
Glycerate-3-kinase (EC 2.7.1.31) from spinach leaves shows absolute specificity for D-glycerate as phosphate acceptor, yielding 3-phosphoglycerate as a product. ATP complexed with either Mg2+ or Mn2+ is the preferred phosphate donor. The enzyme has Km (D-glycerate) = 0.25 mM, Km (Mg-ATP) = 0.21 mM, Vmax = 300 mumol min-1 mg protein-1, and a turnover number = 12,000 X min-1. The equilibrium constant for the reaction is approximately 300 at pH 7.8. Pyrophosphate, 3-phosphoglycerate and ribulose 1,5-bisphosphate are the strongest inhibitors among the phosphorylated and nonphosphorylated metabolites tested; however, their regulatory role in vivo is questioned. Substrate kinetics, as well as product and analog inhibition data, are consistent with a sequential random mechanism. The distinct characteristic of the glycerate kinase-catalyzed reaction is the formation of a dead-end complex between the enzyme, D-glycerate, and 3-phosphoglycerate.  相似文献   

20.
N-Bromoacetylethanolamine phosphate and 3-bromo-1,4-dihydroxy-2-butanone 1,4-bisphosphate have been tested in order to study the hexose phosphate binding sites of a bifunctional enzyme, fructose-6-P,2-kinase:fructose-2,6-bisphosphatase. N-Bromoacetylethanolamine phosphate is a competitive inhibitor with respect to fructose-6-P (Ki = 0.24 mM) and a noncompetitive inhibitor with ATP (Ki = 0.8 mM). The reagent inactivates fructose-6-P,2-kinase but not fructose-2,6-bisphosphatase, and the inactivation is prevented by fructose-6-P. The inactivation reaction follows pseudo first-order kinetics to completion and with increasing concentrations of N-bromoacetylethanolamine phosphate a rate saturation effect is observed. The concentration of the reagent giving the half-maximum inactivation is 2.2 mM and the apparent first order rate constant is 0.0046 s-1. The enzyme alkylated by N-bromoacetylethanolamine-P has lost over 90% of the kinase activity, retains nearly full activity of fructose-2,6-bisphosphatase, and its inhibition by fructose-6-P is not altered. 3-Bromo-1,4-dihydroxy-2-butanone 1,4-bisphosphate is also a competitive inhibitor of fructose-6-P,2-kinase with respect to fructose-6-P in the forward reaction and fructose-2,6-P2 in the reverse direction. This reagent inhibits 93% of fructose-6-P,2-kinase but activates fructose-2,6-bisphosphatase 3.7-fold. 3-Bromo-1,4-dihydroxy-2-butanone 1,4-bisphosphate alters the fructose-2,6-P2 saturation kinetic curve from negative cooperativity to normal Michaelis-Menten kinetics with K0.5 of 0.8 microM. The reagent, however, has no effect on the fructose-6-P inhibition of the phosphatase. These results strongly suggest that hexose phosphate binding sites of fructose-6-P,2-kinase and fructose-2,6-bisphosphatase are distinct and located in different regions of this bifunctional enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号