首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stress is a common phenomenon that is attracting increasing attention. Hydrogen sulfide (H2S) is a gasotransmitter that plays an important role in many physiological and pathological events. Our study aimed to estimate the effect and the underlying mechanisms of the H2S donor, sodium hydrosulfide (NaHS), against immobilization stress (IS)–induced lung injury. Forty adult male rats were classified into control group, NaHS group, and IS groups with and without NaHS treatment. Serum was obtained to determine corticosterone (CORT), total antioxidant capacity (TAC), tumor necrosis factor‐α (TNF‐α), and interleukin-10 (IL-10) levels. Lung H2S, nitric oxide (NO), inducible nitric oxide synthase (iNOS), and malondialdehyde (MDA) levels were measured. Lung expressions of H2S synthesizing enzymes and Western blot analysis of nuclear factor erythroid 2–related factor 2 (Nrf2) and hypoxia-inducible factor 1 alpha (HIF 1α) were estimated. Histopathological changes and immunohistochemical assessment of nuclear factor kappa B (NF-κB) and caspase‐3 were also done. Pretreatment with NaHS led to marked histological protection from lung damage seen in IS rats. Furthermore, pretreatment with NaHS before IS protected lung H2S levels and expressions of H2S-synthesizing enzymes. Similarly, the levels of CORT, TNF-α, IL-10, MDA, TAC, NO, iNOS, HIF-1 α, and nuclear Nrf2 and expressions of NF-kB and caspase 3 were all maintained at near control levels in contrast to that in the IS rats. In conclusion, NaHS is protective against stress‐induced lung injury due to its antioxidant, anti-inflammatory, anti-fibrotic, and antiapoptotic effects. Thus, NaHS can be used to minimize stress complications on lung.  相似文献   

2.
Inflammation and renal tubular injury are major features of acute kidney injury (AKI). Many cytokines and chemokines are released from injured tubular cells and acts as proinflammatory mediators. However, the role of IL-19 in the pathogenesis of AKI is not defined yet. In bilateral renal ischemia/reperfusion injury (IRI)-induced and HgCl2-induced AKI animal models, real-time quantitative (RTQ)-PCR showed that the kidneys, livers, and lungs of AKI mice expressed significantly higher IL-19 and its receptors than did sham control mice. Immunohistochemical staining showed that IL-19 and its receptors were strongly stained in the kidney, liver, and lung tissue of AKI mice. In vitro, IL-19 upregulated MCP-1, TGF-β1, and IL-19, and induced mitochondria-dependent apoptosis in murine renal tubular epithelial M-1 cells. IL-19 upregulated TNF-α and IL-10 in cultured HepG2 cells, and it increased IL-1β and TNF-α expression in cultured A549 cells. In vivo, after renal IRI or a nephrotoxic dose of HgCl2 treatment, IL-20R1-deficient mice (the deficiency blocks IL-19 signaling) showed lower levels of blood urea nitrogen (BUN) in serum and less tubular damage than did wild-type mice. Therefore, we conclude that IL-19 mediates kidney, liver, and lung tissue damage in murine AKI and that blocking IL-19 signaling may provide a potent therapeutic strategy for treating AKI.  相似文献   

3.
A major cause of preterm labor in pregnant women is intra-amniotic infection, which is mediated by an inflammatory process. Hydrogen sulfide (H2S), a gaseous transmitter, has been implicated to be involved in inflammatory responses. We sought to investigate whether H2S affects infectious preterm birth using the mouse model of lipopolysaccharides (LPS)-induced preterm birth. Administration of LPS at 0.4 mg/kg with two injections intraperitoneally (i.p.) on gestational day 14.5 induced preterm labor. LPS significantly increased leukocyte infiltration in uterus, stimulated the expression of pro-inflammatory cytokines interleukin 1β (IL-1β), IL-6, tumor necrosis factor α (TNF-α), CCL2 and CXCL15 in myometrium. Administration of NaHS (i.p.) delayed the onset of labor induced by LPS in a dose-dependent manner. NaHS prevented leukocyte infiltration into intrauterine tissues and inhibited the production of pro-inflammatory cytokines in myometrium and decreased the levels of these cytokines in maternal circulation. H2S also decreased LPS-activated extracellular signal-regulated kinase (ERK) 1/2/ nuclear factor (NF)-κB signaling pathways in myometrium. This study provides new in vivo evidence for the roles of H2S in attenuating inflammation, and a potential novel therapeutic strategy for infection-related preterm labor.  相似文献   

4.
5.
Lactobacillus has been reported to inhibit acute lung injury (ALI). However, the molecular mechanism of Lactobacillus casei (L. casei) in preventing ALI has not been identified, so we investigated whether L. casei pretreatment could inhibit the activation of TLR4/MyD88/NF-κB signaling pathway following ALI. ALI model was established by intraperitoneal injection of 2 mg/kg lipopolysaccharide (LPS) to female BALB/c mice. In L. casei LC2W group, mice were intragastrically administrated L. casei LC2W for a week, before the ALI modeling. The serum of normal BALB/c mice after intragastric administration of L. casei LC2W was used for in vitro cell assays. The serum was pre-incubated with mouse macrophage cell line (RAW264.7) and human lung cell line (HLF-A), then LPS was added to co-incubate. Compared with ALI model group, L. casei LC2W pretreatment significantly reduced lung pathological damage, the number of neutrophils and total cells in bronchoalveolar lavage fluid. Besides, L. casei LC2W pretreatment could significantly reverse the abnormal expression of ICAM-1, IL-6, TNF-α and IL-10 in lung tissue and serum, plus, L. casei LC2W significantly reduced the phosphorylation levels of IRAK-1 and NF-κB p65. In vitro, the serum decreased the up-regulation of IL-6 and TNF-α in cell lines induced by LPS. In conclusion, L. casei LC2W intragastric administration pretreatment could significantly improve LPS-induced ALI in mice, probably through circulation to reach the lungs so as to inhibit the inflammatory response induced by activation of TLR4/MyD88/NF-κB signaling pathway.  相似文献   

6.
Immune-complexes play an important role in the inflammatory diseases of the lung. Neutrophil activation mediates immune-complex (IC) deposition-induced acute lung injury (ALI). Components of gamma amino butyric acid (GABA) signaling, including GABA B receptor 2 (GABABR2), GAD65/67 and the GABA transporter, are present in the lungs and in the neutrophils. However, the role of pulmonary GABABR activation in the context of neutrophil-mediated ALI has not been determined. Thus, the objective of the current study was to determine whether administration of a GABABR agonist, baclofen would ameliorate or exacerbate ALI. We hypothesized that baclofen would regulate IC-induced ALI by preserving pulmonary GABABR expression. Rats were subjected to sham injury or IC-induced ALI and two hours later rats were treated intratracheally with saline or 1 mg/kg baclofen for 2 additional hours and sacrificed. ALI was assessed by vascular leakage, histology, TUNEL, and lung caspase-3 cleavage. ALI increased total protein, tumor necrosis factor α (TNF-α and interleukin-1 receptor associated protein (IL-1R AcP), in the bronchoalveolar lavage fluid (BALF). Moreover, ALI decreased lung GABABR2 expression, increased phospho-p38 MAPK, promoted IκB degradation and increased neutrophil influx in the lung. Administration of baclofen, after initiation of ALI, restored GABABR expression, which was inhibited in the presence of a GABABR antagonist, CGP52432. Baclofen administration activated pulmonary phospho-ERK and inhibited p38 MAPK phosphorylation and IκB degradation. Additionally, baclofen significantly inhibited pro-inflammatory TNF-α and IL-1βAcP release and promoted BAL neutrophil apoptosis. Protective effects of baclofen treatment on ALI were possibly mediated by inhibition of TNF-α- and IL-1β-mediated inflammatory signaling. Interestingly, GABABR2 expression was regulated in the type II pneumocytes in lung tissue sections from lung injured patients, further suggesting a physiological role for GABABR2 in the repair process of lung damage. GABABR2 agonists may play a potential therapeutic role in ALI.  相似文献   

7.
Inflammatory lung injury is one of the main complications associated with cardiopulmonary bypass (CPB). Tumor necrosis factor-α (TNF-α) is one of the key factors mediating the CPB-induced inflammatory reactions. Our previous studies have shown that endotracheal administration of anti-tumor necrosis factor-α antibody (TNF-α Ab) produces some beneficial effects on lung in a rabbit CPB model. In this study, we further examined the effects of pulmonary artery perfusion with TNF-α Ab (27 ng/kg) on lung tissue integrity and pulmonary inflammation during CPB and investigated the mechanism underlying the TNF-α Ab-mediated effects in a rabbit model of CPB. Our results from transmission electron microscopy showed that the perfusion with TNF-α Ab alleviated CPB-induced histopathological changes in lung tissue. The perfusion with TNF-α Ab also prevented CPB-induced pulmonary edema and improved oxygenation index. Parameters indicating pulmonary inflammation, including neutrophil count and plasma TNF-α and malondialdehyde (MDA) levels, were significantly reduced during CPB by pulmonary artery perfusion with TNF-α Ab, suggesting that the perfusion with TNF-α Ab reduces CPB-induced pulmonary inflammation. We further investigated the molecular mechanism underlying the protective effects of TNF-α Ab on lung. Our quantitative RT-PCR analysis revealed that pulmonary artery perfusion with TNF-α Ab significantly decreased TNF-α expression in lung tissue during CPB. The apoptotic index in lung tissue and the expression of proteins that play stimulatory roles in apoptosis pathways including the fas ligand (FasL) and Bax were markedly reduced during CPB by the perfusion with TNF-α Ab. In contrast, the expression of Bcl-2, which plays an inhibitory role in apoptosis pathways, was significantly increased during CPB by the perfusion with TNF-α Ab, indicating that the perfusion with TNF-α Ab significantly reduces CPB-induced apoptosis in lung. Thus, our study suggests that pulmonary artery perfusion with TNF-α Ab might be a promising approach for attenuating CPB-induced inflammatory lung injury.  相似文献   

8.
9.

Introduction

Probiotic use to prevent nosocomial gastrointestinal and potentially respiratory tract infections in critical care has shown great promise in recent clinical trials of adult and pediatric patients. Despite well-documented benefits of probiotic use in intestinal disorders, the potential for probiotic treatment to reduce lung injury following infection and shock has not been well explored.

Objective

Evaluate if Lactobacillus rhamnosus GG (LGG) or Bifidobacterium longum (BL) treatment in a weanling mouse model of cecal ligation and puncture (CLP) peritonitis will protect against lung injury.

Methods

3 week-old FVB/N mice were orally gavaged with 200 µl of either LGG, BL or sterile water (vehicle) immediately prior to CLP. Mice were euthanized at 24 h. Lung injury was evaluated via histology and lung neutrophil infiltration was evaluated by myeloperoxidase (MPO) staining. mRNA levels of IL-6, TNF-α, MyD88, TLR-4, TLR-2, NFΚB (p50/p105) and Cox-2 in the lung analyzed via real-time PCR. TNF-α and IL-6 in lung was analyzed via ELISA.

Results

LGG and BL treatment significantly improved lung injury following experimental infection and sepsis and lung neutrophil infiltration was significantly lower than in untreated septic mice. Lung mRNA and protein levels of IL-6 and TNF-α and gene expression of Cox-2 were also significantly reduced in mice receiving LGG or BL treatment. Gene expression of TLR-2, MyD88 and NFΚB (p50/p105) was significantly increased in septic mice compared to shams and decreased in the lung of mice receiving LGG or BL while TLR-4 levels remained unchanged.

Conclusions

Treatment with LGG and BL can reduce lung injury following experimental infection and sepsis and is associated with reduced lung inflammatory cell infiltrate and decreased markers of lung inflammatory response. Probiotic therapy may be a promising intervention to improve clinical lung injury following systemic infection and sepsis.  相似文献   

10.
Polydatin is one of main compounds in Polygonum cuspidatum, a plant with both medicinal and nutritional value. The possible hepatoprotective effects of polydatin on acute liver injury mice induced by carbon tetrachloride (CCl4) and the mechanisms involved were investigated. Intraperitoneal injection of CCl4 (50 µl/kg) resulted in a significant increase in the levels of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and hepatic malondialdehyde (MDA), also a marked enhancement in the expression of hepatic tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and nuclearfactor-kappa B (NF-κB). On the other hand, decreased glutathione (GSH) content and activities of glutathione transferase (GST), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were observed following CCl4 exposure. Nevertheless, all of these phenotypes were evidently reversed by preadministration of polydatin for 5 continuous days. The mRNA and protein expression levels of hepatic growth factor-beta1 (TGF-β1) were enhanced further by polydatin. These results suggest that polydatin protects mice against CCl4-induced liver injury through antioxidant stress and antiinflammatory effects. Polydatin may be an effective hepatoprotective agent and a promising candidate for the treatment of oxidative stress- and inflammation-related diseases.  相似文献   

11.
The efficacy of radiation therapy for lung cancer is limited by radiation-induced lung toxicity (RILT). Although tumor necrosis factor-alpha (TNF-α) signaling plays a critical role in RILT, the molecular regulators of radiation-induced TNF-α production remain unknown. We investigated the role of a major TNF-α regulator, Tristetraprolin (TTP), in radiation-induced TNF-α production by macrophages. For in vitro studies we irradiated (4 Gy) either a mouse lung macrophage cell line, MH-S or macrophages isolated from TTP knockout mice, and studied the effects of radiation on TTP and TNF-α levels. To study the in vivo relevance, mouse lungs were irradiated with a single dose (15 Gy) and assessed at varying times for TTP alterations. Irradiation of MH-S cells caused TTP to undergo an inhibitory phosphorylation at Ser-178 and proteasome-mediated degradation, which resulted in increased TNF-α mRNA stabilization and secretion. Similarly, MH-S cells treated with TTP siRNA or macrophages isolated from ttp (−/−) mice had higher basal levels of TNF-α, which was increased minimally after irradiation. Conversely, cells overexpressing TTP mutants defective in undergoing phosphorylation released significantly lower levels of TNF-α. Inhibition of p38, a known kinase for TTP, by either siRNA or a small molecule inhibitor abrogated radiation-induced TNF-α release by MH-S cells. Lung irradiation induced TTPSer178 phosphorylation and protein degradation and a simultaneous increase in TNF-α production in C57BL/6 mice starting 24 h post-radiation. In conclusion, irradiation of lung macrophages causes TTP inactivation via p38-mediated phosphorylation and proteasome-mediated degradation, leading to TNF-α production. These findings suggest that agents capable of blocking TTP phosphorylation or stabilizing TTP after irradiation could decrease RILT.  相似文献   

12.
Sinomenine (SIN) is a bioactive alkaloid extracted from the Chinese medicinal plant Sinomenium acutum, which is widely used in the clinical treatment of rheumatoid arthritis (RA). However, its role in acute lung injury (ALI) is unclear. In this study, we investigate the role of SIN in lipopolysaccharide (LPS)-induced ALI in mice. After ALI, lung water content and histological signs of pulmonary injury were attenuated, whereas the PaO2/FIO2 (P/F) ratios were elevated significantly in the mice pretreated with SIN. Additionally, SIN markedly inhibited inflammatory cytokine TNF-α and IL-1β expression levels as well as neutrophil infiltration in the lung tissues of the mice. Microarray analysis and real-time PCR showed that SIN treatment upregulated adenosine A2A receptor (A2AR) expression, and the protective effect of SIN was abolished in A2AR knockout mice. Further investigation in isolated mouse neutrophils confirmed the upregulation of A2AR by SIN and showed that A2AR-cAMP-PKA signaling was involved in the anti-inflammatory effect of SIN. Taken together, these findings demonstrate an A2AR-associated anti-inflammatory effect and the protective role of SIN in ALI, which suggests a potential novel approach to treat ALI.  相似文献   

13.

Background

Activation of Kupffer cell (KC) is acknowledged as a key event in the initiation and perpetuation of bile duct warm ischemia/reperfusion injury. The inhibitory effect of gadolinium chloride (GdCl3) on KC activation shows potential as a protective intervention in liver injury, but there is less research with regard to bile duct injury.

Methods

Sixty-five male Sprague-Dawley rats (200–250 g) were randomly divided into three experimental groups: a sham group (n = 15), a control group (n = 25), and a GdCl3 group (n = 25). Specimen was collected at 0.5, 2, 6, 12 and 24 h after operation. Alanine aminotransferase (ALT), alkaline phosphatase (ALP) and total bilirubin (TBIL) of serum were measured. Tumor necrosis factor-α (TNF-α), Capase-3 activity and soluble Fas (sFas) were detected. The pathologic changes of bile duct were observed. Immunochemistry for bile duct Fas was performed. Apoptosis of bile duct cells was evaluated by the terminal UDP nick end labeling assay.

Results

GdCl3 significantly decreased the levels of ALT, ALP and TBIL at 2, 6, 12, and 24 h, and increased serum sFas at 2, 6 and 12 h (P<0.05). TNF-α was lower in the GdCl3 group than in the control group at 2, 6, 12 and 24 h (P<0.05). Preadministration of GdCl3 significantly reduced the Caspase-3 activity and bile duct cell apoptosis at 2, 6, 12 and 24 h. After operation for 2, 6 and 12 h, the expression of Fas protein was lower in the GdCl3 group than in the control group (P<0.05).

Conclusions

GdCl3 plays an important role in suppressing bile duct cell apoptosis, including decreasing ALT, ALP, TBIL and TNF-α; suppressing Fas-FasL-Caspase signal transduction during transplantation.  相似文献   

14.
Kupffer cells (KCs) were a significant source of cytokine release during the early stage of severe burns. High mobility group box protein 1 (HMGB1) was recently identified as a new type of proinflammatory cytokine. The ability of HMGB1 to generate inflammatory responses after burn trauma has not been well characterized. KCs were isolated from sham animals and rats with a 30% full-thickness burn, and then were stimulated with increasing concentrations of HMGB1. The levels of Tumor necrosis factor (TNF)-α and interleukin (IL)-1β in culture supernatant were measured by enzyme-linked immunosorbent assay. Northern blot analysis was performed to detect the expressions of TNF-α and IL-1β mRNAs. The activities of p38 MAPK and JNK (by Western blot analysis) as well as NF-κB (by EMSA) in KCs were also examined. As a result, HMGB1 in vitro upregulated expressions of TNF-α and IL-1β of KCs in a dose-dependent manner, and HMGB1 promoted KCs from burn rats to produce significantly more TNF-α and IL-1β proteins than those from sham animals. After harvested from burn rats, KCs were pre-incubated with anti-TLR2 or anti-TLR4 antibody prior to HMGB1 administration. HMGB1 exposure not only significantly increased expressions of TNF-α and IL-1β mRNAs in KCs from burn rats, but also enhanced activities of p38 MAPK, JNK and NF-κB. However, these upregulation events were all reduced by pre-incubation with anti-TLR2 or anti-TLR4 antibody. These results indicate that HMGB1 induces proinflammatory cytokines production of KCs after sever burn injury, and this process might be largely dependent on TLRs-dependent MAPKs/NF-κB signal pathway.  相似文献   

15.

Background

Acute lung injury (ALI) and the development of the multiple organ dysfunction syndrome (MODS) is a major cause of death in trauma patients. Earlier studies in trauma hemorrhagic shock (T/HS) have documented that splanchnic ischemia leading to gut inflammation and loss of barrier function is an initial triggering event that leads to gut-induced ARDS and MODS. Since sex hormones have been shown to modulate the response to T/HS and proestrous (PE) females are more resistant to T/HS-induced gut and distant organ injury, the goal of our study was to determine the contribution of estrogen receptor (ER)α and ERβ in modulating the protective response of female rats to T/HS-induced gut and lung injury.

Methods/Principal Findings

The incidence of gut and lung injury was assessed in PE and ovariectomized (OVX) female rats subjected to T/HS or trauma sham shock (T/SS) as well as OVX rats that were administered estradiol (E2) or agonists for ERα or ERβ immediately prior to resuscitation. Marked gut and lung injury was observed in OVX rats subjected to T/HS as compared to PE rats or E2-treated OVX rats subjected to T/HS. Both ERα and ERβ agonists were equally effective in limiting T/HS-induced morphologic villous injury and bacterial translocation, whereas the ERβ agonist was more effective than the ERα agonist in limiting T/HS-induced lung injury as determined by histology, Evan''s blue lung permeability, bronchoalevolar fluid/plasma protein ratio and myeloperoxidase levels. Similarly, treatment with either E2 or the ERβ agonist attenuated the induction of the intestinal iNOS response in OVX rats subjected to T/HS whereas the ERα agonist was only partially protective.

Conclusions/Significance

Our study demonstrates that estrogen attenuates T/HS-induced gut and lung injury and that its protective effects are mediated by the activation of ERα, ERβ or both receptors.  相似文献   

16.

Introduction

Based on the previous research that oroxylin A can suppress inflammation, we investigated the hepatoprotective role of oroxylin A against CCl4-induced liver damage in mice and then studied the possible alteration of the activities of cytokine signaling participating in liver regeneration. Wild type (WT) mice were orally administrated with oroxylin A (60 mg/kg) for 4 days after CCl4 injection, the anti-inflammatory effects of oroxylin A were assessed directly by hepatic histology and indirectly by measuring serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and Albumin. Proliferating cell nuclear antigen (PCNA) staining was performed to evaluate the role of oroxylin A in promoting hepatocyte proliferation. Serum IL-1β, TNF-α, IL-6 and IL-1Ra levels were measured by enzyme-linked immunosorbent assay (ELISA) and liver HGF, EGF, TNF-α, IL-6, IL-1Ra and IL-1β gene expression was determined by quantitative real-time PCR. The data indicated that the IL-6 and TNF-α mRNA of oroxylin A administered group significantly increased higher than the control within 12 hours after CCl4 treatment. Meanwhile, oroxylin A significantly enhanced the expression of IL-1Ra at the early phase, which indicated that oroxylin A could facilitate the initiating events in liver regeneration by increasing IL-1Ra which acts as an Acute-Phase Protein (APP). In addition, a lethal CCl4-induced acute liver failure model offers a survival benefit in oroxylin A treated WT mice. However, oroxylin A could not significantly improve the percent survival of IL-1RI−/− mice with a lethal CCl4-induced acute liver failure.

Conclusions

Our study confirmed that oroxylin A could strongly promote liver structural remodeling and functional recovery through IL-1Ra/IL-1RI signaling pathway. All these results support the possibility of oroxylin A being a therapeutic candidate for acute liver injury.  相似文献   

17.

Purpose

To investigate the role of endogenous hydrogen sulfide (H2S) in partial obstruction-induced dysfunction of the interstitial cells of Cajal (ICC) in mice ileum.

Materials and Methods

Partial intestinal obstruction was induced surgically in male imprinting control region (ICR) mice. ICC networks were studied by Immunohistochemistry. Electrical activity was recorded by intracellular recording techniques. The expression of ICC phenotype marker c-kit receptor tyrosine kinase (c-kit), membrane binding stem cell factor (mSCF), the endogenous H2S biosynthesis enzymes cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) was studied by Western blotting. The expression of tumor necrosis factor-α (TNF-α) mRNA was observed by using real-time polymerase chain reaction.

Results

Partial intestinal obstruction resulted in ICC networks were disrupted above obstruction 14 days after the operation. The slow waves of intestinal smooth muscles in the dilated region were significantly suppressed and their amplitude and frequency were reduced, whilst the resting membrane potentials were depolarized. The expression of c-kit and mSCF was significantly decreased, also suggesting the disruption of the ICC network. The expression of TNF-α was significantly increased in the tunica muscularis of the obstructed intestine. Treatment of cultured intestinal smooth muscle cells with TNF-α caused dramatic down regulation of mSCF. The expression of CBS and CSE was significantly decreased in the tunica muscularis of the obstructed intestine. Intraperitoneal injection (i.p) of DL-propargylglycine, an irreversible inhibitor of CSE, and aminooxyacetic acid, an inhibitor of CBS, elevated the expression of TNF-α mRNA in the tunica muscularis of the ileum. Obstruction-induced over expression of TNF-α was significantly improved by supplementation of NaHS, but not the expressions of mSCF and c-kit.

Conclusions

The down regulation of endogenous H2S biosynthesis is related to over expression of TNF-α in obstructed small intestine. TNF-α-mediated mSCF down-regulation is not the only reason of partial intestinal obstruction-induced loss of ICC.  相似文献   

18.
Lipopolysaccharide (LPS) has essential role in the pathogenesis of D-galactosamine-sensitized animal models and alcoholic liver diseases of humans, by stimulating release of pro-inflammatory mediators that cause hepatic damage and intestinal barrier impairment. Oral pretreatment of probiotics has been shown to attenuate LPS-induced hepatic injury, but it is unclear whether the effect is direct or due to improvement in the intestinal barrier. The present study tested the hypothesis that pretreatment with probiotics enables the liver to withstand directly LPS-induced hepatic injury and inflammation. In a mouse model of LPS-induced hepatic injury, the levels of hepatic tumor necrosis factor-alpha (TNF-α) and serum alanine aminotransferase (ALT) of mice with depleted intestinal commensal bacteria were not significantly different from that of the control models. Pre-feeding mice for 10 days with Lactobacillus fermentum ZYL0401 (LF41), significantly alleviated LPS-induced hepatic TNF-α expression and liver damage. After LF41 pretreatment, mice had dramatically more L.fermentum-specific DNA in the ileum, significantly higher levels of ileal cyclooxygenase (COX)-2 and interleukin 10 (IL-10) and hepatic prostaglandin E2 (PGE2). However, hepatic COX-1, COX-2, and IL-10 protein levels were not changed after the pretreatment. There were also higher hepatic IL-10 protein levels after LPS challenge in LF41-pretreaed mice than in the control mice. Attenuation of hepatic TNF-α was mediated via the PGE2/E prostanoid 4 (EP4) pathway, and serum ALT levels were attenuated in an IL-10-dependent manner. A COX-2 blockade abolished the increase in hepatic PGE2 and IL-10 associated with LF41. In LF41-pretreated mice, a blockade of IL-10 caused COX-2-dependent promotion of hepatic PGE2, without affecting hepatic COX-2levels. In LF41-pretreated mice, COX2 prevented enhancing TNF-α expression in both hepatic mononuclear cells and the ileum, and averted TNF-α-mediated increase in intestinal permeability. Together, we demonstrated that LF41 pre-feeding enabled the liver to alleviate LPS-induced hepatic TNF-α expression and injury via a PGE2-EP4- and IL-10-dependent mechanism.  相似文献   

19.
Apoptosis signal-regulating kinase 1 (ASK1), a member of the MAPK kinase kinase kinase (MAP3K) family, is activated by various stimuli, which include oxidative stress, endoplasmic reticulum (ER) stress, calcium influx, DNA damage-inducing agents and receptor-mediated signaling through tumor necrosis factor receptor (TNFR). Inspiration of a high concentration of oxygen is a palliative therapy which counteracts hypoxemia caused by acute lung injury (ALI)-induced pulmonary edema. However, animal experiments so far have shown that hyperoxia itself could exacerbate ALI through reactive oxygen species (ROS). Our previous data indicates that ASK1 plays a pivotal role in hyperoxia-induced acute lung injury (HALI). However, it is unclear whether or not deletion of ASK1 in vivo protects against HALI. In this study, we investigated whether ASK1 deletion would lead to attenuation of HALI. Our results show that ASK1 deletion in vivo significantly suppresses hyperoxia-induced elevation of inflammatory cytokines (i.e. IL-1β and TNF-α), cell apoptosis in the lung, and recruitment of immune cells. In summary, the results from the study suggest that deletion of ASK1 in mice significantly inhibits hyperoxic lung injury.  相似文献   

20.
Inflammatory response and oxidative stress are considered to play an important role in the development of acute liver injury induced by carbon tetrachloride (CCl4) and galactosamine (GalN)/lipopolysaccharides (LPS). Esculentoside A (EsA), isolated from the Chinese herb phytolacca esculenta, has the effect of modulating immune response, cell proliferation and apoptosis as well as anti-inflammatory effects. The present study is to evaluate the protective effect of EsA on CCl4 and GalN/LPS-induced acute liver injury. In vitro, CCK-8 assays showed that EsA had no cytotoxicity, while it significantly reduced levels of TNF-α and cell death rate challenged by CCl4. Moreover, EsA treatment up-regulated PPAR-γ expression of LO2 cells and reduced levels of reactive oxygen species (ROS) challenged by CCl4. In vivo, EsA prevented mice from CCl4-induced liver histopathological damage. In addition, levels of AST and ALT were significantly decreased by EsA treatment. Furthermore, the mice treated with EsA had a lower level of TNF-α, Interleukin (IL)-1β and IL-6 in mRNA expression. EsA prevented MDA release and increased GSH-Px activity in liver tissues. Immunohistochemical staining showed that over-expression of F4/80 and CD11b were markedly inhibited by EsA. The western bolt results showed that EsA significantly inhibited CCl4-induced phosphonated IkBalpha (P-IκB) and ERK. Furthermore, EsA treatment also alleviated GalN/LPS-induced acute liver injury on liver enzyme and histopathological damage. Unfortunately, our results exhibited that EsA had no effects on CCl4-induced hepatocyte apoptosis which were showed by TUNEL staining and Bax, Caspase-3 and cleaved Caspase-3 expression. Our results proved that EsA treatment attenuated CCl4 and GalN/LPS-induced acute liver injury in mice and its protective effects might be involved in inhibiting inflammatory response and oxidative stress, but not apoptosis with its underlying mechanism associated with PPAR-γ, NF-κB and ERK signal pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号