首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Feng  Zhaomin  Zhu  Wenfei  Yang  Lei  Liu  Jia  Zhou  Lijuan  Wang  Dayan  Shu  Yuelong 《中国病毒学》2021,36(1):43-51
Eurasian avian-like H1 N1(EA H1 N1) swine influenza virus(SIV) outside European countries was first detected in Hong Kong Special Administrative Region(Hong Kong, SAR) of China in 2001. Afterwards, EA H1 N1 SIVs have become predominant in pig population in this country. However, the epidemiology and genotypic diversity of EA H1 N1 SIVs in China are still unknown. Here, we collected the EA H1 N1 SIVs sequences from China between 2001 and 2018 and analyzed the epidemic and phylogenic features, and key molecular markers of these EA H1 N1 SIVs. Our results showed that EA H1 N1 SIVs distributed in nineteen provinces/municipalities of China. After a long-time evolution and transmission, EA H1 N1 SIVs were continuously reassorted with other co-circulated influenza viruses, including 2009 pandemic H1 N1(A(H1 N1)pdm09), and triple reassortment H1 N2(TR H1 N2) influenza viruses, generated 11 genotypes. Genotype 3 and 5, both of which were the reassortments among EA H1 N1, A(H1 N1)pdm09 and TR H1 N2 viruses with different origins of M genes, have become predominant in pig population. Furthermore, key molecular signatures were identified in EA H1 N1 SIVs. Our study has drawn a genotypic diversity image of EA H1 N1 viruses, and could help to evaluate the potential risk of EA H1 N1 for pandemic preparedness and response.  相似文献   

2.
Swine-origin H3N2v, a variant of H3N2 influenza virus, is a concern for novel reassortment with circulating pandemic H1N1 influenza virus (H1N1pdm09) in swine because this can lead to the emergence of a novel pandemic virus. In this study, the reassortment prevalence of H3N2v with H1N1pdm09 was determined in swine cells. Reassortants evaluated showed that the H1N1pdm09 polymerase (PA) segment occurred within swine H3N2 with ∼80% frequency. The swine H3N2-human H1N1pdm09 PA reassortant (swH3N2-huPA) showed enhanced replication in swine cells, and was the dominant gene constellation. Ferrets infected with swH3N2-huPA had increased lung pathogenicity compared to parent viruses; however, swH3N2-huPA replication in normal human bronchoepithelial cells was attenuated - a feature linked to expression of IFN-β and IFN-λ genes in human but not swine cells. These findings indicate that emergence of novel H3N2v influenza constellations require more than changes in the viral polymerase complex to overcome barriers to cross-species transmission. Additionally, these findings reveal that while the ferret model is highly informative for influenza studies, slight differences in pathogenicity may not necessarily be indicative of human outcomes after infection.  相似文献   

3.

Background

2009 pandemic influenza A/H1N1 (A(H1N1)pdm09) was first detected in the United States in April 2009 and resulted in a global pandemic. We conducted a serologic survey to estimate the cumulative incidence of A(H1N1)pdm09 through the end of 2009 when pandemic activity had waned in the United States.

Methods

We conducted a pair of cross sectional serologic surveys before and after the spring/fall waves of the pandemic for evidence of seropositivity (titer ≥40) using the hemagglutination inhibition (HI) assay. We tested a baseline sample of 1,142 serum specimens from the 2007–2008 National Health and Nutrition Examination Survey (NHANES), and 2,759 serum specimens submitted for routine screening to clinical diagnostic laboratories from ten representative sites.

Results

The age-adjusted prevalence of seropositivity to A(H1N1)pdm09 by year-end 2009 was 36.9% (95%CI: 31.7–42.2%). After adjusting for baseline cross-reactive antibody, pandemic vaccination coverage and the sensitivity/specificity of the HI assay, we estimate that 20.2% (95%CI: 10.1–28.3%) of the population was infected with A(H1N1)pdm09 by December 2009, including 53.3% (95%CI: 39.0–67.1%) of children aged 5–17 years.

Conclusions

By December 2009, approximately one-fifth of the US population, or 61.9 million persons, may have been infected with A(H1N1)pdm09, including around half of school-aged children.  相似文献   

4.

Background

The 2009 H1N1 influenza pandemic initially affected Mexico from April 2009 to July 2010. By August 2010, a fourth of the population had received the monovalent vaccine against the pandemic virus (A(H1N1)pdm09). To assess the proportion of the Mexican population who remained potentially susceptible to infection throughout the summer of 2010, we estimated the population seroprevalence to A(H1N1)pdm09 in a serosurvey of blood donors.

Methods

We evaluated baseline cross-reactivity to the pandemic strain and set the threshold for seropositivity using pre-pandemic (2005–2008) stored serum samples and sera from confirmed A(H1N1)pdm09 infected individuals. Between June and September 2010, a convenience sample serosurvey of adult blood donors, children, and adolescents was conducted in six states of Mexico. Sera were tested by the microneutralization (MN) and hemagglutination inhibition (HI) assays, and regarded seropositive if antibody titers were equal or exceeded 1:40 for MN and 1:20 for HI. Age-standardized seroprevalence were calculated using the 2010 National Census population.

Results

Sera from 1,484 individuals were analyzed; 1,363 (92%) were blood donors, and 121 (8%) children or adolescents aged ≤19 years. Mean age (standard deviation) was 31.4 (11.5) years, and 276 (19%) were women. A total of 516 (35%) participants declared history of influenza vaccination after April 2009. The age-standardized seroprevalence to A(H1N1)pdm09 was 48% by the MN and 41% by the HI assays, respectively. The youngest quintile, aged 1 to 22 years, had the highest the seroprevalence; 61% (95% confidence interval [CI]: 56, 66%) for MN, and 56% (95% CI: 51, 62%) for HI.

Conclusions

Despite high transmission of A(H1N1)pdm09 observed immediately after its emergence and extensive vaccination, over a half of the Mexican population remained potentially susceptible to A(H1N1)pdm09 infection. Subsequent influenza seasons with high transmission of A(H1N1)pdm09, as 2011–2012 and 2013–2014, are compatible with these findings.  相似文献   

5.

Background

Little is known about the dynamics or magnitude of antibody response in patients with influenza A (H1N1) pdm09-associated pneumonia. We described and compared the antibody response to influenza A (H1N1) pdm09 in patients with and without pneumonia.

Methods

We collected serum samples and determined antibody titers by the hemagglutination inhibition (HI) and microneutralization (mNT) assays from patients with RT-PCR confirmed influenza A (H1N1) pdm09 virus at baseline, 1, 2 and 6 months after onset of illness.

Results

Fifty-nine patients were enrolled, 45 (76.3%) were between 15 and 60 years of age, 49 (83.1%) were hospitalized and 25 (42.4%) had complications with pneumonia. Ninety-four percent of patients had HI titers ≥ 1: 40 and 90% had mNT titers ≥ 1: 160 at 2 months after illness. Geometric mean titers (GMT) of HI and mNT increased significantly (p<0.001) between baseline and months 1 or 2, then declined significantly (p<0.001) at month 6 by the HI assay, but dropped to an insignificant level (p=0.24) by the mNT assay. The mNT-GMT was at least twice as high as corresponding HI antibodies over a 6 month period. The GMT of HI and mNT in those with pneumonia (1 mo) peaked earlier than that of those without pneumonia (2 mo). When adjusted by age and gender, those with pneumonia had a higher HI-GMT than those without pneumonia at 1 month (264 vs. 117, p=0.007), 2 months (212 vs. 159, p=0.013), and 6 months (160 vs. 82, p=0.018).

Conclusions

The patients recovered from influenza A (H1N1) pdm09-associated pneumonia, clearly developed an earlier and more robust antibody response until 6 months after onset of illness. The results in our study are useful to determine an appropriate donor and timing to obtain convalescent plasma for adjunctive treatment of seriously ill patients with pandemic H1N1 influenza.  相似文献   

6.

Background

A common pattern emerging from several studies evaluating the impact of the 2009 A/H1N1 pandemic influenza (A/H1N1pdm) conducted in countries worldwide is the low attack rate observed in elderly compared to that observed in children and young adults. The biological or social mechanisms responsible for the observed age-specific risk of infection are still to be deeply investigated.

Methods

The level of immunity against the A/H1N1pdm in pre and post pandemic sera was determined using left over sera taken for diagnostic purposes or routine ascertainment obtained from clinical laboratories. The antibody titres were measured by the haemagglutination inhibition (HI) assay. To investigate whether certain age groups had higher risk of infection the presence of protective antibody (≥1∶40), was calculated using exact binomial 95% CI on both pre- and post- pandemic serological data in the age groups considered. To estimate age-specific susceptibility to infection we used an age-structured SEIR model.

Results

By comparing pre- and post-pandemic serological data in Italy we found age- specific attack rates similar to those observed in other countries. Cumulative attack rate at the end of the first A/H1N1pdm season in Italy was estimated to be 16.3% (95% CI 9.4%-23.1%). Modeling results allow ruling out the hypothesis that only age-specific characteristics of the contact network and levels of pre-pandemic immunity are responsible for the observed age-specific risk of infection. This means that age-specific susceptibility to infection, suspected to play an important role in the pandemic, was not only determined by pre-pandemic levels of H1N1pdm antibody measured by HI.

Conclusions

Our results claim for new studies to better identify the biological mechanisms, which might have determined the observed pattern of susceptibility with age. Moreover, our results highlight the need to obtain early estimates of differential susceptibility with age in any future pandemics to obtain more reliable real time estimates of critical epidemiological parameters.  相似文献   

7.

Background

The transmission of influenza viruses occurs person to person and is facilitated by contacts within enclosed environments such as households. The aim of this study was to evaluate secondary attack rates and factors associated with household transmission of laboratory-confirmed influenza A(H1N1)pdm09 in the pandemic and post-pandemic seasons.

Methods

During the 2009–2010 and 2010–2011 influenza seasons, 76 sentinel physicians in Navarra, Spain, took nasopharyngeal and pharyngeal swabs from patients diagnosed with influenza-like illness. A trained nurse telephoned households of those patients who were laboratory-confirmed for influenza A(H1N1)pdm09 to ask about the symptoms, risk factors and vaccination status of each household member.

Results

In the 405 households with a patient laboratory-confirmed for influenza A(H1N1)pdm09, 977 susceptible contacts were identified; 16% of them (95% CI 14–19%) presented influenza-like illness and were considered as secondary cases. The secondary attack rate was 14% in 2009–2010 and 19% in the 2010–2011 season (p = 0.049), an increase that mainly affected persons with major chronic conditions. In the multivariate logistic regression analysis, the risk of being a secondary case was higher in the 2010–2011 season than in the 2009–2010 season (adjusted odds ratio: 1.72; 95% CI 1.17–2.54), and in children under 5 years, with a decreasing risk in older contacts. Influenza vaccination was associated with lesser incidence of influenza-like illness near to statistical significance (adjusted odds ratio: 0.29; 95% CI 0.08–1.03).

Conclusion

The secondary attack rate in households was higher in the second season than in the first pandemic season. Children had a greater risk of infection. Preventive measures should be maintained in the second pandemic season, especially in high-risk persons.  相似文献   

8.

Background

Narcolepsy cataplexy syndrome, characterised by excessive daytime sleepiness and cataplexy, is strongly associated with a genetic marker, human leukocyte antigen (HLA) DQB1*06:02. A sudden increase in the incidence of childhood narcolepsy was observed after vaccination with AS03-adjuvanted Pandemrix influenza vaccine in Finland at the beginning of 2010. Here, we analysed whether the coinciding influenza A H1N1pdm pandemic contributed, together with the Pandemrix vaccination, to the increased incidence of childhood narcolepsy in 2010. The analysis was based on the presence or absence of antibody response against non-structural protein 1 (NS1) from H1N1pdm09 virus, which was not a component of Pandemrix vaccine.

Methods

Non-structural (NS) 1 proteins from recombinant influenza A/Udorn/72 (H3N2) and influenza A/Finland/554/09 (H1N1pdm09) viruses were purified and used in Western blot analysis to determine specific antibody responses in human sera. The sera were obtained from 45 patients who fell ill with narcolepsy after vaccination with AS03-adjuvanted Pandemrix at the end of 2009, and from controls.

Findings

Based on quantitative Western blot analysis, only two of the 45 (4.4%) Pandemrix-vaccinated narcoleptic patients showed specific antibody response against the NS1 protein from the H1N1pdm09 virus, indicating past infection with the H1N1pdm09 virus. Instead, paired serum samples from patients, who suffered from a laboratory confirmed H1N1pdm09 infection, showed high levels or diagnostic rises (96%) in H1N1pdm virus NS1-specific antibodies and very high cross-reactivity to H3N2 subtype influenza A virus NS1 protein.

Conclusion

Based on our findings, it is unlikely that H1N1pdm09 virus infection contributed to a sudden increase in the incidence of childhood narcolepsy observed in Finland in 2010 after AS03-adjuvanted Pandemrix vaccination.  相似文献   

9.
We conducted a serological survey to detect antibodies against influenza A virus (IAV) in Japanese wild boars in Kagoshima prefecture, Japan, between 2014 and 2017. Seroprevalence against a pandemic‐like swine H1N1 (H1N1pdm) virus was identified in 27.1% of specimens, and 1.7% were positive for both swine H1N2 and H3N2 viruses, indicating that wild boars could play an important role in the dynamics of H1N1pdm viral dispersion in the wild. The high frequency of positive results for sera against the H1N1pdm virus suggests that cross‐species IAV transmission between wild boars, livestock, and humans is a threat to veterinary and public health.  相似文献   

10.
11.

Introduction

Because of variability in published A(H1N1)pdm09 influenza vaccine effectiveness estimates, we conducted a study in the adults belonging to the risk groups to assess the A(H1N1)pdm09 MF59-adjuvanted influenza vaccine effectiveness.

Methods

VE against influenza and/or pneumonia was assessed in the cohort study (n>25000), and vaccine effectiveness against laboratory-confirmed A(H1N1)pdm09 influenza was assessed in a matched case-control study (16 pairs). Odds ratios (OR) and their 95% confidence intervals (95% CI) were calculated by using multivariate logistic regression; vaccine effectiveness was estimated as (1-odds ratio)*100%.

Results

Vaccine effectiveness against laboratory-confirmed A(H1N1)pdm09 influenza and influenza and/or pneumonia was 98% (84–100%) and 33% (2–54%) respectively. The vaccine did not prevent influenza and/or pneumonia in 18–59 years old subjects, and was 49% (16–69%) effective in 60 years and older subjects.

Conclusions

Even though we cannot entirely rule out that selection bias, residual confounding and/or cross-protection has played a role, the present results indicate that the MF59-adjuvanted A(H1N1)pdm09 influenza vaccine has been effective in preventing laboratory-confirmed A(H1N1)pdm09 influenza and influenza and/or pneumonia, the latter notably in 60 years and older subjects.  相似文献   

12.

Background

The 2009 H1N1 influenza pandemic caused offseason peaks in temperate regions but coincided with the summer epidemic of seasonal influenza and other common respiratory viruses in subtropical Hong Kong. This study was aimed to investigate the impact of the pandemic on age-specific epidemic curves of other respiratory viruses.

Methods

Weekly laboratory-confirmed cases of influenza A (subtypes seasonal A(H1N1), A(H3N2), pandemic virus A(H1N1)pdm09), influenza B, respiratory syncytial virus (RSV), adenovirus and parainfluenza were obtained from 2004 to 2013. Age-specific epidemic curves of viruses other than A(H1N1)pdm09 were compared between the pre-pandemic (May 2004 – April 2009), pandemic (May 2009 – April 2010) and post-pandemic periods (May 2010 – April 2013).

Results

There were two peaks of A(H1N1)pdm09 in Hong Kong, the first in September 2009 and the second in February 2011. The infection rate was found highest in young children in both waves, but markedly fewer cases in school children were recorded in the second wave than in the first wave. Positive proportions of viruses other than A(H1N1)pdm09 markedly decreased in all age groups during the first pandemic wave. After the first wave of the pandemic, the positive proportion of A(H3N2) increased, but those of B and RSV remained slightly lower than their pre-pandemic proportions. Changes in seasonal pattern and epidemic peak time were also observed, but inconsistent across virus-age groups.

Conclusion

Our findings provide some evidence that age distribution, seasonal pattern and peak time of other respiratory viruses have changed since the pandemic. These changes could be the result of immune interference and changing health seeking behavior, but the mechanism behind still needs further investigations.  相似文献   

13.

Background

The swine-origin influenza A(H1N1)pdm09 pandemic of 2009 had a slower spread in Europe than expected. The human rhinovirus (HRV) has been suggested to have delayed the pandemic through viral interference. The importance of co-infections over time during the pandemic and in terms of severity of the disease needs to be assessed.

Objective

The aim of this study was to investigate respiratory viruses and specifically the presence of co-infections with influenza A(H1N1)pdm09 (H1N1) in hospitalized children during the H1N1 pandemic. A secondary aim was to investigate if co-infections were associated with severity of disease.

Methods

A retrospective study was performed on 502 children with influenza-like illness admitted to inpatient care at a pediatric hospital in Stockholm, Sweden during the 6 months spanning the H1N1 pandemic in 2009. Respiratory samples were analyzed for a panel of 16 viruses by real-time polymerase chain reaction.

Results

One or more viruses were detected in 61.6% of the samples. Of these, 85.4% were single infections and 14.6% co-infections (2–4 viruses). The number of co-infections increased throughout the study period. H1N1 was found in 83 (16.5%) children and of these 12 (14.5%) were co-infections. HRV and H1N1 circulated to a large extent at the same time and 6.0% of the H1N1-positive children were also positive for HRV. There was no correlation between co-infections and severity of disease in children with H1N1.

Conclusions

Viral co-infections were relatively common in H1N1 infected hospitalized children and need to be considered when estimating morbidity attributed to H1N1. Population-based longitudinal studies with repeated sampling are needed to improve the understanding of the importance of co-infections and viral interference.  相似文献   

14.
The demonstrated link between the emergence of H3N2 variant (H3N2v) influenza A viruses (IAVs) and swine exposure at agricultural fairs has raised concerns about the human health risk posed by IAV-infected swine. Understanding the antigenic profiles of IAVs circulating in pigs at agricultural fairs is critical to developing effective prevention and control strategies. Here, 68 H3N2 IAV isolates recovered from pigs at Ohio fairs (2009 to 2011) were antigenically characterized. These isolates were compared with other H3 IAVs recovered from commercial swine, wild birds, and canines, along with human seasonal and variant H3N2 IAVs. Antigenic cartography demonstrated that H3N2 IAV isolates from Ohio fairs could be divided into two antigenic groups: (i) the 2009 fair isolates and (ii) the 2010 and 2011 fair isolates. These same two antigenic clusters have also been observed in commercial swine populations in recent years. Human H3N2v isolates from 2010 and 2011 are antigenically clustered with swine-origin IAVs from the same time period. The isolates recovered from pigs at fairs did not cross-react with ferret antisera produced against the human seasonal H3N2 IAVs circulating during the past decade, raising the question of the degree of immunity that the human population has to swine-origin H3N2 IAVs. Our results demonstrate that H3N2 IAVs infecting pigs at fairs and H3N2v isolates were antigenically similar to the IAVs circulating in commercial swine, demonstrating that exhibition swine can function as a bridge between commercial swine and the human population.  相似文献   

15.
The 2009 pandemic influenza H1N1 (H1N1pdm) virus was generated by reassortment of swine influenza viruses of different lineages. This was the first influenza pandemic to emerge in over 4 decades and the first to occur after the realization that influenza pandemics arise from influenza viruses of animals. In order to understand the biological determinants of pandemic emergence, it is relevant to compare the tropism of different lineages of swine influenza viruses and reassortants derived from them with that of 2009 pandemic H1N1 (H1N1pdm) and seasonal influenza H1N1 viruses in ex vivo cultures of the human nasopharynx, bronchus, alveoli, and conjunctiva. We hypothesized that virus which can transmit efficiently between humans replicated well in the human upper airways. As previously reported, H1N1pdm and seasonal H1N1 viruses replicated efficiently in the nasopharyngeal, bronchial, and alveolar epithelium. In contrast, representative viruses from the classical swine (CS) (H1N1) lineage could not infect human respiratory epithelium; Eurasian avian-like swine (EA) (H1N1) viruses only infected alveolar epithelium and North American triple-reassortant (TRIG) viruses only infected the bronchial epithelium albeit inefficiently. Interestingly, a naturally occurring triple-reassortant swine virus, A/SW/HK/915/04 (H1N2), with a matrix gene segment of EA swine derivation (i.e., differing from H1N1pdm only in lacking a neuraminidase [NA] gene of EA derivation) readily infected and replicated in human nasopharyngeal and bronchial epithelia but not in the lung. A recombinant sw915 with the NA from H1N1pdm retained its tropism for the bronchus and acquired additional replication competence for alveolar epithelium. In contrast to H1N1pdm, none of the swine viruses tested nor seasonal H1N1 had tropism in human conjunctiva. Recombinant viruses generated by swapping the surface proteins (hemagglutinin and NA) of H1N1pdm and seasonal H1N1 virus demonstrated that these two gene segments together are key determinants of conjunctival tropism. Overall, these findings suggest that ex vivo cultures of the human respiratory tract provide a useful biological model for assessing the human health risk of swine influenza viruses.  相似文献   

16.

Background

Baguio City, Philippines experienced its first influenza A(H1N1)pdm09 [A(H1)pdm09] case in May 2009. In spite of numerous reports describing the epidemiological and clinical features of A(H1)pdm09 cases, there are no studies about A(H1)pdm09 epidemiology in the Philippines, where year-round influenza activity was observed.

Objectives

We aimed to investigate the epidemiological and clinical features of A(H1)pdm09 in pandemic and post-pandemic periods.

Methods

Data were collected under enhanced surveillance of influenza-like illness (ILI) and severe acute respiratory infection (SARI) from January 2009 to December 2010. RT-PCR was used to detect A(H1)pdm09, following the protocol of the United States Centers for Disease Control and Prevention. The reproduction number was computed as a simple exponential growth rate. Differences in proportional and categorical data were examined using chi-square test or Fishers’ exact test.

Results and Conclusions

The outbreak was observed from week 25 to 35 in 2009 and from week 24 to 37 in 2010. The highest proportion of cases was among children aged 5–14 years. The number of ILI outpatients was 2.3-fold higher in 2009 than in 2010, while the number of inpatients was 1.8-fold higher in 2009. No significant difference in gender was observed during the two periods. The clinical condition of all patients was generally mild and self-limiting, with only 2 mortalities among inpatients in 2009. The basic reproduction number was estimated as 1.16 in 2009 and 1.05 in 2010 in the assumption of mean generation time as 2.6 days. School children played a significant role in facilitating influenza transmission.  相似文献   

17.
In France, the 2011–2012 influenza epidemic was characterized by the circulation of antigenically drifted influenza A(H3N2) viruses and by an increased disease severity and mortality among the elderly, with respect to the A(H1N1)pdm09 pandemic and post-pandemic outbreaks. Whether the epidemiology of influenza in France differed between the 2011–2012 epidemic and the previous outbreaks is unclear. Here, we analyse the age distribution of influenza like illness (ILI) cases attended in general practice during the 2011–2012 epidemic, and compare it with that of the twelve previous epidemic seasons. Influenza like illness data were obtained through a nationwide surveillance system based on sentinel general practitioners. Vaccine effectiveness was also estimated. The estimated number of ILI cases attended in general practice during the 2011–2012 was lower than that of the past twelve epidemics. The age distribution was characteristic of previous A(H3N2)-dominated outbreaks: school-age children were relatively spared compared to epidemics (co-)dominated by A(H1N1) and/or B viruses (including the 2009 pandemic and post-pandemic outbreaks), while the proportion of adults over 30 year-old was higher. The estimated vaccine effectiveness (54%, 95% CI (48, 60)) was in the lower range for A(H3N2) epidemics. In conclusion, the age distribution of ILI cases attended in general practice seems to be not different between the A(H3N2) pre-pandemic and post-pandemic epidemics. Future researches including a more important number of ILI epidemics and confirmed virological data of influenza and other respiratory pathogens are necessary to confirm these results.  相似文献   

18.
In 2013, three reassortant swine influenza viruses (SIVs)—two H1N2 and one H3N2—were isolated from symptomatic pigs in Japan; each contained genes from the pandemic A(H1N1) 2009 virus and endemic SIVs. Phylogenetic analysis revealed that the two H1N2 viruses, A/swine/Gunma/1/2013 and A/swine/Ibaraki/1/2013, were reassortants that contain genes from the following three distinct lineages: (i) H1 and nucleoprotein (NP) genes derived from a classical swine H1 HA lineage uniquely circulating among Japanese SIVs; (ii) neuraminidase (NA) genes from human‐like H1N2 swine viruses; and (iii) other genes from pandemic A(H1N1) 2009 viruses. The H3N2 virus, A/swine/Miyazaki/2/2013, comprised genes from two sources: (i) hemagglutinin (HA) and NA genes derived from human and human‐like H3N2 swine viruses and (ii) other genes from pandemic A(H1N1) 2009 viruses. Phylogenetic analysis also indicated that each of the reassortants may have arisen independently in Japanese pigs. A/swine/Miyazaki/2/2013 were found to have strong antigenic reactivities with antisera generated for some seasonal human‐lineage viruses isolated during or before 2003, whereas A/swine/Miyazaki/2/2013 reactivities with antisera against viruses isolated after 2004 were clearly weaker. In addition, antisera against some strains of seasonal human‐lineage H1 viruses did not react with either A/swine/Gunma/1/2013 or A/swine/Ibaraki/1/2013. These findings indicate that emergence and spread of these reassortant SIVs is a potential public health risk.  相似文献   

19.

Background

Cross-immunity between seasonal and pandemic A/H1N1 influenza viruses remains uncertain. In particular, the extent that previous infection or vaccination by seasonal A/H1N1 viruses can elicit protective immunity against pandemic A/H1N1 is unclear.

Methodology/Principal Findings

Neutralizing titers against seasonal A/H1N1 (A/Brisbane/59/2007) and against pandemic A/H1N1 (A/California/04/2009) were measured using an HIV-1-based pseudovirus neutralization assay. Using this highly sensitive assay, we found that a large fraction of subjects who had never been exposed to pandemic A/H1N1 express high levels of pandemic A/H1N1 neutralizing titers. A significant correlation was seen between neutralization of pandemic A/H1N1 and neutralization of a standard seasonal A/H1N1 strain. Significantly higher pandemic A/H1N1 neutralizing titers were measured in subjects who had received vaccination against seasonal influenza in 2008–2009. Higher pandemic neutralizing titers were also measured in subjects over 60 years of age.

Conclusions/Significance

Our findings reveal that the extent of protective cross-immunity between seasonal and pandemic A/H1N1 influenza viruses may be more important than previously estimated. This cross-immunity could provide a possible explanation of the relatively mild profile of the recent influenza pandemic.  相似文献   

20.
Eleven swine influenza viruses (SIVs) isolated from pigs in Japanese institutions between 2009 and 2012 were genetically characterized. Seven H1N1 were shown to have originated from A(H1N1)pdm09 viruses. Two H1N2 viruses contained H1 and N2 genes of Japanese H1N2 SIV origin together with internal genes of A(H1N1)pdm09 viruses. Two H3N2 viruses isolated during animal quarantine were identified as triple reassortant H3N2 viruses maintained among pigs in North America. This study shows that A(H1N1)pdm09 viruses and their reassortant strains are already present in domestic pigs in Japan and that novel SIVs are possibly being imported from abroad.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号