首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Y-chromosomal haplogroups composition and frequencies were analyzed in Northern and Southern Altaians. In the gene pool of Altaians a total of 18 Y-chromosomal haplogroups were identified, including C3xM77, C3c, DxM15, E, F*, J2, I1a, I1b, K*, N*, N2, N3a, O3, P*, Q*, R1*, R1a1, and R1b3. The structured nature of the Altaic gene pool is determined by the presence of the Caucasoid and Mongoloid components, along with the ancient genetic substratum, marked by the corresponding Western and Eastern Eurasian haplogroups. Haplogroup R1a1 prevailed in both ethnic groups, accounting for about 53 and 38% of paternal lineages in Southern and Northern Altaians, respectively. This haplogroup is thought to be associated with the eastward expansion of early Indo-Europeans, and marks Caucasoid element in the gene pools of South Siberian populations. Similarly to haplogroup K*, the second frequent haplogroup Q* represents paleo-Asiatic marker, probably associated with the Ket and Samoyedic contributions to the Altaic gene pool. The presence of lineages N2 and N3a can be explained as the contribution of Finno--Ugric tribes, assimilated by ancient Turks. The presence of haplogroups C3xM77, C3c, N*, and 03 reflects the contribution of Central Asian Mongoloid groups. These haplogroups, probably, mark the latest movements of Mongolian migrants from the territory of contemporary Tuva and Mongolia. The data of factor analysis, variance analysis, cluster analysis, and phylogenetic analysis point to substantial genetic differentiation of Northern and Southern Altaians. The differences between Northern and Southern Altaians in the haplogroup composition, as well as in the internal haplotype structure were demonstrated.  相似文献   

2.
Genetic diversity has been analyzed in 22 ethnic groups of the Caucasus on the basis of data on Y-chromosome and mitochondrial DNA (mtDNA) markers, as well as genome-wide data on autosomal single-nucleotide polymorphisms (SNPs). It has been found that the West Asian component is prevailing in all ethnic groups studied except for Nogays. This Near Eastern ancestral component has proved to be characteristic of Caucasian populations and almost entirely absent in their northern neighbors inhabiting the Eastern European Plain. Turkic-speaking populations, except Nogays, did not exhibit an increased proportion of Eastern Eurasian mtDNA or Y-chromosome haplogroups compared to some Abkhaz-Adyghe populations (Adygs and Kabardians). Genome-wide SNP analysis has also shown substantial differences of Nogays from all other Caucasian populations studied. However, the characteristic difference of Nogays from other populations of the Caucasus seems somewhat ambiguous in terms of the R1a1a-M17(M198) and R1b1b1-M73 haplogroups of the Y chromosome. The state of these haplogroups in Turkic-speaking populations of the Caucasus requires further study.  相似文献   

3.
Y-chromosomal haplogroups composition and frequencies were analyzed in Northern and Southern Altaians. In the gene pool of Altaians a total of 18 Y-chromosomal haplogroups were identified, including C3xM77, C3c, DxM15, E, F*, J2, I1a, I1b, K*, N*, N2, N3a, O3, P*, Q*, R1*, R1a1, and R1b3. The structuring nature of the Altaic gene pool is determined by the presence of the Caucasoid and Mongoloid components, along with the ancient genetic substratum, marked by the corresponding Western and Eastern Eurasian haplogroups. Haplogroup R1a1 prevailed in both ethnic groups, accounting for about 53 and 38% of paternal lineages in Southern and Northern Altaians, respectively. This haplogroup is thought to be associated with the eastward expansion of early Indo-Europeans, and marks Caucasoid element in the gene pools of South Siberian populations. Similarly to haplogroup K*, the second frequent haplogroup Q* represents paleo-Asiatic marker, probably associated with the Ket and Samoyedic contributions to the Altaic gene pool. The presence of lineages N2 and N3a can be explained as the contribution of Finno-Ugric tribes, assimilated by ancient Turks. The presence of haplogroups C3xM77, C3c, N*, and O3 reflects the contribution of Central Asian Mongoloid groups. These haplogroups, probably, mark the latest movements of Mongolian migrants from the territory of contemporary Tuva and Mongolia. The data of factor analysis, variance analysis, cluster analysis, and phylogenetic analysis point to substantial genetic differentiation of Northern and Southern Altaians. The differences between Northern and Southern Altaians in the haplogroup composition, as well as in the internal haplotype structure were demonstrated.  相似文献   

4.
Excavating Y-chromosome haplotype strata in Anatolia   总被引:1,自引:0,他引:1  
Analysis of 89 biallelic polymorphisms in 523 Turkish Y chromosomes revealed 52 distinct haplotypes with considerable haplogroup substructure, as exemplified by their respective levels of accumulated diversity at ten short tandem repeat (STR) loci. The major components (haplogroups E3b, G, J, I, L, N, K2, and R1; 94.1%) are shared with European and neighboring Near Eastern populations and contrast with only a minor share of haplogroups related to Central Asian (C, Q and O; 3.4%), Indian (H, R2; 1.5%) and African (A, E3*, E3a; 1%) affinity. The expansion times for 20 haplogroup assemblages was estimated from associated STR diversity. This comprehensive characterization of Y-chromosome heritage addresses many multifaceted aspects of Anatolian prehistory, including: (1) the most frequent haplogroup, J, splits into two sub-clades, one of which (J2) shows decreasing variances with increasing latitude, compatible with a northward expansion; (2) haplogroups G1 and L show affinities with south Caucasus populations in their geographic distribution as well as STR motifs; (3) frequency of haplogroup I, which originated in Europe, declines with increasing longitude, indicating gene flow arriving from Europe; (4) conversely, haplogroup G2 radiates towards Europe; (5) haplogroup E3b3 displays a latitudinal correlation with decreasing frequency northward; (6) haplogroup R1b3 emanates from Turkey towards Southeast Europe and Caucasia and; (7) high resolution SNP analysis provides evidence of a detectable yet weak signal (<9%) of recent paternal gene flow from Central Asia. The variety of Turkish haplotypes is witness to Turkey being both an important source and recipient of gene flow.  相似文献   

5.
Y chromosomes from representative sample of Eastern Ukrainians (94 individuals) were analyzed for composition and frequencies of haplogroups, defined by 11 biallelic loci located in non-recombining part of the chromosome (SRY1532, YAP, 92R7, DYF155S2, 12f2, Tat, M9, M17, M25, M89, and M56). In the Ukrainian gene, pool six haplogroups were revealed: E, F (including G and I), J, N3, P, and R1a1. These haplogroups were earlier detected in a study of Y-chromosome diversity on the territory of Europe as a whole. The major haplogroup in the Ukrainian gene pool, haplogroup R1a1 (earlier designated HG3), accounted for about 44% of all Y chromosomes in the sample examined. This haplogroup is thought to mark the migration patterns of the early Indo-Europeans and is associated with the distribution of the Kurgan archaeological culture. The second major haplogroup is haplogroup F (21.3%), which is a combination of the lineages differing by the time of appearance. Haplogroup P found with the frequency of 9.6%, represents the genetic contribution of the population originating from the ancient autochthonous population of Europe. Haplogroups J and E (11.7 and 4.2%, respectively) mark the migration patterns of the Middle-Eastern agriculturists during the Neolithic. The presence of the N3 lineage (9.6%) is likely explained by a contribution of the assimilated Finno-Ugric tribes. The data on the composition and frequencies of Y-chromosome haplogroups in the sample studied substantially supplement the existing picture of the male lineage distribution in the Eastern Slav population.  相似文献   

6.
In order to investigate the genetic history of autochthonous South Siberian populations and to estimate the contribution of distinct patrilineages to their gene pools, we have analyzed 17 Y-chromosomal binary markers (YAP, RPS4Y711, SRY-8299, M89, M201, M52, M170, 12f2, M9, M20, 92R7, SRY-1532, DYS199, M173, M17, Tat, and LLY22 g) in a total sample of 1,358 males from 14 ethnic groups of Siberia (Altaians-Kizhi, Teleuts, Shors, Tuvinians, Todjins, Tofalars, Sojots, Khakassians, Buryats, Evenks), Central/Eastern Asia (Mongolians and Koreans) and Eastern Europe (Kalmyks and Russians). Based on both, the distribution pattern of Y-chromosomal haplogroups and results on AMOVA analysis we observed the statistically significant genetic differentiation between the populations of Baikal and Altai–Sayan regions. We suggest that these regional differences can be best explained by different contribution of Central/Eastern Asian and Eastern European paternal lineages into gene pools of modern South Siberians. The population of the Baikal region demonstrates the prevalence of Central/Eastern Asian lineages, whereas in the populations of Altai and Sayan regions the highest paternal contribution resulted from Eastern European descent is revealed. Yet, our data on Y-chromosome STRs variation demonstrate the clear differences between the South Siberian and Eastern European R1a1-lineages with the evolutionary ages compatible with divergence time between these two regional groups.  相似文献   

7.
Gene pool structure of Sakha Republic (Yakutia) native population has been studied: we defined composition and frequencies of Y-chromosome haplogroups for Yakuts. Six haplogroups: C3 x M77, C3c, N*, N2, N3a and R1a1 have been revealed in Yakut gene pool. A greater part of Y-chromosome in Yakut population belongs to N3a haplogroup (89%). All investigated Yakut population samples have low values of gene diversity, calculated based on haplogroup frequencies. Gene differentiation of the investigated samples estimated using the analysis of molecular variance (AMOVA) by two marker systems (haplogroup frequencies and microsatellite haplotypes of Y-chromosome) revealed a portion of interpopulation differences amounting to 0.24 and 2.85%, respectively. Frequencies and molecular phylogeny of YSTR-haplotypes were revealed for N3a haplogroup of Y-chromosome. Altogether forty haplotypes were found in Yakuts. Evenks and Yakuts are characterized by overlapping and very specific spectrum of N3a haplotypes, which is not typical for other Siberian ethnic groups. Cluster analysis of populations by N3a YSTR-haplotypes shows Yakut isolation from Turkic-speaking populations in the South Siberia. Genetic diversity generation time for a specific spectrum of Yakut haplotypes was estimated as 4.45 +/- 1.96 thousand years. As opposed to the data on mtDNA, the obtained results give an evidence for significant contribution of a local palaeolithic component into Y-chromosomal Yakut gene pool. Ethnogenetic reconstruction of the present picture of genetic diversity in N3a haplogroup in the territory of Siberia is under consideration.  相似文献   

8.
Historical discourses about the Caribbean often chronicle West African and European influence to the general neglect of indigenous people’s contributions to the contemporary region. Consequently, demographic histories of Caribbean people prior to and after European contact are not well understood. Although archeological evidence suggests that the Lesser Antilles were populated in a series of northward and eastern migratory waves, many questions remain regarding the relationship of the Caribbean migrants to other indigenous people of South and Central America and changes to the demography of indigenous communities post-European contact. To explore these issues, we analyzed mitochondrial DNA and Y-chromosome diversity in 12 unrelated individuals from the First Peoples Community in Arima, Trinidad, and 43 unrelated Garifuna individuals residing in St. Vincent. In this community-sanctioned research, we detected maternal indigenous ancestry in 42% of the participants, with the remainder having haplotypes indicative of African and South Asian maternal ancestry. Analysis of Y-chromosome variation revealed paternal indigenous American ancestry indicated by the presence of haplogroup Q-M3 in 28% of the male participants from both communities, with the remainder possessing either African or European haplogroups. This finding is the first report of indigenous American paternal ancestry among indigenous populations in this region of the Caribbean. Overall, this study illustrates the role of the region’s first peoples in shaping the genetic diversity seen in contemporary Caribbean populations.  相似文献   

9.
Linguistic evidence suggests that West Asia and Central Asia have been the two major geographical sources of genes in the contemporary Indian gene pool. To test the nature and extent of similarities in the gene pools of these regions we have collected DNA samples from four ethnic populations of northern India, and have screened these samples for a set of 18 Y-chromosome polymorphic markers (12 unique event polymorphisms and six short tandem repeats). These data from Indian populations have been analysed in conjunction with published data from several West Asian and Central Asian populations. Our analyses have revealed traces of population movement from Central Asia and West Asia into India. Two haplogroups, HG-3 and HG-9, which are known to have arisen in the Central Asian region, are found in reasonably high frequencies (41.7% and 14.3% respectively) in the study populations. The ages estimated for these two haplogroups are less in the Indian populations than those estimated from data on Middle Eastern populations. A neighbour-joining tree based on Y-haplogroup frequencies shows that the North Indians are genetically placed between the West Asian and Central Asian populations. This is consistent with gene flow from West Asia and Central Asia into India.  相似文献   

10.
Y chromosomes from representative sample of Eastern Ukrainians (94 individuals) were analyzed for composition and frequencies of haplogroups, defined by 11 biallelic loci located in non-recombining part of the chromosome (SRY1532, YAP, 92R7, DYF155S2, 12f2, Tat, M9, M17, M25,M89, andM56). In the Ukrainian gene, pool six haplogroups were revealed: E, F (including G and I), J, N3, P, and R1a1. These haplogroups were earlier detected in a study of Y-chromosome diversity on the territory of Europe as a whole. The major haplogroup in the Ukrainian gene pool, haplogroup R1a1 (earlier designated HG3), accounted for about 44% of all Y chromosomes in the sample examined. This haplogroup is thought to mark the migration patterns of the early Indo-Europeans and is associated with the distribution of the Kurgan archaeological culture. The second major haplogroup is haplogroup F (21.3%), which is a combination of the lineages differing by the time of appearance. Haplogroup P found with the frequency of 9.6%, represents the genetic contribution of the population originating from the ancient autochthonous population of Europe. Haplogroups J and E (11.7 and 4.2%, respectively) mark the migration patterns of the Middle-Eastern agriculturists during the Neolithic. The presence of the N3 lineage (9.6%) is likely explained by a contribution of the assimilated Finno–Ugric tribes. The data on the composition and frequencies of Y-chromosome haplogroups in the sample studied substantially supplement the existing picture of the male lineage distribution in the Eastern Slav population.  相似文献   

11.
Kazakh populations have traditionally lived as nomadic pastoralists that seasonally migrate across the steppe and surrounding mountain ranges in Kazakhstan and southern Siberia. To clarify their population history from a paternal perspective, we analyzed the non-recombining portion of the Y-chromosome from Kazakh populations living in southern Altai Republic, Russia, using a high-resolution analysis of 60 biallelic markers and 17 STRs. We noted distinct differences in the patterns of genetic variation between maternal and paternal genetic systems in the Altaian Kazakhs. While they possess a variety of East and West Eurasian mtDNA haplogroups, only three East Eurasian paternal haplogroups appear at significant frequencies (C3*, C3c and O3a3c*). In addition, the Y-STR data revealed low genetic diversity within these lineages. Analysis of the combined biallelic and STR data also demonstrated genetic differences among Kazakh populations from across Central Asia. The observed differences between Altaian Kazakhs and indigenous Kazakhs were not the result of admixture between Altaian Kazakhs and indigenous Altaians. Overall, the shared paternal ancestry of Kazakhs differentiates them from other Central Asian populations. In addition, all of them showed evidence of genetic influence by the 13(th) century CE Mongol Empire. Ultimately, the social and cultural traditions of the Kazakhs shaped their current pattern of genetic variation.  相似文献   

12.
Polymorphisms in mitochondrial (mt) DNA and Y-chromosomes of seven socially and linguistically diverse castes and tribes of Eastern India were examined to determine their genetic relationships, their origin, and the influence of demographic factors on population structure. Samples from the Orissa Brahmin, Karan, Khandayat, Gope, Juang, Saora, and Paroja were analyzed for mtDNA hypervariable sequence (HVS) I and II, eight Y-chromosome short tandem repeats (Y-STRs), and lineage-defining mutations diagnostic for Indian- and Eurasian-specific haplogroups. Our results reveal that haplotype diversity and mean pairwise differences (MPD) was higher in caste groups of the region (>0.998, for both systems) compared to tribes (0.917-0.996 for Y-STRs, and 0.958-0.988 for mtDNA haplotypes). The majority of paternal lineages belong to the R1a1, O2a, and H haplogroups (62.7%), while 73.2% of maternal lineages comprise the Indian-specific M*, M5, M30, and R* mtDNA haplogroups, with a sporadic occurrence of West Eurasian lineages. Our study reveals that Orissa Brahmins (a higher caste population) have a genetic affinity with Indo-European speakers of Eastern Europe, although the Y-chromosome data show that the genetic distances of populations are not correlated to their position in the caste hierarchy. The high frequency of the O2a haplogroup and absence of East Asian-specific mtDNA lineages in the Juang and Saora suggest that a migration of Austro-Asiatic tribes to mainland India was exclusively male-mediated which occurred during the demographic expansion of Neolithic farmers in southern China. The phylogeographic analysis of mtDNA and Y-chromosomes revealed varied ancestral sources for the diverse genetic components of the populations of Eastern India.  相似文献   

13.
Ethnic Belarusians make up more than 80% of the nine and half million people inhabiting the Republic of Belarus. Belarusians together with Ukrainians and Russians represent the East Slavic linguistic group, largest both in numbers and territory, inhabiting East Europe alongside Baltic-, Finno-Permic- and Turkic-speaking people. Till date, only a limited number of low resolution genetic studies have been performed on this population. Therefore, with the phylogeographic analysis of 565 Y-chromosomes and 267 mitochondrial DNAs from six well covered geographic sub-regions of Belarus we strove to complement the existing genetic profile of eastern Europeans. Our results reveal that around 80% of the paternal Belarusian gene pool is composed of R1a, I2a and N1c Y-chromosome haplogroups – a profile which is very similar to the two other eastern European populations – Ukrainians and Russians. The maternal Belarusian gene pool encompasses a full range of West Eurasian haplogroups and agrees well with the genetic structure of central-east European populations. Our data attest that latitudinal gradients characterize the variation of the uniparentally transmitted gene pools of modern Belarusians. In particular, the Y-chromosome reflects movements of people in central-east Europe, starting probably as early as the beginning of the Holocene. Furthermore, the matrilineal legacy of Belarusians retains two rare mitochondrial DNA haplogroups, N1a3 and N3, whose phylogeographies were explored in detail after de novo sequencing of 20 and 13 complete mitogenomes, respectively, from all over Eurasia. Our phylogeographic analyses reveal that two mitochondrial DNA lineages, N3 and N1a3, both of Middle Eastern origin, might mark distinct events of matrilineal gene flow to Europe: during the mid-Holocene period and around the Pleistocene-Holocene transition, respectively.  相似文献   

14.
We examined genetic variation on the nonrecombining portion of the Y chromosome (NRY) to investigate the paternal population structure of indigenous Siberian groups and to reconstruct the historical events leading to the peopling of Siberia. A set of 62 biallelic markers on the NRY were genotyped in 1432 males representing 18 Siberian populations, as well as nine populations from Central and East Asia and one from European Russia. A subset of these markers defines the 18 major NRY haplogroups (A-R) recently described by the Y Chromosome Consortium (YCC 2002). While only four of these 18 major NRY haplogroups accounted for -95% of Siberian Y-chromosome variation, native Siberian populations differed greatly in their haplogroup composition and exhibited the highest phiST value for any region of the world. When we divided our Siberian sample into four geographic regions versus five major linguistic groupings, analyses of molecular variance (AMOVA) indicated higher phiST and phiCT values for linguistic groups than for geographic groups. Mantel tests also supported the existence of NRY genetic patterns that were correlated with language, indicating that language affiliation might be a better predictor of the genetic affinity among Siberians than their present geographic position. The combined results, including those from a nested cladistic analysis, underscored the important role of directed dispersals, range expansions, and long-distance colonizations bound by common ethnic and linguistic affiliation in shaping the genetic landscape of Siberia. The Siberian pattern of reduced haplogroup diversity within populations combined with high levels of differentiation among populations may be a general feature characteristic of indigenous groups that have small effective population sizes and that have been isolated for long periods of time.  相似文献   

15.

Background

The geographical position of Maharashtra state makes it rather essential to study the dispersal of modern humans in South Asia. Several hypotheses have been proposed to explain the cultural, linguistic and geographical affinity of the populations living in Maharashtra state with other South Asian populations. The genetic origin of populations living in this state is poorly understood and hitherto been described at low molecular resolution level.

Methodology/Principal Findings

To address this issue, we have analyzed the mitochondrial DNA (mtDNA) of 185 individuals and NRY (non-recombining region of Y chromosome) of 98 individuals belonging to two major tribal populations of Maharashtra, and compared their molecular variations with that of 54 South Asian contemporary populations of adjacent states. Inter and intra population comparisons reveal that the maternal gene pool of Maharashtra state populations is composed of mainly South Asian haplogroups with traces of east and west Eurasian haplogroups, while the paternal haplogroups comprise the South Asian as well as signature of near eastern specific haplogroup J2a.

Conclusions/Significance

Our analysis suggests that Indian populations, including Maharashtra state, are largely derived from Paleolithic ancient settlers; however, a more recent (∼10 Ky older) detectable paternal gene flow from west Asia is well reflected in the present study. These findings reveal movement of populations to Maharashtra through the western coast rather than mainland where Western Ghats-Vindhya Mountains and Narmada-Tapti rivers might have acted as a natural barrier. Comparing the Maharastrian populations with other South Asian populations reveals that they have a closer affinity with the South Indian than with the Central Indian populations.  相似文献   

16.
A total of 63 binary polymorphisms and 10 short tandem repeats (STRs) were genotyped on a sample of 2,344 Y chromosomes from 18 Native American, 28 Asian, and 5 European populations to investigate the origin(s) of Native American paternal lineages. All three of Greenberg's major linguistic divisions (including 342 Amerind speakers, 186 Na-Dene speakers, and 60 Aleut-Eskimo speakers) were represented in our sample of 588 Native Americans. Single-nucleotide polymorphism (SNP) analysis indicated that three major haplogroups, denoted as C, Q, and R, accounted for nearly 96% of Native American Y chromosomes. Haplogroups C and Q were deemed to represent early Native American founding Y chromosome lineages; however, most haplogroup R lineages present in Native Americans most likely came from recent admixture with Europeans. Although different phylogeographic and STR diversity patterns for the two major founding haplogroups previously led to the inference that they were carried from Asia to the Americas separately, the hypothesis of a single migration of a polymorphic founding population better fits our expanded database. Phylogenetic analyses of STR variation within haplogroups C and Q traced both lineages to a probable ancestral homeland in the vicinity of the Altai Mountains in Southwest Siberia. Divergence dates between the Altai plus North Asians versus the Native American population system ranged from 10,100 to 17,200 years for all lineages, precluding a very early entry into the Americas.  相似文献   

17.
本研究基于75个Y-SNP位点和23个Y-STR基因座对山东汉、回族男性人群进行研究,旨在揭示两个人群的父系遗传结构,为法医学应用及群体遗传学等提供基础数据。研究基于微测序技术检测187份山东汉族和130份山东回族样本,获取75个Y-SNP位点分型;采用PowerPlex®Y23试剂盒检测23个Y-STR基因座;采用直接计数法统计等位基因频率、单倍型频率及单倍群频率,根据公式D=n(1-∑pi2)/(n-1)计算基因多样性、单倍型多样性以及单倍群多样性;根据Median-joining方法,使用NETWORK 5.0和NETWORK Publisher构建并展示网络图。研究结果显示,单倍群O-M175、C-M130、N-M231、Q-M242为山东汉族男性人群主要的Y单倍群,单倍群O-M175、J-M304、R-M207、C-M130、N-M231为山东回族男性人群最主要的单倍群;23个Y-STR基因座在山东汉族男性样本中检出187种单倍型,单倍型多样性为1.0000,在山东回族中检出121种单倍型,单倍型多样性为0.9988;网络图显示同一Y单倍群的样本相对独立地聚集在一起,山东汉族与回族人群之间存在共享单倍群,同时也存在一些特异性单倍群,如单倍群J-M304、R-M207均以山东回族为主,单倍群Q-M242则以山东汉族为主。山东汉族和回族男性人群的主要单倍群均为单倍群O-M175;单倍群J-M304、R-M207在山东回族中的高频分布,单倍群Q-M242则在山东汉族中高频分布。研究表明山东回族人群中保留有一定比例的欧亚西部和中东特有的Y染色体类型。  相似文献   

18.
The genetic composition of the Russian population was investigated by analyzing both mitochondrial DNA (mtDNA) and Y-chromosome loci polymorphisms that allow for the different components of a population gene pool to be studied, depending on the mode of DNA marker inheritance. mtDNA sequence variation was examined by using hypervariable segment I (HVSI) sequencing and restriction analysis of the haplogroup-specific sites in 325 individuals representing 5 Russian populations from the European part of Russia. The Y-chromosome variation was investigated in 338 individuals from 8 Russian populations (including 5 populations analyzed for mtDNA variation) using 12 binary markers. For both uniparental systems most of the observed haplogroups fell into major West Eurasian haplogroups (97.9% and 99.7% for mtDNA and Y-chromosome haplogroups, respectively). Multidimensional scaling analysis based on pairwise F(ST) values between mtDNA HVSI sequences in Russians compared to other European populations revealed a considerable heterogeneity of Russian populations; populations from the southern and western parts of Russia are separated from eastern and northern populations. Meanwhile, the multidimensional scaling analysis based on Y-chromosome haplogroup F(ST) values demonstrates that the Russian gene pool is close to central-eastern European populations, with a much higher similarity to the Baltic and Finno-Ugric male pools from northern European Russia. This discrepancy in the depth of penetration of mtDNA and Y-chromosome lineages characteristic for the most southwestern Russian populations into the east and north of eastern Europe appears to indicate that Russian colonization of the northeastern territories might have been accomplished mainly by males rather than by females.  相似文献   

19.
The gene pool structure was studied for the indigenous population of the Sakha Republic (Yakutia). The composition and frequencies of Y-chromosome haplotypes in Yakuts were characterized. Six haplogroups were observed: C3×M77, C3c, N*, N2, N3a, and R1a1, N3a being the most common (89%). The gene diversity computed from the haplogroup frequencies was low in all samples examined. Gene differentiation was analyzed by AMOVA with two marker systems (haplogroup frequencies and Y-chromosomal microsatellite haplotypes) and was estimated at 0.24 and 2.85%, respectively. The frequencies and molecular phylogeny of the YSTR haplotypes were studied for the N3a haplogroup. In total, 40 haplotypes were found in Yakuts. Evenks and Yakuts displayed highly specific overlapping N3a haplotype spectra, atypical for other Siberian ethnic groups. Cluster analysis with N3a YSTR haplotypes showed that Yakuts are isolated from other Turkic-speaking populations of Southern Siberia. The genetic diversity generation time was estimated at 4450 ± 1960 years for the Yakut haplotype spectrum. In contrast to mtDNA data, the results suggest a significant contribution of the local Paleolithic component to the Y-chromosome gene pool of Yakuts. Ethnogenetic reconstructions were inferred from the diversity and phylogeography of the N3a haplogroup in Siberia.  相似文献   

20.
The mtDNA composition of two Muslim sects from the northern Indian province of Uttar Pradesh, the Sunni and Shia, have been delineated using sequence information from hypervariable regions 1 and 2 (HVI and HVII, respectively) as well as coding region polymorphisms. A comparison of this data to that from Middle Eastern, Central Asian, North East African, and other Indian groups reveals that, at the mtDNA haplogroup level, both of these Indo-Sunni and Indo-Shia populations are more similar to each other and other Indian groups than to those from the other regions. In addition, these two Muslim sects exhibit a conspicuous absence of West Asian mtDNA haplogroups suggesting that their maternal lineages are of Indian origin. Furthermore, it is noteworthy that the maternal lineage data indicates differences between the Sunni and Shia collections of Uttar Pradesh with respect to the relative distributions of Indian-specific M sub-haplogroups (Indo Shia > Indo Sunni) and the R haplogroup (Indo Sunni > Indo Shia), a disparity that does not appear to be related to social status or geographic regions within India. Finally, the mtDNA data integrated with the Y-chromosome results from an earlier study, which indicated a major Indian genetic (Y-chromosomal) contribution as well, suggests a scenario of Hindu to Islamic conversion in these two populations. However, given the substantial level of the African/Middle Eastern YAP lineage in the Indo-Shia versus its absence in the Indo-Sunni, it is likely that this conversion was somewhat gender biased in favor of females in the Indo-Shia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号