首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Techniques of compartmental (efflux) and kinetic influx analyses with the radiotracer 13NH4+ were used to examine the adaptation to hypoxia (15, 35, and 50% O2 saturation) of root N uptake and metabolism in 3-week-old hydroponically grown rice (Oryza sativa L., cv IR72) seedlings. A time-dependence study of NH4+ influx into rice roots after onset of hypoxia (15% O2) revealed an initial increase in the first 1 to 2.5 h after treatment imposition, followed by a decline to less than 50% of influx in control plants by 4 d. Efflux analyses conducted 0, 1, 3, and 5 d after the treatment confirmed this adaptation pattern of NH4+ uptake. Half-lives for NH4+ exchange with subcellular compartments, cytoplasmic NH4+ concentrations, and efflux (as percentage of influx) were unaffected by hypoxia. However, significant differences were observed in the relative amounts of N allocated to NH4+ assimilation and the vacuole versus translocation to the shoot. Kinetic experiments conducted at 100, 50, 35, and 15% O2 saturation showed no significant change in the Km value for NH4+ uptake with varying O2 supply. However, Vmax was 42% higher than controls at 50% O2 saturation, unchanged at 35%, and 10% lower than controls at 15% O2. The significance of these flux adaptations is discussed.  相似文献   

2.
The present lab-scale research reveals the potential of implementation of an oxygen-limited autotrophic nitrification-denitrification (OLAND) system with normal nitrifying sludge as the biocatalyst for the removal of nitrogen from nitrogen-rich wastewater in one step. In a sequential batch reactor, synthetic wastewater containing 1 g of NH4+-N liter−1 and minerals was treated. Oxygen supply to the reactor was double-controlled with a pH controller and a timer. At a volumetric loading rate (Bv) of 0.13 g of NH4+-N liter−1 day−1, about 22% of the fed NH4+-N was converted to NO2-N or NO3-N, 38% remained as NH4+-N, and the other 40% was removed mainly as N2. The specific removal rate of nitrogen was on the order of 50 mg of N liter−1 day−1, corresponding to 16 mg of N g of volatile suspended solids−1 day−1. The microorganisms which catalyzed the OLAND process are assumed to be normal nitrifiers dominated by ammonium oxidizers. The loss of nitrogen in the OLAND system is presumed to occur via the oxidation of NH4+ to N2 with NO2 as the electron acceptor. Hydroxylamine stimulated the removal of NH4+ and NO2. Hydroxylamine oxidoreductase (HAO) or an HAO-related enzyme might be responsible for the loss of nitrogen.  相似文献   

3.
Nitrate-ammonium synergism in rice. A subcellular flux analysis   总被引:12,自引:0,他引:12       下载免费PDF全文
Many reports have shown that plant growth and yield is superior on mixtures of NO3 and NH4+ compared with provision of either N source alone. Despite its clear practical importance, the nature of this N-source synergism at the cellular level is poorly understood. In the present study we have used the technique of compartmental analysis by efflux and the radiotracer 13N to measure cellular turnover kinetics, patterns of flux partitioning, and cytosolic pool sizes of both NO3 and NH4+ in seedling roots of rice (Oryza sativa L. cv IR72), supplied simultaneously with the two N sources. We show that plasma membrane fluxes for NH4+, cytosolic NH4+ accumulation, and NH4+ metabolism are enhanced by the presence of NO3, whereas NO3 fluxes, accumulation, and metabolism are strongly repressed by NH4+. However, net N acquisition and N translocation to the shoot with dual N-source provision are substantially larger than when NO3 or NH4+ is provided alone at identical N concentrations.  相似文献   

4.
The movement of 14C assimilate from shoots to roots and its subsequent metabolism in the root of Lolium perenne L. was studied using variable N nutrition supplied to halves of a divided root system. Half of the N-deficient root system was supplied with either high NO3-N or high NH4-N for 16 hours or 6 days before 14CO2 labeling of the shoots. The distribution of 14C in sugars, ethanol-soluble nitrogen and organic acids in roots appeared to be related to the N content of the tissue. Supply of high NO3-N for 6 days resulted in significant internal translocation of N into the low N supplied root half. Both root halves also had similar patterns of 14C distribution among soluble and insoluble metabolites. However, NH4-N supply for 6 days did not result in a significant increase of N in the low N supplied roots, thus only the high NH4-N supplied roots displayed stimulated sugar metabolism, similar to that in both root halves in the high NO3-N supply treatment. Percent transport of 14C assimilates from shoot to root was influenced by form and level of N supplied to root halves. Root halves supplied with either high N source for 6 days accumulated greater amounts of 14C assimilate than the corresponding low N root half. However NH4-N supply appeared to make roots stronger sinks since NH4 supply resulted in significantly greater 14C accumulation in both the high NH4 supplied and the low N root halves than did NO3-N supply in corresponding root halves. The data suggest that factors other than root metabolism, such as N mediated metabolism in the shoot, may also influence the percent transport of assimilates to the root. Internal distribution of the incoming assimilate within the root system could be regulated by the metabolic activity or assimilate demand of the roots.  相似文献   

5.
We performed a suite of 15N incubations (15NO2, 15NO3 and 15NH4+) with and without the organic-nitrogen (N) compound allylthiourea (ATU), in the suboxic waters of the Arabian Sea. Production of 29N2 in control (-ATU) incubations with either 15NH4++14NO2, or their analogues, 15NO2+14NH4+, though small, confirmed the presence of anammox. In contrast, when we added ATU, along with 15NO2 and 14NH4+, there was a much greater production of 29N2, with 92% of the 15N-label being recovered as 29N2 on average. Such stimulated production of 29N2 could not be due to anammox, as the addition of ATU, along with 15NH4++14NO2, only produced 29N2 equivalent to that in the controls. The ratios of 29N2 to 30N2 produced also precluded stimulation of denitrification. We present this as evidence for a hitherto uncharacterised metabolism potentially capable of oxidising organic-N (e.g. NH2 groups) directly to N2 gas at the expense of NO2.  相似文献   

6.
We examined the rates and sustainability of methyl bromide (MeBr) oxidation in moderately low density cell suspensions (~6 × 107 cells ml−1) of the NH3-oxidizing bacterium Nitrosomonas europaea. In the presence of 10 mM NH4+ and 0.44, 0.22, and 0.11 mM MeBr, the initial rates of MeBr oxidation were sustained for 12, 12, and 24 h, respectively, despite the fact that only 10% of the NH4+, 18% of the NH4+, and 35% of the NH4+, respectively, were consumed. Although the duration of active MeBr oxidation generally decreased as the MeBr concentration increased, similar amounts of MeBr were oxidized with a large number of the NH4+-MeBr combinations examined (10 to 20 μmol mg [dry weight] of cells−1). Approximately 90% of the NH3-dependent O2 uptake activity and the NO2-producing activity were lost after N. europaea was exposed to 0.44 mM MeBr for 24 h. After MeBr was removed and the cells were resuspended in fresh growth medium, NO2 production increased exponentially, and 48 to 60 h was required to reach the level of activity observed initially in control cells that were not exposed to MeBr. It is not clear what percentage of the cells were capable of cell division after MeBr oxidation because NO2 accumulated more slowly in the exposed cells than in the unexposed cells despite the fact that the latter were diluted 10-fold to create inocula which exhibited equal initial activities. The decreases in NO2-producing and MeBr-oxidizing activities could not be attributed directly to NH4+ or NH3 limitation, to a decrease in the pH, to the composition of the incubation medium, or to toxic effects caused by accumulation of the end products of oxidation (NO2 and formaldehyde) in the medium. Additional cooxidation-related studies of N. europaea are needed to identify the mechanism(s) responsible for the MeBr-induced loss of cell activity and/or viability, to determine what percentages of cells damaged by cooxidative activities are culturable, and to determine if cooxidative activity interferes with the regulation of NH3-oxidizing activity.  相似文献   

7.
Bowman DC  Paul JL 《Plant physiology》1988,88(4):1303-1309
Assimilation of NO3 and NH4+ by perennial ryegrass (Lolium perenne L.) turf, previously deprived of N for 7 days, was examined. Nitrogen uptake rate was increased up to four- to five-fold for both forms of N by N-deprivation as compared to N-sufficient controls, with the deficiency-enhanced N absorption persisting through a 48 hour uptake period. Nitrate, but not NH4+, accumulated in the roots and to a lesser degree in shoots. By 48 hours, 53% of the absorbed NO3 had been reduced, whereas 97% of the NH4+ had been assimilated. During the early stages (0 to 8 hours) of NO3 uptake by N-deficient turf, reduction occurred primarily in the roots. Between 8 and 16 hours, however, the site of reduction shifted to the shoots. Nitrogen form did not affect partitioning of the absorbed N between roots (40%) and shoots (60%) but did affect growth. Compared to NO3, NH4+ uptake inhibited root, but not shoot, growth. Total soluble carbohydrates decreased in both roots and shoots during the uptake period, principally the result of fructan metabolism. Ammonium uptake resulted in greater total depletion of soluble carbohydrates in the root compared to NO3 uptake. The data indicate that N assimilation by ryegrass turf utilizes stored sugars but is also dependent on current photosynthate.  相似文献   

8.
Photosynthesis, respiration, N2 fixation and ammonium release were studied directly in Nodularia spumigena during a bloom in the Baltic Sea using a combination of microsensors, stable isotope tracer experiments combined with nanoscale secondary ion mass spectrometry (nanoSIMS) and fluorometry. Cell-specific net C- and N2-fixation rates by N. spumigena were 81.6±6.7 and 11.4±0.9 fmol N per cell per h, respectively. During light, the net C:N fixation ratio was 8.0±0.8. During darkness, carbon fixation was not detectable, but N2 fixation was 5.4±0.4 fmol N per cell per h. Net photosynthesis varied between 0.34 and 250 nmol O2 h−1 in colonies with diameters ranging between 0.13 and 5.0 mm, and it reached the theoretical upper limit set by diffusion of dissolved inorganic carbon to colonies (>1 mm). Dark respiration of the same colonies varied between 0.038 and 87 nmol O2 h−1, and it reached the limit set by O2 diffusion from the surrounding water to colonies (>1 mm). N2 fixation associated with N. spumigena colonies (>1 mm) comprised on average 18% of the total N2 fixation in the bulk water. Net NH4+ release in colonies equaled 8–33% of the estimated gross N2 fixation during photosynthesis. NH4+ concentrations within light-exposed colonies, modeled from measured net NH4+ release rates, were 60-fold higher than that of the bulk. Hence, N. spumigena colonies comprise highly productive microenvironments and an attractive NH4+ microenvironment to be utilized by other (micro)organisms in the Baltic Sea where dissolved inorganic nitrogen is limiting growth.  相似文献   

9.
Four genomic DNAs of differing GC content (Micrococcus luteus, 72% GC; Escherichia coli, 50% GC; calf thymus, 42% GC; Clostridium perfringens, 27% GC) have been employed as targets of interaction by the cationic polyamines spermidine {[H3N(CH2)3NH2(CH2)4NH3]3+} and spermine {[(CH2)4(NH2(CH2)3NH3)2]4+}. In solutions containing 60 mM DNA phosphate (~20 mg DNA/ml) and either 1, 5 or 60 mM polyamine, only Raman bands associated with the phosphates exhibit large spectral changes, demonstrating that B-DNA phosphates are the primary targets of interaction. Phosphate perturbations, which are independent of base composition, are consistent with a model of non-specific cation binding in which delocalized polyamines diffuse along DNA while confined by the strong electrostatic potential gradient perpendicular to the helix axis. This finding provides experimental support for models in which polyamine-induced DNA condensation is driven by non-specific electrostatic binding. The Raman spectra also demonstrate that major groove sites (guanine N7 and thymine C5H3) are less affected than phosphates by polyamine–DNA interactions. Modest dependence of polyamine binding on genome base composition suggests that sequence context plays only a secondary role in recognition. Importantly, the results demonstrate that polyamine binding has a negligible effect on the native B-form secondary structure. The capability of spermidine or spermine to bind and condense genomic B-DNA without disrupting the native structure must be taken into account when considering DNA organization within bacterial nucleoids or cell nuclei.  相似文献   

10.
Ricinus communis L. plants were grown in nutrient solutions in which N was supplied as NO3 or NH4+, the solutions being maintained at pH 5.5. In NO3-fed plants excess nutrient anion over cation uptake was equivalent to net OH efflux, and the total charge from NO3 and SO42− reduction equated to the sum of organic anion accumulation plus net OH efflux. In NH4+-fed plants a large H+ efflux was recorded in close agreement with excess cation over anion uptake. This H+ efflux equated to the sum of net cation (NH4+ minus SO42−) assimilation plus organic anion accumulation. In vivo nitrate reductase assays revealed that the roots may have the capacity to reduce just under half of the total NO3 that is taken up and reduced in NO3-fed plants. Organic anion concentration in these plants was much higher in the shoots than in the roots. In NH4+-fed plants absorbed NH4+ was almost exclusively assimilated in the roots. These plants were considerably lower in organic anions than NO3-fed plants, but had equal concentrations in shoots and roots. Xylem and phloem saps were collected from plants exposed to both N sources and analyzed for all major contributing ionic and nitrogenous compounds. The results obtained were used to assist in interpreting the ion uptake, assimilation, and accumulation data in terms of shoot/root pH regulation and cycling of nutrients.  相似文献   

11.
NH4+ inhibition kinetics for CH4 oxidation were examined at near-atmospheric CH4 concentrations in three upland forest soils. Whether NH4+-independent salt effects could be neutralized by adding nonammoniacal salts to control samples in lieu of deionized water was also investigated. Because the levels of exchangeable endogenous NH4+ were very low in the three soils, desorption of endogenous NH4+ was not a significant factor in this study. The Km(app) values for water-treated controls were 9.8, 22, and 57 nM for temperate pine, temperate hardwood, and birch taiga soils, respectively. At CH4 concentrations of ≤15 μl liter−1, oxidation followed first-order kinetics in the fine-textured taiga soil, whereas the coarse-textured temperate soils exhibited Michaelis-Menten kinetics. Compared to water controls, the Km(app) values in the temperate soils increased in the presence of NH4+ salts, whereas the Vmax(app) values decreased substantially, indicating that there was a mixture of competitive and noncompetitive inhibition mechanisms for whole NH4+ salts. Compared to the corresponding K+ salt controls, the Km(app) values for NH4+ salts increased substantially, whereas the Vmax(app) values remained virtually unchanged, indicating that NH4+ acted by competitive inhibition. Nonammoniacal salts caused inhibition to increase with increasing CH4 concentrations in all three soils. In the birch taiga soil, this trend occurred with both NH4+ and K+ salts, and the slope of the increase was not affected by the addition of NH4+. Hence, the increase in inhibition resulted from an NH4+-independent mechanism. These results show that NH4+ inhibition of atmospheric CH4 oxidation resulted from enzymatic substrate competition and that additional inhibition that was not competitive resulted from a general salt effect that was independent of NH4+.  相似文献   

12.
The effects of NO?3 and NH+4 nutrition on the rates of dark incorporation of inorganic carbon by roots of hydroponically grown Zea mays L. cv. 712 and on the metabolic products of this incorporation, were determined in plants supplied with NaH14CO3 in the nutrient solution. The shoots and roots of the plants supplied with NaH14CO3 in the root medium for 30 min were extracted with 80%; (v/v) ethanol and fractionated into soluble and insoluble fractions. The soluble fraction was further separated into the neutral, organic acid, amino acid and non-polar fractions. The amino acid fraction was then analyzed to determine quantities and the 14C content of its individual components. The rates of dark incorporation of inorganic carbon calculated from H14CO?3 fixation and attributable to the activity of phosphoenolpyuvate carboxylase (EC 4.1.1.31), were 5-fold higher in ammonium-fed plants than in nitrate-fed plants after a 30-min pulse of 14C. This activity forms a small, but significant component of the carbon budget of the root. The proportion of 14C located in the shoots was also significantly higher in ammonium-fed plants than in nitrate-fed plants, indicating more rapid translocation of the products of dark fixation to the shoots in plants receiving NH+/sp4 nutrition. Ammonium-fed plants favoured incorporation of 14C into amino acids, while nitrate-fed plants allocated relatively more 14C into organic acids. The amino acid composition was also dependent on the type of nitrogen supplied, and asparagine was found to accumulate in ammonium-fed plants. The 14C labelling of the amino acids was consistent with the diversion of 14C-oxaloacetate derived from carboxlyation of phosphoenolpyruvate into the formation of both asparatate and glutamate. The results support the conclusion that inorganic carbon fixation in the roots of maize plants provides an important anaplerotic source of carbon for NH+4 assimilation.  相似文献   

13.
The effect of short-term ammonia starvation on Nitrosospira briensis was investigated. The ammonia-oxidizing activity was determined in a concentrated cell suspension with a NOx biosensor. The apparent half-saturation constant [Km(app)] value of the NH3 oxidation of N. briensis was 3 μM NH3 for cultures grown both in continuous and batch cultures as determined by a NOx biosensor. Cells grown on the wall of the vessel had a lower Km(app) value of 1.8 μM NH3. Nonstarving cultures of N. briensis showed potential ammonia-oxidizing activities of between 200 to 250 μM N h−1, and this activity decreased only slowly during starvation up to 10 days. Within 10 min after the addition of fresh NH4+, 100% activity was regained. Parallel with activity measurements, amoA mRNA and 16S rRNA were investigated. No changes were observed in the 16S rRNA, but a relative decrease of amoA mRNA was observed during the starvation period. During resuscitation, an increase in amoA mRNA expression was detected simultaneously. The patterns of the soluble protein fraction of a 2-week-starved culture of N. briensis showed only small differences in comparison to a nonstarved control. From these results we conclude that N. briensis cells remain in a state allowing fast recovery of ammonia-oxidizing activity after addition of NH4+ to a starved culture. Maintaining cells in this kind of active state could be the survival strategy of ammonia-oxidizing bacteria in nature under fluctuating NH4+ availability.  相似文献   

14.
Metal ions, and magnesium in particular, are known to be involved in RNA folding by stabilizing secondary and tertiary structures, and, as cofactors, in RNA enzymatic activity. We have conducted a systematic crystallographic analysis of cation binding to the duplex form of the HIV-1 RNA dimerization initiation site for the subtype-A and -B natural sequences. Eleven ions (K+, Pb2+, Mn2+, Ba2+, Ca2+, Cd2+, Sr2+, Zn2+, Co2+, Au3+ and Pt4+) and two hexammines [Co (NH3)6]3+ and [Ru (NH3)6]3+ were found to bind to the DIS duplex structure. Although the two sequences are very similar, strong differences were found in their cation binding properties. Divalent cations bind almost exclusively, as Mg2+, at ‘Hoogsteen’ sites of guanine residues, with a cation-dependent affinity for each site. Notably, a given cation can have very different affinities for a priori equivalent sites within the same molecule. Surprisingly, none of the two hexammines used were able to efficiently replace hexahydrated magnesium. Instead, [Co (NH3)4]3+ was seen bound by inner-sphere coordination to the RNA. This raises some questions about the practical use of [Co (NH3)6]3+ as a [Mg (H2O)6]2+ mimetic. Also very unexpected was the binding of the small Au3+ cation exactly between the Watson–Crick sites of a G-C base pair after an obligatory deprotonation of N1 of the guanine base. This extensive study of metal ion binding using X-ray crystallography significantly enriches our knowledge on the binding of middleweight or heavy metal ions to RNA, particularly compared with magnesium.  相似文献   

15.
In the atmosphere, ammonia (NH3) is the third most abundant N species which, due to various natural and anthropogenic sources, can locally reach high concentrations. The acquisition of atmospheric NH3 by plant shoots will lead to two opposing effects on acid-base balance. Absorption and dissolution of NH3 will cause an alkalinisation, while the assimilation of NH3 results in an acidification. Different rates of these processes would lead to an acid-base imbalance with consequences for the ionic balance of the plant. As there is only a limited capacity for biochemical disposal of excess H+ in shoots, pH regulation may involve a pattern of (in)organic ion flow between shoots and roots followed by H+/OH? extrusion into the media via roots. The acquisition of NH3 as additional N source should lead to a reduction in the ratio of mol H+/OH? gained per mol N assimilated. We have recently investigated the NH3 acquisition by Lolium perenne L. cv. Centurion and studied the effects of gas phase NH3 on growth, acid-base balance and water-use efficiency. The experiments, therefore, included the application of a range of 14NH3 to the shoots and of 15N as NO3?, NH4+ or NH4NO3 to the roots. After a summary of the main conclusions from those experiments, we discuss the implications of the use of atmospheric NH3 for the mineral composition of the plants. Over the range of NH3 supplied, plants from all treatments could utilize gas-phase NH3. Plants receiving NO3? via their roots had a higher capacity to use gaseous NH3 than those growing with NH4+. NH3 assimilation in shoots reduced both the acid load with NH4+ nutrition and the alkaline load with NO3? supply to the roots. The most significant effect of fumigation on the ion balance was an increase in K+ within all treatments, and this effect was highest in the NH4+-fed plants. The results of the experiments support predictions of a combination of neutralizing biochemical reactions as well as transport of organic anion salts between shoots and roots as possible acid-base regulation mechanisms of the whole plant.  相似文献   

16.
Ammonia (NH3) is the third most abundant N species in the atmosphere and, due to various natural and anthropogenic sources, can reach high concentrations in some areas. While some plants show effects of toxicity, others are capable of using this N-form and grow well without any utilization of soil-N. Acquisition of atmospheric NH3 will affect the acid-base balance of the plants as absorption and dissolution causes an alkalinisation (production of OH?) and assimilation of NH3 results in an acidification (generation of H+). As there is only a limited capacity for biochemical disposal of excess H+ in shoots, pH regulation may involve H+/OH? extrusion into the media via roots and transport of (in)organic ions between roots and above-ground parts of the plant. Our aim therefore was to assess NH3 acquisition by Lolium perenne and to study the effects of gas phase NH3 on growth, acid-base balance and mineral composition of the plants. The experiments therefore included application of a range of 14NH3 to the shoots and of 15N as NO3?, NH4+ or NH4NO3 to the roots, from which the amount of gas phase NH3 acquisition could be quantified. Analysis of the mineral composition provided data for calculation of acid-base balance as well as for water use efficiencies of the plants. The results indicate that over the range of NH3 supplied, plants from all treatments could utilize gas-phase NH3 as demonstrated by increases in growth and in N and C use efficiencies. Plants receiving NO3? via their roots had a higher capacity to use gaseous NH3 than those growing with NH4+. NH3 assimilation in shoots reduced both the acid load with NH4+ nutrition and the alkaline load with NO3? supply to the roots. The results of the experiments are discussed in relation to possible acid-base regulation mechanisms of the whole plant.  相似文献   

17.
We investigated the role of N2-fixation by the colony-forming cyanobacterium, Aphanizomenon spp., for the plankton community and N-budget of the N-limited Baltic Sea during summer by using stable isotope tracers combined with novel secondary ion mass spectrometry, conventional mass spectrometry and nutrient analysis. When incubated with 15N2, Aphanizomenon spp. showed a strong 15N-enrichment implying substantial 15N2-fixation. Intriguingly, Aphanizomenon did not assimilate tracers of 15NH4+ from the surrounding water. These findings are in line with model calculations that confirmed a negligible N-source by diffusion-limited NH4+ fluxes to Aphanizomenon colonies at low bulk concentrations (<250 nm) as compared with N2-fixation within colonies. No N2-fixation was detected in autotrophic microorganisms <5 μm, which relied on NH4+ uptake from the surrounding water. Aphanizomenon released about 50% of its newly fixed N2 as NH4+. However, NH4+ did not accumulate in the water but was transferred to heterotrophic and autotrophic microorganisms as well as to diatoms (Chaetoceros sp.) and copepods with a turnover time of ~5 h. We provide direct quantitative evidence that colony-forming Aphanizomenon releases about half of its recently fixed N2 as NH4+, which is transferred to the prokaryotic and eukaryotic plankton forming the basis of the food web in the plankton community. Transfer of newly fixed nitrogen to diatoms and copepods furthermore implies a fast export to shallow sediments via fast-sinking fecal pellets and aggregates. Hence, N2-fixing colony-forming cyanobacteria can have profound impact on ecosystem productivity and biogeochemical processes at shorter time scales (hours to days) than previously thought.  相似文献   

18.
The cross-feeding of microbial products derived from 14C-labeled nitrifying bacteria to heterotrophic bacteria coexisting in an autotrophic nitrifying biofilm was quantitatively analyzed by using microautoradiography combined with fluorescence in situ hybridization (MAR-FISH). After only nitrifying bacteria were labeled with [14C]bicarbonate, biofilm samples were incubated with and without NH4+ as a sole energy source for 10 days. The transfer of 14C originally incorporated into nitrifying bacterial cells to heterotrophic bacteria was monitored with time by using MAR-FISH. The MAR-FISH analysis revealed that most phylogenetic groups of heterotrophic bacteria except the β-Proteobacteria showed significant uptake of 14C-labeled microbial products. In particular, the members of the Chloroflexi were strongly MAR positive in the culture without NH4+ addition, in which nitrifying bacteria tended to decay. This indicated that the members of the Chloroflexi preferentially utilized microbial products derived from mainly biomass decay. On the other hand, the members of the Cytophaga-Flavobacterium cluster gradually utilized 14C-labeled products in the culture with NH4+ addition in which nitrifying bacteria grew. This result suggested that these bacteria preferentially utilized substrate utilization-associated products of nitrifying bacteria and/or secondary metabolites of 14C-labeled structural cell components. Our results clearly demonstrated that the coexisting heterotrophic bacteria efficiently degraded and utilized dead biomass and metabolites of nitrifying bacteria, which consequently prevented accumulation of organic waste products in the biofilm.  相似文献   

19.
Lolium perenne L. cv. 23 (perennial ryegrass) plants were grown in flowing solution culture and acclimatized over 49 d to low root temperature (5°C) prior to treatment at root temperatures of 3, 5, 7 and 9°C for 41 d with common air temperature of 20/15°C day/night and solution pH 5·0. The effects of root temperature on growth, uptake and assimilation of N were compared with N supplied as either NH4 or NO3 at 10 mmol m?3. At any given temperature, the relative growth rate (RGR) of roots exceeded that of shoots, thus the root fraction (Rf) increased with time. These effects were found in plants grown with the two N sources. Plants grown at 3 and 5°C had very high dry matter contents as reflected by the fresh weight: freeze-dried weight ratio. This ratio increased sharply, especially in roots at 7 and 9°C. Expressed on a fresh weight basis, there was no major effect of root temperature on the [N] of plants receiving NHJ but at any given temperature, the [N] in plants grown with NHJ was significantly greater than in those grown with NO3. The specific absorption rate (SAR) of NH+4 was greater at all temperatures than SAR-NO3. In plants grown with NH+, 3–5% of the total N was recovered as NH+4, whereas in those grown with NO?3 the unassimilated NO?3 rose sharply between 7 and 9°C to become 14 and 28% of the total N in shoots and roots, respectively. The greater assimilation of NH+4 lead to concentrations of insoluble reduced N (= protein) which were 125 and 20% greater, in roots and shoots, respectively, than in NO?3-grown plants. Plants grown with NH+4 had very much greater glutamine and asparagine concentrations in both roots and shoots, although other amino acids were more similar in Concentration to those in NO?3 grown plants. It is concluded that slow growth at low root temperature is not caused by restriction of the absorption or assimilation of either NH+4 or NO?3. The additional residual N (protein) in NH+4 grown plants may serve as a labile store of N which could support growth when external N supply becomes deficient.  相似文献   

20.
In this study, a lab-scale rotating biological contactor (RBC) treating a synthetic NH4+ wastewater devoid of organic carbon and showing high N losses was examined for several important physiological and microbial characteristics. The RBC biofilm removed 89% ± 5% of the influent N at the highest surface load of approximately 8.3 g of N m−2 day−1, with N2 as the main end product. In batch tests, the RBC biomass showed good aerobic and anoxic ammonium oxidation (147.8 ± 7.6 and 76.5 ± 6.4 mg of NH4+-N g of volatile suspended solids [VSS]−1 day−1, respectively) and almost no nitrite oxidation (< 1 mg of N g of VSS−1 day−1). The diversity of aerobic ammonia-oxidizing bacteria (AAOB) and planctomycetes in the biofilm was characterized by cloning and sequencing of PCR-amplified partial 16S rRNA genes. Phylogenetic analysis of the clones revealed that the AAOB community was fairly homogeneous and was dominated by Nitrosomonas-like species. Close relatives of the known anaerobic ammonia-oxidizing bacterium (AnAOB) Kuenenia stuttgartiensis dominated the planctomycete community and were most probably responsible for anoxic ammonium oxidation in the RBC. Use of a less specific planctomycete primer set, not amplifying the AnAOB, showed a high diversity among other planctomycetes, with representatives of all known groups present in the biofilm. The spatial organization of the biofilm was characterized using fluorescence in situ hybridization (FISH) with confocal scanning laser microscopy (CSLM). The latter showed that AAOB occurred side by side with putative AnAOB (cells hybridizing with probe PLA46 and AMX820/KST1275) throughout the biofilm, while other planctomycetes hybridizing with probe PLA886 (not detecting the known AnAOB) were present as very conspicuous spherical structures. This study reveals that long-term operation of a lab-scale RBC on a synthetic NH4+ wastewater devoid of organic carbon yields a stable biofilm in which two bacterial groups, thought to be jointly responsible for the high autotrophic N removal, occur side by side throughout the biofilm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号