首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Tunneled central venous catheters (TCVCs) are used for dialysis access in 82% of new hemodialysis patients and are rapidly colonized with Gram-positive organism (e.g. Staphylococcus aureus) biofilm, a source of recurrent infections and chronic inflammation. Lipoteichoic acid (LTA), a cell wall ribitol polymer from Gram-positive organisms, mediates inflammation through the Toll-like receptor 2 (TLR2). The effect of LTA on lung endothelial permeability is not known. We tested the hypothesis that LTA from Staphylococcus aureus induces alterations in the permeability of pulmonary microvessel endothelial monolayers (PMEM) that result from activation of TLR2 and are mediated by reactive oxygen/nitrogen species (RONS). The permeability of PMEM was assessed by the clearance rate of Evans blue-labeled albumin, the activation of the TLR2 pathway was assessed by Western blot, and the generation of RONS was measured by the fluorescence of oxidized dihydroethidium and a dichlorofluorescein derivative. Treatment with LTA or the TLR2 agonist Pam(3)CSK(4) induced significant increases in albumin permeability, IκBα phosphorylation, IRAK1 degradation, RONS generation, and endothelial nitric oxide synthase (eNOS) activation (as measured by the p-eNOSser1177:p-eNOSthr495 ratio). The effects on permeability and RONS were effectively prevented by co-administration of the superoxide scavenger Tiron, the peroxynitrite scavenger Urate, or the eNOS inhibitor L-NAME and these effects as well as eNOS activation were reduced or prevented by pretreatment with an IRAK1/4 inhibitor. The results indicate that the activation of TLR2 and the generation of ROS/RNS mediates LTA-induced barrier dysfunction in PMEM.  相似文献   

2.
Significant advances in intestinal stem cell biology have been made in murine models; however, anatomical and physiological differences between mice and humans limit mice as a translational model for stem cell based research. The pig has been an effective translational model, and represents a candidate species to study intestinal epithelial stem cell (IESC) driven regeneration. The lack of validated reagents and epithelial culture methods is an obstacle to investigating IESC driven regeneration in a pig model. In this study, antibodies against Epithelial Adhesion Molecule 1 (EpCAM) and Villin marked cells of epithelial origin. Antibodies against Proliferative Cell Nuclear Antigen (PCNA), Minichromosome Maintenance Complex 2 (MCM2), Bromodeoxyuridine (BrdU) and phosphorylated Histone H3 (pH3) distinguished proliferating cells at various stages of the cell cycle. SOX9, localized to the stem/progenitor cells zone, while HOPX was restricted to the +4/‘reserve’ stem cell zone. Immunostaining also identified major differentiated lineages. Goblet cells were identified by Mucin 2 (MUC2); enteroendocrine cells by Chromogranin A (CGA), Gastrin and Somatostatin; and absorptive enterocytes by carbonic anhydrase II (CAII) and sucrase isomaltase (SIM). Transmission electron microscopy demonstrated morphologic and sub-cellular characteristics of stem cell and differentiated intestinal epithelial cell types. Quantitative PCR gene expression analysis enabled identification of stem/progenitor cells, post mitotic cell lineages, and important growth and differentiation pathways. Additionally, a method for long-term culture of porcine crypts was developed. Biomarker characterization and development of IESC culture in the porcine model represents a foundation for translational studies of IESC-driven regeneration of the intestinal epithelium in physiology and disease.  相似文献   

3.

Objective

Previous studies have shown that estrogen deficiency, arising in postmenopause, promotes endothelial dysfunction. This study evaluated the effects of aerobic exercise training on endothelial dependent vasodilation of aorta in ovariectomized rats, specifically investigating the role of nitric oxide (NO) and reactive oxygen species (ROS).

Methods

Female Wistar rats ovariectomized (OVX – n=20) or with intact ovary (SHAM – n=20) remained sedentary (OVX and SHAM) or performed aerobic exercise training on a treadmill 5 times a week for a period of 8 weeks (OVX-TRA and SHAM-TRA). In the thoracic aorta the endothelium-dependent and –independent vasodilation was assessed by acetylcholine (ACh) and sodium nitroprusside (SNP), respectively. Certain aortic rings were incubated with L-NAME to assess the NO modulation on the ACh-induced vasodilation. The fluorescence to dihydroethidium in aortic slices and plasma nitrite/nitrate concentrations were measured to evaluate ROS and NO bioavailability, respectively.

Results

ACh-induced vasodilation was reduced in OVX rats as compared SHAM (Rmax: SHAM: 86±3.3 vs. OVX: 57±3.0%, p<0.01). Training prevented this response in OVX-TRA (Rmax: OVX-TRA: 88±2.0%, p<0.01), while did not change it in SHAM-TRA (Rmax: SHAM-TRA: 80±2.2%, p<0.01). The L-NAME incubation abolished the differences in ACh-induced relaxation among groups. SNP-induced vasodilation was not different among groups. OVX reduced nitrite/nitrate plasma concentrations and increased ROS in aortic slices, training as effective to restore these parameters to the SHAM levels.

Conclusions

Exercise training, even in estrogen deficiency conditions, is able to improve endothelial dependent vasodilation in rat aorta via enhanced NO bioavailability and reduced ROS levels.  相似文献   

4.
Hyperosmolarity has been recognized as an important pathological factor in dry eye leading to ocular discomfort and damage. As one of the major neuropeptides of corneal innervation, substance P (SP) has been shown to possess anti-apoptotic effects in various cells. The aim of this study was to determine the capacity and mechanism of SP against hyperosmotic stress-induced apoptosis in cultured corneal epithelial cells. The cells were exposed to hyperosmotic stress by the addition of high glucose in the presence or absence of SP. The results showed that SP inhibited hyperosmotic stress-induced apoptosis of mouse corneal epithelial cells. Moreover, SP promoted the recovery of phosphorylated Akt level, mitochondrial membrane potential, Ca2+ contents, intracellular reactive oxygen species (ROS) and glutathione levels that impaired by hyperosmotic stress. However, the antiapoptotic capacity of SP was partially suppressed by Akt inhibitor or glutathione depleting agent, while the neurokinin-1 (NK-1) receptor antagonist impaired Akt activation and ROS scavenging that promoted by SP addition. In conclusion, SP protects corneal epithelial cells from hyperosmotic stress-induced apoptosis through the mechanism of Akt activation and ROS scavenging via the NK-1 receptor.  相似文献   

5.
Emodin has antioxidative activities. Here, we investigated the effects of emodin on cigarette smoke (CS)‐induced acute lung inflammation. Mice (C57BL/6) were exposed to CS. Emodin was administrated with intraperitoneal bolus injection of emodin (20 or 40 mg/kg) daily 1 h before CS exposure. Emodin inhibited CS‐induced inflammatory cells infiltration in mouse lungs, especially at 40 mg/kg. Moreover, emodin resulted in significant reductions in total bronchoalveolar lavage fluid (BALF) cells, as compared with air exposure control, coupled with decreases in BALF cytokines. The activities of superoxide dismutase, catalase, and glutathione peroxidase were remarkably enhanced by emodin in CS‐exposed mice. Emodin enhanced CS‐induced expression of heme oxygenase‐1 and nuclear factor‐erythroid 2‐related factor‐2 (both are antioxidative genes) at both mRNA and protein levels, and profoundly promoted their activities in CS‐treated mice. Collectively, our results suggested that emodin protects mouse lung from CS‐induced lung inflammation and oxidative damage, most likely through its antioxidant activity.  相似文献   

6.
Epithelial and stromal communications are essential for normal uterine functions and their dysregulation contributes to the pathogenesis of many diseases including infertility, endometriosis, and cancer. Although many studies have highlighted the advantages of culturing cells in 3D compared to the conventional 2D culture system, one of the major limitations of these systems is the lack of incorporation of cells from non‐epithelial lineages. In an effort to develop a culture system incorporating both stromal and epithelial cells, 3D endometrial cancer spheroids are developed by co‐culturing endometrial stromal cells with cancerous epithelial cells. The spheroids developed by this method are phenotypically comparable to in vivo endometrial cancer tissue. Proteomic analysis of the co‐culture spheroids comparable to human endometrial tissue revealed 591 common proteins and canonical pathways that are closely related to endometrium biology. To determine the feasibility of using this model for drug screening, the efficacy of tamoxifen and everolimus is tested. In summary, a unique 3D model system of human endometrial cancer is developed that will serve as the foundation for the further development of 3D culture systems incorporating different cell types of the human uterus for deciphering the contributions of non‐epithelial cells present in cancer microenvironment.  相似文献   

7.
Abstract: In this study we analyzed the involvement of the cyclic AMP (cAMP)-protein kinase A system in the regulation of interleukin 6 production by cultured cortical astrocytes. Vasoactive intestinal peptide strongly increased, in a dose-dependent manner, interleukin 6 production. This effect was reduced when protein kinase A was blocked by KT-5720; it was not affected by calphostin C, a protein kinase C inhibitor. Forskolin caused a concentration-dependent increase in interleukin 6 release that was also inhibited by KT-5720. Because prostaglandins are believed to play a role in interleukin 6 production, we tried to determine whether the stimulatory effects of vasoactive intestinal peptide and forskolin on cytokine release might be mediated by stimulation of prostaglandin production in cortical astrocytes. Vasoactive intestinal peptide did not increase the production of either prostaglandin E2 or F. Conversely, forskolin concentration-dependently stimulated the production of both prostaglandins, an effect that was blocked by indomethacin. Indomethacin did not affect either vasoactive intestinal peptide- or forskolin-stimulated interleukin 6 production. To exclude the possibility that prostaglandins participate in interleukin 6 production induced by forskolin, we tested prostaglandins E2 and F. The former was completely ineffective in eliciting the cytokine production, whereas prostaglandin F slightly increased interleukin 6 production only at the highest concentrations. 8-Bromo-cAMP and dibutyryl-cAMP stimulated interleukin 6 production to a lesser extent than vasoactive intestinal peptide and forskolin. In conclusion, we provide evidence that vasoactive intestinal peptide increases interleukin 6 production by astrocytes through the stimulation of the cAMP-protein kinase A pathway, an effect that is reproduced by cAMP analogues. In addition, we point out that prostaglandins are not involved in vasoactive intestinal peptide- and forskolin-mediated induction of interleukin 6 production in cultured astrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号