首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.

Objective

Monogenic congenital cataract is one of the most genetically heterogeneous ocular conditions with almost 30 different genes involved in its etiology. In adult patients, genotype–phenotype correlations are troubled by eye surgery during infancy and/or long-term ocular complications. Here, we describe the molecular diagnosis of GALK1 deficiency as the cause of autosomal recessive congenital cataract in a family from Costa Rica.

Methods

Four affected siblings were included in the study. All of them underwent eye surgery during the first decade but medical records were not available. Congenital cataract was diagnosed by report. Molecular analysis included genome wide homozygosity mapping using a 250 K SNP Affymetrix microarray followed by PCR amplification and direct nucleotide sequencing of candidate gene.

Results

Genome wide homozygosity mapping revealed a 6 Mb region of homozygosity shared by two affected siblings at 17q25. The GALK1 gene was included in this interval and direct sequencing of this gene revealed a homozygous c.1144C>T mutation (p.Q382*) in all four affected subjects.

Conclusions

This work demonstrates the utility of homozygosity mapping in the retrospective diagnosis of a family with congenital cataracts in which ocular surgery at early age, the lack of medical records, and the presence of long term eye complications, impeded a clear clinical diagnosis during the initial phases of evaluation.  相似文献   

3.
The single gene Le1, coding for soybean seed lectin, was compared to le1, a naturally occurring mutant allele containing a 3.4 kb insertion within its coding region. Le1 is devoid of introns and produces a 1.0 kb mRNA. It codes for a signal sequence of 32 amino acids and a mature protein of 253 amino acids. With the exception of six single-base substitutions, the coding and flanking sequences in le1 are identical with those in the uninterrupted gene. The insertion termini are imperfect inverted repeats flanked by a 3 bp duplication of lectin target DNA. Inverted repeats within the lectin gene are located symmetrically with respect to the insertion site and are homologous to a region of the insertion termini. These molecular traits conform with the structural aspects of transposable elements in other organisms and imply some degree of site specificity.  相似文献   

4.
5.
6.
An autosomal recessive gene that delays expression of lupus in BXSB mice   总被引:1,自引:0,他引:1  
We report the generation and serologic, cellular, histologic, and genetic characteristics of a BXSB/MpJScr substrain, termed BXSB/MpJScr-ll/ll, that has lost early-life male lupus disease. Classic genetic analysis suggested that delayed disease expression results from the action of a single autosomal recessive gene. This putative gene, referred to as ll (long-lived), causes a significant delay in expression of autoimmune serology (total serum IgG and anti-nuclear antibodies levels), monocytosis, and of immune complex-mediated histopathologic changes such as glomerulonephritis, arteritis, and myocardial infarction. Presumably as a consequence of the delayed immunopathology male BXSB/MpJScr-ll/ll mice live three to four times longer than regular BXSB/MpJScr. This strain might be useful for analysis of single genes responsible for severe autoimmune disease expression.  相似文献   

7.
8.
Recent studies have revealed an important role for LTBP-4 in elastogenesis. Its mutational inactivation in humans causes autosomal recessive cutis laxa type 1C (ARCL1C), which is a severe disorder caused by defects of the elastic fiber network. Although the human gene involved in ARCL1C has been discovered based on similar elastic fiber abnormalities exhibited by mice lacking the short Ltbp-4 isoform (Ltbp4S−/−), the murine phenotype does not replicate ARCL1C. We therefore inactivated both Ltbp-4 isoforms in the mouse germline to model ARCL1C. Comparative analysis of Ltbp4S−/− and Ltbp4-null (Ltbp4−/−) mice identified Ltbp-4L as an important factor for elastogenesis and postnatal survival, and showed that it has distinct tissue expression patterns and specific molecular functions. We identified fibulin-4 as a previously unknown interaction partner of both Ltbp-4 isoforms and demonstrated that at least Ltbp-4L expression is essential for incorporation of fibulin-4 into the extracellular matrix (ECM). Overall, our results contribute to the current understanding of elastogenesis and provide an animal model of ARCL1C.KEY WORDS: Latent transforming growth factor β-binding protein 4, Ltbp-4, Ltbp-4L, Ltbp-4S, Autosomal recessive cutis laxa type 1C, ARCL1C, Elastogenesis, Extracellular matrix, ECM, Fibulin-4, Fibulin-5  相似文献   

9.
Stickler syndrome is characterized by ophthalmic, articular, orofacial, and auditory manifestations. It has an autosomal dominant inheritance pattern and is caused by mutations in COL2A1, COL11A1, and COL11A2. We describe a family of Moroccan origin that consists of four children with Stickler syndrome, six unaffected children, and two unaffected parents who are distant relatives (fifth degree). All family members were clinically investigated for ear, nose, and throat; ophthalmologic; and radiological abnormalities. Four children showed symptoms characteristic of Stickler syndrome, including moderate-to-severe sensorineural hearing loss, moderate-to-high myopia with vitreoretinopathy, and epiphyseal dysplasia. We considered the COL9A1 gene, located on chromosome 6q13, to be a candidate gene on the basis of the structural association with collagen types II and XI and because of the high expression in the human inner ear indicated by cDNA microarray. Mutation analysis of the coding region of the COL9A1 gene showed a homozygous R295X mutation in the four affected children. The parents and four unaffected children were heterozygous carriers of the R295X mutation. Two unaffected children were homozygous for the wild-type allele. None of the family members except the homozygous R295X carriers had any signs of Stickler syndrome. Therefore, COL9A1 is the fourth identified gene that can cause Stickler syndrome. In contrast to the three previously reported Stickler syndrome-causing genes, this gene causes a form of Stickler syndrome with an autosomal recessive inheritance pattern. This finding will have a major impact on the genetic counseling of patients with Stickler syndrome and on the understanding of the pathophysiology of collagens. Mutation analysis of this gene is recommended in patients with Stickler syndrome with possible autosomal recessive inheritance.  相似文献   

10.
Emery-Dreifuss muscular dystrophy (EMD) is a condition characterized by the clinical triad of early-onset contractures, progressive weakness in humeroperoneal muscles, and cardiomyopathy with conduction block. The disease was described for the first time as an X-linked muscular dystrophy, but autosomal dominant and autosomal recessive forms were reported. The genes for X-linked EMD and autosomal dominant EMD (AD-EMD) were identified. We report here that heterozygote mutations in LMNA, the gene for AD-EMD, may cause diverse phenotypes ranging from typical EMD to no phenotypic effect. Our results show that LMNA mutations are also responsible for the recessive form of the disease. Our results give further support to the notion that different genetic forms of EMD have a common pathophysiological background. The distribution of the mutations in AD-EMD patients (in the tail and in the 2A rod domain) suggests that unique interactions between lamin A/C and other nuclear components exist that have an important role in cardiac and skeletal muscle function.  相似文献   

11.
Anonychia is an autosomal recessive disorder characterized by the congenital absence of finger- and toenails. In a large German nonconsanguineous family with four affected and five unaffected siblings with isolated total congenital anonychia, we performed genomewide mapping and showed linkage to 20p13. Analysis of the RSPO4 gene within this interval revealed a frameshift and a nonconservative missense mutation in exon 2 affecting the highly conserved first furin-like cysteine-rich domain. Both mutations were not present among controls and were shown to segregate with the disease phenotype. RSPO4 is a member of the recently described R-spondin family of secreted proteins that play a major role in activating the Wnt/ beta -catenin signaling pathway. Wnt signaling is evolutionarily conserved and plays a pivotal role in embryonic development, growth regulation of multiple tissues, and cancer development. Our findings add to the increasing body of evidence indicating that mesenchymal-epithelial interactions are crucial in nail development and put anonychia on the growing list of congenital malformation syndromes caused by Wnt-signaling-pathway defects. To the best of our knowledge, this is the first gene known to be responsible for an isolated, nonsyndromic nail disorder.  相似文献   

12.
13.
孙丽萍  张欣洲 《生命科学》2010,(10):1043-1046
PKHD1是目前所知人类常染色体隐性遗传多囊肾病(autosomal recessive polycystic kidney disease,ARPKD)的惟一致病基因。ARPKD临床病变以双肾多发性进行性充液囊泡为主要特征。目前对PKHDl基因在ARPKD发病中的作用了解并不多。该文对ARPKD的发病机制和PKHD1基因功能最新研究进展进行综述。  相似文献   

14.
15.

Background  

The recent availability of genome sequences has provided unparalleled insights into the broad-scale patterns of transposable element (TE) sequences in eukaryotic genomes. Nevertheless, the difficulties that TEs pose for genome assembly and annotation have prevented detailed, quantitative inferences about the contribution of TEs to genomes sequences.  相似文献   

16.
17.
Inheritance of chromosomes 3 and 11 in the families with Chuvash autosomal recessive polycythemia and in control group with no disease symptoms was examined using polymorphic dinucleotide markers D3S1597 and D3S1263, mapped to region 3p25, and D11S4111, D11S4127, and D11S1356, mapped to region 11q23. All patients were homozygous for the C598T mutation in the VHL gene (3p25). The analysis showed that in 75% of the cases, chromosome 3 carrying C598T mutation was coinherited with certain chromosome 11, which differed from 50%, expected upon independent inheritance of each chromosome. In case of chromosome 3 without C598T mutation, this pattern was observed neither in healthy sibs form the families with autosomal recessive polycythemia (44%), nor in the control group (43%). These results suggest that in case of the C598T mutation in the VHL gene, chromosomal loci 3p25 and 11q23 are inherited not independently, compared to the inheritance of these loci in the absence of the mutation in healthy sibs from the affected families (chi2 = 16.14; P < 0.001), and also in the control family sample (chi2 = 17.91; P < 0.001).  相似文献   

18.
A consanguineous family affected by an autosomal recessive, progressive neurodegenerative Huntington-like disorder, was tested to rule out juvenile-onset Huntington disease (JHD). The disease manifests at approximately 3-4 years and is characterized by both pyramidal and extrapyramidal abnormalities, including chorea, dystonia, ataxia, gait instability, spasticity, seizures, mutism, and intellectual impairment. Brain magnetic resonance imaging (MRI) findings include progressive frontal cortical atrophy and bilateral caudate atrophy. Huntington CAG trinucleotide-repeat analyses ruled out JHD, since all affected individuals had repeat numbers within the normal range. The presence of only four recombinant events (straight theta=.2) between the disease and the Huntington locus in 20 informative meioses suggested that the disease localized to chromosome 4. Linkage was initially achieved with marker D4S2366 at 4p15.3 (LOD 3.03). High-density mapping at the linked locus resulted in homozygosity for markers D4S431 and D4S394, which span a 3-cM region. A maximum LOD score of 4.71 in the homozygous interval was obtained. Heterozygosity at the distal D4S2366 and proximal D4S2983 markers defines the maximum localization interval (7 cM). Multiple brain-related expressed sequence tags (ESTs) with no known disease association exist in the linkage interval. Among the three known genes residing in the linked interval (ACOX3, DRD5, QDPR), the most likely candidate, DRD5, encoding the dopamine receptor D5, was excluded, since all five affected family members were heterozygous for an intragenic dinucleotide repeat. The inheritance pattern and unique localization to 4p15.3 are consistent with the identification of a novel, autosomal recessive, neurodegenerative Huntington-like disorder.  相似文献   

19.
The photoreceptor cell-specific ATP-binding cassette transporter gene (ABCA4; previously denoted "ABCR") is mutated, in most patients, with autosomal recessive (AR) Stargardt disease (STGD1) or fundus flavimaculatus (FFM). In addition, a few cases with AR retinitis pigmentosa (RP) and AR cone-rod dystrophy (CRD) have been found to have ABCA4 mutations. To evaluate the importance of the ABCA4 gene as a cause of AR CRD, we selected 5 patients with AR CRD and 15 patients from Germany and The Netherlands with isolated CRD. Single-strand conformation-polymorphism analysis and sequencing revealed 19 ABCA4 mutations in 13 (65%) of 20 patients. In six patients, mutations were identified in both ABCA4 alleles; in seven patients, mutations were detected in one allele. One complex ABCA4 allele (L541P;A1038V) was found exclusively in German patients with CRD; one patient carried this complex allele homozygously, and five others were compound heterozygous. These findings suggest that mutations in the ABCA4 gene are the major cause of AR CRD. A primary role of the ABCA4 gene in STGD1/FFM and AR CRD, together with the gene's involvement in an as-yet-unknown proportion of cases with AR RP, strengthens the idea that mutations in the ABCA4 gene could be the most frequent cause of inherited retinal dystrophy in humans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号