共查询到20条相似文献,搜索用时 15 毫秒
1.
Natallia Makarava Regina Savtchenko Ilia V. Baskakov 《The Journal of biological chemistry》2013,288(1):33-41
With the development of protein misfolding cyclic amplification (PMCA), the topic of faithful propagation of prion strain-specific structures has been constantly debated. Here we show that by subjecting brain material of a synthetic strain consisting of a mixture of self-replicating states to PMCAb, selective amplification of PrPSc could be achieved, and that PMCAb mimicked the evolutionary trend observed during serial transmission in animals. On the other hand, using modified PMCAb conditions that employ partially deglycosylated PrPC (dgPMCAb), an alternative transmissible state referred to as atypical protease-resistant form of the prion protein (atypical PrPres) was selectively amplified from a mixture. Surprisingly, when hamster-adapted strains (263K and Hyper) were subjected to dgPMCAb, their proteinase K digestion profile underwent a dramatic transformation, suggesting that a mixture of atypical PrPres and PrPSc might be present in brain-derived materials. However, detailed analysis revealed that the proteinase K-resistant profile of PrPSc changed in response to dgPMCAb. Despite these changes, the 263K strain-specific disease phenotype was preserved after passage through dgPMCAb. This study revealed that the change in PrPSc biochemical phenotype does not always represent an irreversible transformation of a strain, but rather demonstrated the existence of a wide range of variation for strain-specific physical features in response to a change in prion replication environment. The current work introduced a new PMCA technique for amplification of atypical PrPres and raised a number of questions about the need for a clever distinction between actual strain mutation and variation of strain-specific features in response to a change in the replication environment. 相似文献
2.
Taema MM Maddison BC Thorne L Bishop K Owen J Hunter N Baker CA Terry LA Gough KC 《Molecular biotechnology》2012,51(3):233-239
Whilst ovine BSE displays distinct pathological characteristics to ovine CH1641-like scrapie upon passage in rodents, they have very similar molecular phenotypes. As such, the in vitro differentiation of these strains in routine surveillance programmes presents a significant diagnostic challenge. In this study, using serial protein-misfolding cyclic amplification (sPMCA), ovine BSE was readily amplified in vitro in brain substrates from sheep with V???R???Q???/V???R???Q??? or AHQ/AHQ PRNP genotypes. In contrast, the CH1641 strain was refractory to such amplification. This method allowed for complete and unequivocal differentiation of experimental BSE from CH1641 prion strains within an ovine host. 相似文献
3.
Samuel E. Saunders Jason C. Bartz Ronald A. Shikiya 《Journal of visualized experiments : JoVE》2012,(69)
Prions are infectious agents that cause the inevitably fatal transmissible spongiform encephalopathy (TSE) in animals and humans9,18. The prion protein has two distinct isoforms, the non-infectious host-encoded protein (PrPC) and the infectious protein (PrPSc), an abnormally-folded isoform of PrPC 8.One of the challenges of working with prion agents is the long incubation period prior to the development of clinical signs following host inoculation13. This traditionally mandated long and expensive animal bioassay studies. Furthermore, the biochemical and biophysical properties of PrPSc are poorly characterized due to their unusual conformation and aggregation states.PrPSc can seed the conversion of PrPC to PrPScin vitro14. PMCA is an in vitro technique that takes advantage of this ability using sonication and incubation cycles to produce large amounts of PrPSc, at an accelerated rate, from a system containing excess amounts of PrPC and minute amounts of the PrPSc seed19. This technique has proven to effectively recapitulate the species and strain specificity of PrPSc conversion from PrPC, to emulate prion strain interference, and to amplify very low levels of PrPSc from infected tissues, fluids, and environmental samples6,7,16,23 .This paper details the PMCA protocol, including recommendations for minimizing contamination, generating consistent results, and quantifying those results. We also discuss several PMCA applications, including generation and characterization of infectious prion strains, prion strain interference, and the detection of prions in the environment. 相似文献
4.
Martin L. Daus Katja Wagenführ Achim Thomzig Susann Boerner Peter Hermann Antje Hermelink Michael Beekes Peter Lasch 《The Journal of biological chemistry》2013,288(49):35068-35080
The self-replicative conformation of misfolded prion proteins (PrP) is considered a major determinant for the seeding activity, infectiousness, and strain characteristics of prions in different host species. Prion-associated seeding activity, which converts cellular prion protein (PrPC) into Proteinase K-resistant, infectious PrP particles (PrPTSE), can be monitored in vitro by protein misfolding cyclic amplification (PMCA). Thus, PMCA has been established as a valuable analytical tool in prion research. Currently, however, it is under discussion whether prion strain characteristics are preserved during PMCA when parent seeds are amplified in PrPC substrate from the identical host species. Here, we report on the comparative structural analysis of parent and progeny (PMCA-derived) PrP seeds by an improved approach of sensitive infrared microspectroscopy. Infrared microspectroscopy revealed that PMCA of native hamster 263K scrapie seeds in hamster PrPC substrate caused conformational alterations in progeny seeds that were accompanied by an altered resistance to Proteinase K, higher sedimentation velocities in gradient ultracentrifugations, and a longer incubation time in animal bioassays. When these progeny seeds were propagated in hamsters, misfolded PrP from brain extracts of these animals showed mixed spectroscopic and biochemical properties from both parental and progeny seeds. Thus, strain modifications of 263K prions induced by PMCA seem to have been partially reversed when PMCA products were reinoculated into the original host species. 相似文献
5.
6.
7.
Maxime Belondrade Simon Nicot Vincent Béringue Joliette Coste Sylvain Lehmann Daisy Bougard 《PloS one》2016,11(1)
The prevalence of variant Creutzfeldt-Jakob disease (vCJD) in the population remains uncertain, although it has been estimated that 1 in 2000 people in the United Kingdom are positive for abnormal prion protein (PrPTSE) by a recent survey of archived appendix tissues. The prominent lymphotropism of vCJD prions raises the possibility that some surgical procedures may be at risk of iatrogenic vCJD transmission in healthcare facilities. It is therefore vital that decontamination procedures applied to medical devices before their reprocessing are thoroughly validated. A current limitation is the lack of a rapid model permissive to human prions. Here, we developed a prion detection assay based on protein misfolding cyclic amplification (PMCA) technology combined with stainless-steel wire surfaces as carriers of prions (Surf-PMCA). This assay allowed the specific detection of minute quantities (10−8 brain dilution) of either human vCJD or ovine scrapie PrPTSE adsorbed onto a single steel wire, within a two week timeframe. Using Surf-PMCA we evaluated the performance of several reference and commercially available prion-specific decontamination procedures. Surprisingly, we found the efficiency of several marketed reagents to remove human vCJD PrPTSE was lower than expected. Overall, our results demonstrate that Surf-PMCA can be used as a rapid and ultrasensitive assay for the detection of human vCJD PrPTSE adsorbed onto a metallic surface, therefore facilitating the development and validation of decontamination procedures against human prions. 相似文献
8.
Enric Vidal Natalia Fernández-Borges Belén Pintado Hasier Era?a Montserrat Ordó?ez Mercedes Márquez Francesca Chianini Dolors Fondevila Manuel A. Sánchez-Martín Olivier Andreoletti Mark P. Dagleish Martí Pumarola Joaquín Castilla 《PLoS pathogens》2015,11(8)
Interspecies transmission of prions is a well-established phenomenon, both experimentally and under field conditions. Upon passage through new hosts, prion strains have proven their capacity to change their properties and this is a source of strain diversity which needs to be considered when assessing the potential risks associated with consumption of prion contaminated protein sources. Rabbits were considered for decades to be a prion resistant species until proven otherwise recently. To determine the extent of rabbit susceptibility to prions and to assess the effects of passage of different prion strains through this species a transgenic mouse model overexpressing rabbit PrPC was developed (TgRab). Intracerebral challenges with prion strains originating from a variety of species including field isolates (ovine SSBP/1 scrapie, Nor98- scrapie; cattle BSE, BSE-L and cervid CWD), experimental murine strains (ME7 and RML) and experimentally obtained ruminant (sheepBSE) and rabbit (de novo NZW) strains were performed. On first passage TgRab were susceptible to the majority of prions (Cattle BSE, SheepBSE, BSE-L, de novo NZW, ME7 and RML) tested with the exception of SSBP/1 scrapie, CWD and Nor98 scrapie. Furthermore, TgRab were capable of propagating strain-specific features such as differences in incubation periods, histological brain lesions, abnormal prion (PrPd) deposition profiles and proteinase-K (PK) resistant western blotting band patterns. Our results confirm previous studies proving that rabbits are not resistant to prion infection and show for the first time that rabbits are susceptible to PrPd originating in a number of other species. This should be taken into account when choosing protein sources to feed rabbits. 相似文献
9.
10.
《Journal of molecular biology》2022,434(23):167854
The misfolding of the prion protein has been linked to several neurodegenerative diseases. Despite extensive studies, the mechanism of the misfolding process remains poorly understood. The present study structurally delineates the role of the conserved proline residues present in the structured C-terminal domain of the mouse prion protein (moPrP) in the misfolding process. It is shown that mutation of these Pro residues to Ala leads to destabilization of the native (N) state, and also to rapid misfolding. Using hydrogen–deuterium exchange (HDX) studies coupled with mass spectrometry (MS), it has been shown that the N state of moPrP is in rapid equilibrium with a partially unfolded form (PUF2*) at pH 4. It has been shown that the Pro to Ala mutations make PUF2* energetically more accessible from the N state by stabilizing it relative to the unfolded (U) state. The apparent rate constant of misfolding is found to be linearly proportional to the extent to which PUF2* is populated in equilibrium with the N state, strongly indicating that misfolding commences from PUF2*. It has also been shown that the Pro residues restrict the boundary of the structural core of the misfolded oligomers. Overall, this study highlights how the conserved proline residues control misfolding of the prion protein by modulating the stability of the partially unfolded form from which misfolding commences. 相似文献
11.
The Spike Protein of Murine Coronavirus Mouse Hepatitis Virus Strain A59 Is Not Cleaved in Primary Glial Cells and Primary Hepatocytes 总被引:2,自引:0,他引:2 下载免费PDF全文
Mouse hepatitis virus strain A59 (MHV-A59) produces meningoencephalitis and severe hepatitis during acute infection. Infection of primary cells derived from the central nervous system (CNS) and liver was examined to analyze the interaction of virus with individual cell types derived from the two principal sites of viral replication in vivo. In glial cell cultures derived from C57BL/6 mice, MHV-A59 produces a productive but nonlytic infection, with no evidence of cell-to-cell fusion. In contrast, in continuously cultured cells, this virus produces a lytic infection with extensive formation of syncytia. The observation of few and delayed syncytia following MHV-A59 infection of hepatocytes more closely resembles infection of glial cells than that of continuously cultured cell lines. For MHV-A59, lack of syncytium formation correlates with lack of cleavage of the fusion glycoprotein, or spike (S) protein. The absence of cell-to-cell fusion following infection of both primary cell types prompted us to examine the cleavage of the spike protein. Cleavage of S protein was below the level of detection by Western blot analysis in MHV-A59-infected hepatocytes and glial cells. Furthermore, no cleavage of this protein was detected in liver homogenates from C57BL/6 mice infected with MHV-A59. Thus, cleavage of the spike protein does not seem to be essential for entry and spread of the virus in vivo, as well as for replication in vitro. 相似文献
12.
Cristina Acín Inmaculada Martín-Burriel Eva Monleón Jaber Lyahyai José Luis Pitarch Carmen Serrano Marta Monzón Pilar Zaragoza Juan José Badiola 《PloS one》2013,8(4)
Classical scrapie is a neurological disorder of the central nervous system (CNS) characterized by the accumulation of an abnormal, partially protease resistant prion protein (PrPsc) in the CNS and in some peripheral tissues in domestic small ruminants. Whereas the pathological changes and genetic susceptibility of ovine scrapie are well known, caprine scrapie has been less well studied. We report here a pathological study of 13 scrapie-affected goats diagnosed in Spain during the last 9 years. We used immunohistochemical and biochemical techniques to discriminate between classical and atypical scrapie and bovine spongiform encephalopathy (BSE). All the animals displayed PrPsc distribution patterns and western blot characteristics compatible with classical scrapie. In addition, we determined the complete open reading frame sequence of the PRNP in these scrapie-affected animals. The polymorphisms observed were compared with those of the herd mates (n = 665) and with the frequencies of healthy herds (n = 581) of native Spanish goats (Retinta, Pirenaica and Moncaina) and other worldwide breeds reared in Spain (Saanen, Alpine and crossbreed). In total, sixteen polymorphic sites were identified, including the known amino acid substitutions at codons G37V, G127S, M137I, I142M, H143R, R151H, R154H, R211Q, Q222K, G232W, and P240S, and new polymorphisms at codons G74D, M112T, R139S, L141F and Q215R. In addition, the known 42, 138 and 179 silent mutations were detected, and one new one is reported at codon 122. The genetic differences observed in the population studied have been attributed to breed and most of the novel polymorphic codons show frequencies lower than 5%. This work provides the first basis of polymorphic distribution of PRNP in native and worldwide goat breeds reared in Spain. 相似文献
13.
Although commitment to epidermal differentiation is generally considered to be irreversible, differentiated keratinocytes (KCs) have been shown to maintain a regenerative potential and to reform skin epithelia when placed in a suitable environment. To obtain insights into the mechanism of reinitiation of this proliferative response in differentiated KCs, we examined the reversibility of commitment to Ca2+-induced differentiation. Lowering Ca2+ concentration to micromolar levels triggered culture-wide morphological and biochemical changes, as indicated by derepression of cyclin D1, reinitiation of DNA synthesis, and acquisition of basal cell-like characteristics. These responses were inhibited by Goedecke 6976, an inhibitor of protein kinase D (PKD) and PKCα, but not with GF109203X, a general inhibitor of PKCs, suggesting PKD activation by a PKC-independent mechanism. PKD activation followed complex kinetics with a biphasic early transient phosphorylation within the first 6 h, followed by a sustained and progressive phosphorylation beginning at 24 h. The second phase of PKD activation was followed by prolonged ERK1/2 signaling and progression to DNA synthesis in response to the low Ca2+ switch. Specific knockdown of PKD-1 by RNA interference or expression of a dominant negative form of PKD-1 did not have a significant effect on normal KC proliferation and differentiation but did inhibit Ca2+-mediated reinitiation of proliferation and reversion in differentiated cultures. The present study identifies PKD as a major regulator of a proliferative response in differentiated KCs, probably through sustained activation of the ERK-MAPK pathway, and provides new insights into the process of epidermal regeneration and wound healing. 相似文献
14.
绿色荧光蛋白(GFP)可直接进行活体观察,它的这个优点可被用于监测转基因植物中选择标记基因的消除。为此,构建了植物表达载体pGNG,将绿色荧光蛋白基因(gfp)和卡那霉素抗性基因表达盒(NosP-nptll-NosT)一起克隆在两个同向的lox位点间,在第一个lox位点上游置有CaMV 35S启动子以驱动GFP表达,第二个lox位点下游置有不含启动子的大肠杆菌β-葡萄糖醛酸酶(GUS)基因。首先在含卡那霉素(Kan)的培养基上筛选出转pGNG的烟草,借助绿色荧光可容易地检出表达GFP的转化体。然后用另一转化载体pCambia1300Cre二次转化表达GFP的转基因植物,利用另一选择标记基因潮霉素抗性基因(hpt)进行筛选,在获得的再生植株中,Cre重组酶的表达消除了转化体中两lox位点间的gfp和nptll。实验结果表明可借助GFP荧光的消失,快速选出nptII被消除的二次转化体,同时GUS(作为目的蛋白) 在CaMV 35S启动子驱动下获得表达。最后利用后代的分离将hpt和cre除去。 相似文献
15.
16.
实现转基因生物乳腺反应器对外源蛋白的高效表达是目前生物制药亟待解决的难题。催乳素对泌乳期乳蛋白的合成与分泌具有重要的调控功能。通过转基因小鼠乳腺上皮细胞模型的建立,研究催乳素如何调控乳蛋白的表达,为提高乳腺反应器高效表达外源蛋白提供技术及理论支撑。应用机械破碎及胶原酶消化法,经差速贴壁纯化,成功培养含人转铁蛋白基因的小鼠乳腺上皮细胞,细胞上清液中检测到人转铁蛋白表达。细胞经牛催乳素诱导后人转铁蛋白的表达水平明显升高。利用转基因小鼠乳腺上皮细胞模型,可以进行催乳素和环境因素等对乳腺上皮细胞合成及分泌蛋白能力影响的研究。 相似文献
17.
18.
Colonization Pattern of the Biocontrol Strain Pseudomonas chlororaphis MA 342 on Barley Seeds Visualized by Using Green Fluorescent Protein 下载免费PDF全文
Riccardo Tombolini Dirk Jan van der Gaag Berndt Gerhardson Janet K. Jansson 《Applied microbiology》1999,65(8):3674-3680
Pseudomonas chlororaphis MA 342 is a potent biocontrol agent that can be used against several seed-borne diseases of cereal crops, including net blotch of barley caused by the fungus Drechslera teres. In this study, strain MA 342 was tagged with the gfp gene (encoding the green fluorescent protein) in order to study the fate of cells after seed inoculation. The gfp-tagged strain, MA 342G2, had the same biocontrol efficacy as the wild type when it was applied at high cell concentrations to seeds but was less effective at lower cell concentrations. By comparing cell counts determined by microscopy to the number of CFU, we found that the number of culturable cells was significantly lower than the total number of bacteria on seeds which were inoculated and dried for 20 h. Confocal microscopy and epifluorescence stereomicroscopy were used to determine the pattern of MA 342G2 colonization and cell aggregation on barley seeds. Immediately after inoculation of seeds, bacteria were found mainly under the seed glume, and there was no particular aggregation pattern. However, after the seeds were sown, irregularly distributed areas of bacterial aggregation were found, which reflected epiphytic colonization of glume cells. There was a trend towards bacterial aggregation near the embryo but never within the embryo. Bacterial aggregates were regularly found in the groove of each seed formed by the base of the coleoptile and the scutellum. Based on these results, we suggest that MA 342 colocalizes with the pathogen D. teres, which facilitates the action of the fungistatic compound(s) produced by this strain. 相似文献
19.
《IRBM》2022,43(3):210-216
ObjectivesTo improve the hydrophilicity of cyclic olefin copolymer, a simple and rapid method using two-stage with ultraviolet irradiation was developed in order to graft a bioactive polymer on the surface of these polymers.Materials and MethodsA bioactive polymer, poly(sodium styrene sulfonate) was grafting in two steps on the cyclic olefin copolymer surface. The process consists to activate the surface with ozone and grafting to under UV irradiation in presence of sodium styrene sulfonate. The presence of polymer on the surfaces was characterized by water contact angle, Fourier transform infrared spectroscopy, scanning electron microscopy with energy dispersive spectroscopy and the quantity of polymer grafted was determined by a colorimetric method.ResultsFirst, the time of UV irradiation for the grafting was studied. The results showed that the maximum grafting rate is reached after 60 minutes of reaction. Second, the influence of the presence of additive on the grafting was investigated. The degree of grafting is significantly reduced compared to a sample without additive.ConclusionWe have developed a simple and fast method to graft a hydrophilic and bioactive polymer covalently to a COC surface. 相似文献