首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radiolabeling of nanoparticles (NPs) has been performed for a variety of reasons, such as for studying pharmacokinetics, for imaging, or for therapy. Here, we describe the in vitro and in vivo evaluation of DTPA-derivatized lipid-based NP (DTPA-NP) radiolabeled with different radiometals, including 111In and 99mTc, for single-photon emission computed tomography (SPECT), 68Ga for positron emission tomography (PET), and 177Lu for therapeutic applications. PEGylated DTPA-NP with varying DTPA amounts, different composition, and size were radiolabeled with 111In, 177Lu, and 68Ga, using various buffers. 99mTc-labeling was performed directly and by using the carbonyl aquaion, [99mTc(H2O)3(CO)3]+. Stability was tested and biodistribution evaluated. High labeling yields (>90%) were achieved for all radionuclides and different liposomal formulations. Specific activities (SAs) were highest for 111In (>4 MBq/μg liposome), followed by 68Ga and 177Lu; for 99mTc, high labeling yields and SA were only achieved by using [99mTc(H2O)3(CO)3]+. Stability toward DTPA/histidine and in serum was high (>80 % RCP, 24 hours postpreparation).). Biodistribution in Lewis rats revealed no significant differences between NP in terms of DTPA loading and particle composition; however, different uptake patterns were found between the radionuclides used. We observed lower retention in blood (<3.3 %ID/g) and lower liver uptake (< 2.7 %ID/g) for 99mTc- and 68Ga, compared to 111In-NP (blood, <4 %ID/g; liver, <3.6 %ID/g). Imaging potential was shown by both PET magnetic resonance imaging fusion imaging and SPECT imaging. Overall, our study shows that PEGylated DTPA-NP are suitable for radiolabeling studies with a variety of radiometals, thereby achieving high SA suitable for targeting applications.  相似文献   

2.
Integrin alphavbeta3 plays a critical role in tumor angiogenesis and metastasis. Radiolabeled RGD peptides that are integrin alphavbeta3-specific are very useful for noninvasive imaging of integrin expression in rapidly growing and metastatic tumors. In this study, we determined the binding affinity of E{E[c(RGDfK)]2}2 (tetramer) and its 6-hydrazinonicotinamide conjugate (HYNIC-tetramer) against the binding of 125I-echistatin to the integrin alphavbeta3-positive MDA-MB-435 breast cancer cells. The athymic nude mice bearing MDA-MB-435 xenografts were used to evaluate the potential of ternary ligand complex [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] (TPPTS = trisodium triphenylphosphine-3,3',3' '-trisulfonate) as a new radiotracer for imaging breast cancer integrin alphavbeta3 expression by single photon emission computed tomography (SPECT). It was found that the binding affinity of tetramer (IC50 = 51 +/- 11 nM) was slightly higher than that of its dimeric analogue (IC50 = 78 +/- 27 nM) and is comparable to that of the HYNIC-tetramer conjugate (IC50 = 55 +/- 11 nM) within the experimental error. Biodistribution data showed that [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] had a rapid blood clearance (4.61 +/- 0.81 %ID/g at 5 min postinjection (p.i.) and 0.56 +/- 0.12 %ID/g at 120 min p.i.) and was excreted mainly via the renal route. [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] had high tumor uptake with a long tumor retention (5.60 +/- 0.87 %ID/g and 7.30 +/- 1.32 %ID/g at 5 and 120 min p.i., respectively). The integrin alphavbeta3-specificity was demonstrated by co-injection of excess E[c(RGDfK)]2, which resulted in a significant reduction in tumor uptake of the radiotracer. The metabolic stability of [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] was determined by analyzing urine and feces samples from the tumor-bearing mice at 120 min p.i. In the urine, about 20% of [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] remained intact while only approximately 15% metabolized species was detected in feces. SPECT images displayed significant radiotracer localization in tumor with good contrast as early as 1 h p.i. The high tumor uptake and fast renal excretion make [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] a promising radiotracer for noninvasive imaging of the integrin alphavbeta3-positive tumors by SPECT.  相似文献   

3.
The human Matrix MetalloProtease-9 (hMMP-9) is overexpressed in tumors where it promotes the release of cancer cells thus contributing to tumor metastasis. We raised aptamers against hMMP-9, which constitutes a validated marker of malignant tumors, in order to design probes for imaging tumors in human beings. A chemically modified RNA aptamer (F3B), fully resistant to nucleases was previously described. This compound was subsequently used for the preparation of F3B-Cy5, F3B-S-acetylmercaptoacetyltriglycine (MAG) and F3B-DOTA. The binding properties of these derivatives were determined by surface plasmon resonance and electrophoretic mobility shift assay. Optical fluorescence imaging confirmed the binding to hMMP-9 in A375 melanoma bearing mice. Quantitative biodistribution studies were performed at 30 min, 1h and 2 h post injection of 99mTc-MAG-aptamer and 111In-DOTA-F3B. 99mTc radiolabeled aptamer specifically detected hMMP-9 in A375 melanoma tumors but accumulation in digestive tract was very high. Following i.v. injection of 111In-DOTA-F3B, high level of radioactivity was observed in kidneys and bladder but digestive tract uptake was very limited. Tumor uptake was significantly (student t test, p<0.05) higher for 111In-DOTA-F3B with 2.0%ID/g than for the 111In-DOTA-control oligonucleotide (0.7%ID/g) with tumor to muscle ratio of 4.0. Such difference in tumor accumulation has been confirmed by ex vivo scintigraphic images performed at 1h post injection and by autoradiography, which revealed the overexpression of hMMP-9 in sections of human melanomas. These results demonstrate that F3B aptamer is of interest for detecting hMMP-9 in melanoma tumor.  相似文献   

4.
Carbonic anhydrase-IX (CA-IX) is a zinc enzyme overexpressed in the hypoxic regions of many types of solid tumors; therefore, in vivo imaging of CA-IX may contribute to cancer diagnosis. In this study, we newly designed and synthesized an 111In-labeled CA-IX imaging agent based on an imidazothiadiazole sulfonamide (IS) scaffold conjugated with a chelating moiety, DO3A ([111In]DO3A-IS1), and evaluated its utility for imaging of CA-IX high-expressing tumors. [111In]DO3A-IS1 was successfully synthesized at a 76% radiochemical yield by reacting its precursor with 111InCl3 in acetate buffer. In in vitro assays, [111In]DO3A-IS1 showed marked stability in murine plasma and greater binding to CA-IX high-expressing (HT-29) cells (118 ± 21% initial dose/mg protein) than CA-IX low-expressing (MDA-MB-231) cells (1.4 ± 0.3% initial dose/mg protein). Moreover, in an in vivo biodistribution assay, [111In]DO3A-IS1 showed marked accumulation in the HT-29 tumor (8.71 ± 1.41% injected dose/g at 24 h postinjection). In addition, in a single photon emission computed tomography (SPECT) study, [111In]DO3A-IS1 clearly and selectively visualized the HT-29 tumor as compared with the MDA-MB-231 tumor. These results indicate that [111In]DO3A-IS1 may serve as a useful SPECT imaging agent with the novel scaffold targeting CA-IX.  相似文献   

5.

Introduction

Pancreatic ductal adenocarcinoma (PDAC) remains a major cause of cancer-related death. Since significant upregulation of αvβ6 integrin has been reported in PDAC, this integrin is a promising target for PDAC detection. In this study, we aimed to develop a radioiodinated probe for the imaging of αvβ6 integrin-positive PDAC with single-photon emission computed tomography (SPECT).

Methods

Four peptide probes were synthesized and screened by competitive and saturation binding assays using 2 PDAC cell lines (AsPC-1, αvβ6 integrin-positive; MIA PaCa-2, αvβ6 integrin-negative). The probe showing the best affinity was used to study the biodistribution assay, an in vivo blocking study, and SPECT imaging using tumor bearing mice. Autoradiography and immunohistochemical analysis were also performed.

Results

Among the 4 probes examined in this study, 125I-IFMDV2 showed the highest affinity for αvβ6 integrin expressed in AsPC-1 cells and no affinity for MIA PaCa-2 cells. The accumulation of 125I-IFMDV2 in the AsPC-1 xenograft was 3–5 times greater than that in the MIA PaCa-2 xenograft, consistent with the expression of αvβ6 integrin in each xenograft, and confirmed by immunohistochemistry. Pretreatment with excess amounts of A20FMDV2 significantly blocked the accumulation of 125I-IFMDV2 in the AsPC-1 xenograft, but not in the MIA PaCa-2 xenograft. Furthermore, 123I-IFMDV2 enabled clear visualization of the AsPC-1 xenograft.

Conclusion

123I-IFMDV2 is a potential SPECT probe for the imaging of αvβ6 integrin in PDAC.  相似文献   

6.
The objective of this study was the development of a dual-modality imaging device, namely 111In-core-cross-linked polymeric micelle (CCPM)-octreotide, for neuroendocrine tumor detection, using near-infrared fluoroscopy (NIRF) and single photon emission computed tomography (SPECT). The tumor targeting ability of the 111In-labeled CCPM-octreotide was evaluated in a tumor mouse model. SPECT/CT, NIRF and gamma imaging results showed high tumor uptake of 111In-labeled CCPM-octreotide. In contrast, there was a much lower signal in the same mouse model injected with 111In-labeled CCPM. The high accumulation of 111In-labeled CCPM-octreotide in U87 tumor was reduced after co-injection with an excess amount of CCPM-octreotide. These results suggested CCPM-octreotide’s potential applications in tumor diagnosis, drug delivery and molecular imaging.  相似文献   

7.
Yan Y  Chen K  Yang M  Sun X  Liu S  Chen X 《Amino acids》2011,41(2):439-447
A peptide heterodimer comprises two different receptor-targeting peptide ligands. Molecular imaging probes based on dual-receptor targeting peptide heterodimers exhibit improved tumor targeting efficacy for multi-receptor expressing tumors compared with their parent single-receptor targeting peptide monomers. Previously we have developed bombesin (BBN)-RGD (Arg-Gly-Asp) peptide heterodimers, in which BBN and RGD are covalently connected with an asymmetric glutamate linker (J Med Chem 52:425–432, 2009). Although 18F-labeled heterodimers showed significantly better microPET imaging quality than 18F-labeled RGD and BBN monomers in a PC-3 xenograft model which co-expresses gastrin-releasing peptide receptor (GRPR) and integrin αvβ3, tedious heterodimer synthesis due to the asymmetric nature of glutamate linker restricts their clinical applications. In this study, we report the use of a symmetric linker AEADP [AEADP = 3,3′-(2-aminoethylazanediyl)dipropanoic acid] for the synthesis of BBN-RGD peptide heterodimer. The 18F-labeled heterodimer (18F-FB-AEADP-BBN-RGD) showed comparable microPET imaging results with glutamate linked BBN-RGD heterodimers, indicating that the replacement of glutamate linker with AEADP linker did not affect the biological activities of BBN-RGD heterodimer. The heterodimer synthesis is rather easy and straightforward. Because tumors often co-express multiple receptors, the use of a symmetric linker provides a general method of fast assembly of various peptide heterodimers for imaging multi-receptor expressing tumors.  相似文献   

8.
Guo N  Lang L  Li W  Kiesewetter DO  Gao H  Niu G  Xie Q  Chen X 《PloS one》2012,7(5):e37506
With favorable pharmacokinetics and binding affinity for α(v)β(3) integrin, (18)F-labeled dimeric cyclic RGD peptide ([(18)F]FPPRGD2) has been intensively used as a PET imaging probe for lesion detection and therapy response monitoring. A recently introduced kit formulation method, which uses an (18)F-fluoride-aluminum complex labeled RGD tracer ([(18)F]AlF-NOTA-PRGD2), provides a strategy for simplifying the labeling procedure to facilitate clinical translation. Meanwhile, an easy-to-prepare (68)Ga-labeled NOTA-PRGD2 has also been reported to have promising properties for imaging integrin α(v)β(3). The purpose of this study is to quantitatively compare the pharmacokinetic parameters of [(18)F]FPPRGD2, [(18)F]AlF-NOTA-PRGD2, and [(68)Ga]Ga-NOTA-PRGD2. U87MG tumor-bearing mice underwent 60-min dynamic PET scans following the injection of three tracers. Kinetic parameters were calculated using Logan graphical analysis with reference tissue. Parametric maps were generated using voxel-level modeling. All three compounds showed high binding potential (Bp(ND)?=?k(3)/k(4)) in tumor voxels. [(18)F]AlF-NOTA-PRGD2 showed comparable Bp(ND) value (3.75±0.65) with those of [(18)F]FPPRGD2 (3.39±0.84) and [(68)Ga]Ga-NOTA-PRGD2 (3.09±0.21) (p>0.05). Little difference was found in volume of distribution (V(T)) among these three RGD tracers in tumor, liver and muscle. Parametric maps showed similar kinetic parameters for all three tracers. We also demonstrated that the impact of non-specific binding could be eliminated in the kinetic analysis. Consequently, kinetic parameter estimation showed more comparable results among groups than static image analysis. In conclusion, [(18)F]AlF-NOTA-PRGD2 and [(68)Ga]Ga-NOTA-PRGD2 have comparable pharmacokinetics and quantitative parameters compared to those of [(18)F]FPPRGD2. Despite the apparent difference in tumor uptake (%ID/g determined from static images) and clearance pattern, the actual specific binding component extrapolated from kinetic modeling appears to be comparable for all three dimeric RGD tracers.  相似文献   

9.
Radiolabeled Arg-Gly-Asp (RGD) peptides are promising agents for non invasive imaging of αvβ3 expression in malignant tumors. The integrin αvβ3 binding affinity and consequent tumor uptake could be improved when a dimeric RGD peptide is used as the targeting moiety instead of a monomer. Towards this, a novel approach was envisaged to synthesize a 99mTc labeled dimeric RGD derivative using a RGD monomer and [99mTcN]+2 intermediate. The dithiocarbamate derivative of cyclic RGD peptide G3-c(RGDfK) (G3 = Gly-Gly-Gly, f = Phe, K = Lys) was synthesized and radiolabeled with [99mTcN]+2 intermediate to form the 99mTcN-[G3-c(RGDfK)]2 complex in high yield (~98%). Biodistribution studies carried out in C57/BL6 mice bearing melanoma tumors showed good tumor uptake [4.61 ± 0.04% IA/g at 30 min post-injection] with fast clearance of the activity from non-target organs/tissue. Scintigraphic imaging studies showed visible accumulation of activity in the tumor with appreciable target to background ratio.  相似文献   

10.
The cell line OVCAR-4 was recently ranked as one of the most representative cell lines for high grade serous ovarian cancer (HGSOC). However, little work has been done to assess the susceptibility of OVCAR-4 cells and tumors to the more common types of molecular targeting. Proteome profiles suggest OVCAR-4 express high levels of integrin αvβ3 receptors. Using flow cytometry with fluorescent antibodies we determined that OVCAR-4 cells have high number of integrin αvβ3 receptors ([9.8?±?2.5]?×?104/cell) compared to the well-characterized cell line U87-MG ([5.2?±?1.4]?×?104/cell). However, OVCAR-4 cells also have roughly three times the surface area of U87-MG cells, so the average αvβ3 receptor density is actually lower (11?±?3 versus 18?±?6?receptors/µm2). A series of new fluorescent molecular probes was prepared with structures comprised of a deep-red squaraine fluorophore (~680?nm emission) covalently attached to zero, one, or two cyclic pentapeptide cRGD sequences for integrin targeting. Microscopy studies showed that uptake of the divalent probe into cultured OVCAR-4 cells was 2.2?±?0.4 higher than the monovalent probe, which in turn was 2.2?±?0.4 higher than the untargeted probe. This probe targeting trend was also seen in OVCAR-4 mouse tumor models. The results suggest that clinically relevant OVCAR-4 cells can be targeted using molecular probes based on αvβ3 integrin receptor antagonists such as the cRGD peptide. Furthermore, deep-red fluorescent cRGD-squaraine probes have potential as targeted stains of cancerous tissue associated with HGSOC in surgery and pathology settings.  相似文献   

11.
Cell adhesion molecules alphavbeta3 and alphavbeta5 play a pivotal role in tumor angiogenesis and metastasis. Antiangiogenic therapy by using small peptide antagonists of alphav-integrins slows tumor growth and prevents tumor spread. The ability to visualize and quantify integrin expression will enable selection of appropriate patients for clinical trials, following determination of treatment efficacy and development of new potent drugs. We have previously labeled cyclic RGD peptide c(RGDyK) with 125I and 18F and applied the radiotracers to both subcutaneous and orthotopic brain tumor models. Here we conjugated c(RGDyK) with 1,4,7,10-tetraaza-1,4,7,10-tetradodecane-N,N',N' ',N' "-tetraacetic acid (DOTA) and labeled the DOTA-RGD conjugate with 64Cu (t1/2) = 12.8 h, 19% beta+) in high radiochemical purity and specific activity. The tumor targeting ability and in vivo kinetics of 64Cu-DOTA-RGD was compared with [18F]FB-RGD and 125I-RGD in orthotopic MDA-MB-435 breast cancer model. All three radiotracers revealed fast blood clearance and high tumor-to-blood and tumor-to-muscle ratios. 125I-RGD had higher tumor uptake than the corresponding 18F and 64Cu analogues. [18F]FB-RGD indicated a fast tumor washout rate and an unfavorable hepatobiliary excretion pathway, resulting in significant activity accumulation in gallbladder and intestines. 64Cu-DOTA-RGD had prolonged tumor retention (1.44 +/- 0.09 %ID/g at 4 h postinjection) and persistent uptake in the liver. All three tracers revealed receptor specific tumor accumulation which were illustrated by effective blocking via coinjection with a blocking dose of c(RGDyK). Static microPET imaging and whole-body autoradiography showed strong contrast from the contralateral background. In conclusion, overall molecular charge and characteristics of radiolabels have profound effects on tumor accumulation and in vivo kinetics of radiolabeled RGD peptide. Further modification of the RGD peptide and optimization of the tracer for prolonged tumor uptake and improved in vivo kinetics are being explored.  相似文献   

12.
Targeting HER2     
《MABS-AUSTIN》2013,5(5):550-564
The potential of the HER2-targeting antibody trastuzumab as a radioimmunoconjugate useful for both imaging and therapy was investigated. Conjugation of trastuzumab with the acyclic bifunctional chelator CHX-A”-DTPA yielded a chelate:protein ratio of 3.4±0.3; the immunoreactivity of the antibody unaffected. Radiolabeling was efficient, routinely yielding a product with high specific activity. Tumor targeting was evaluated in mice bearing subcutaneous (s.c.) xenografts of colorectal, pancreatic, ovarian, and prostate carcinomas. High uptake of the radioimmunoconjugate, injected intravenously (i.v.), was observed in each of the models, and the highest tumor %ID/g (51.18±13.58) was obtained with the ovarian (SKOV-3) tumor xenograft. Specificity was demonstrated by the absence of uptake of 111In-trastuzumab by melanoma (A375) s.c. xenografts and 111In-HuIgG by s.c. LS-174T xenografts. Minimal uptake of i.v. injected 111In-trastuzumab in normal organs was confirmed in non-tumor-bearing mice. The in vivo behavior of 111In-trastuzumab in mice bearing intraperitoneal (i.p.) LS-174T tumors resulted in a tumor %ID/g of 130.85±273.34 at 24 h. Visualization of tumor, s.c. and i.p. xenografts, was achieved by γ-scintigraphy and PET imaging. Blood pool was evident as expected, but cleared over time. The blood pharmacokinetics of i.v. and i.p. injected 111In-trastuzumab was determined in mice with and without tumors. The data from these in vitro and in vivo studies supported advancement of radiolabeled trastuzumab into two clinical studies, a Phase 0 imaging study in the Molecular Imaging Program of the National Cancer Institute and a Phase 1 radioimmunotherapy study at the University of Alabama.  相似文献   

13.
The alphav integrins, which act as cell adhesion molecules, are closely involved with tumor invasion and angiogenesis. In particular, alphavbeta3 integrin, which is specifically expressed on proliferating endothelial cells and tumor cells, is a logical target for development of a radiotracer method to assess angiogenesis and anti-angiogenic therapy. In this study, a dimeric cyclic RGD peptide E[c(RGDyK)]2 was labeled with 18F (t(1/2) = 109.7 min) by using a prosthetic 4-[18F]fluorobenzoyl moiety to the amino group of the glutamate. The resulting [18F]FB-E[c(RGDyK)]2, with high specific activity (200-250 GBq/micromol at the end of synthesis), was administered to subcutaneous U87MG glioblastoma xenograft models for micro-PET and autoradiographic imaging as well as direct tissue sampling to assess tumor targeting efficacy and in vivo kinetics of this PET tracer. The dimeric RGD peptide demonstrated significantly higher tumor uptake and prolonged tumor retention in comparison with a monomeric RGD peptide analog [18F]FB-c(RGDyK). The dimeric RGD peptide had predominant renal excretion, whereas the monomeric analog was excreted primarily through the biliary route. Micro-PET imaging 1 hr after injection of the dimeric RGD peptide exhibited tumor to contralateral background ratio of 9.5 +/- 0.8. The synergistic effect of polyvalency and improved pharmacokinetics may be responsible for the superior imaging characteristics of [18F]FB-E[c(RGDyK)]2.  相似文献   

14.
The purpose of this study was to examine the influence of the lactam bridge cyclization on melanoma targeting and biodistribution properties of the radiolabeled conjugates. Two novel lactam bridge-cyclized alpha-MSH peptide analogues, DOTA-CycMSH (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp]) and DOTA-GlyGlu-CycMSH (DOTA-Gly-Glu-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp]), were synthesized and radiolabeled with (111)In. The internalization and efflux of (111)In-labeled CycMSH peptides were examined in B16/F1 melanoma cells. The melanoma targeting properties, pharmacokinetics, and SPECT/CT imaging of (111)In-labeled CycMSH peptides were determined in B16/F1 melanoma-bearing C57 mice. Both (111)In-DOTA-CycMSH and (111)In-DOTA-GlyGlu-CycMSH exhibited fast internalization and extended retention in B16/F1 cells. The tumor uptake values of (111)In-DOTA-CycMSH and (111)In-DOTA-GlyGlu-CycMSH were 9.53+/-1.41% injected dose/gram (% ID/g) and 10.40+/-1.40% ID/g at 2 h postinjection, respectively. Flank melanoma tumors were clearly visualized with (111)In-DOTA-CycMSH and (111)In-DOTA-GlyGlu-CycMSH by SPECT/CT images at 2 h postinjection. Whole-body clearance of the peptides was fast, with greater than 90% of the radioactivities cleared through urinary system by 2 h postinjection. There was low radioactivity (<0.8% ID/g) accumulated in blood and normal organs except kidneys at all time points investigated. Introduction of a negatively charged linker (-Gly-Glu-) into the peptide sequence decreased the renal uptake by 44% without affecting the tumor uptake at 4 h postinjection. High receptor-mediated melanoma uptakes coupled with fast whole-body clearance in B16/F1 melanoma-bearing C57 mice demonstrated the feasibility of using (111)In-labeled lactam bridge-cyclized alpha-MSH peptide analogues as a novel class of imaging probes for receptor-targeting melanoma imaging.  相似文献   

15.
We report radioiodinated chalcone derivatives as new SPECT imaging probes for amyloid β (Aβ) plaques. The monoethyleneoxy derivative 2 and allyloxy derivative 8 showed a high affinity for Aβ(1–42) aggregates with Ki values of 24 and 4.5 nM, respectively. Fluorescent imaging demonstrated that 2 and 8 clearly stained thioflavin-S positive Aβ plaques in the brain sections of Tg2576 transgenic mice. In vitro autoradiography revealed that [125I]2 displayed no clear accumulation toward Aβ plaques in the brain sections of Tg2576 mice, whereas the accumulation pattern of [125I]8 matched with the presence of Aβ plaques both in the brain sections of Tg2576 mice and an AD patient. In biodistribution studies using normal mice, [125I]2 showed preferable in vivo pharmacokinetics (4.82%ID/g at 2 min and 0.45%ID/g at 60 min), while [125I]8 showed only a modest brain uptake (1.62%ID/g at 2 min) with slow clearance (0.56%ID/g at 60 min). [125I]8 showed prospective binding properties for Aβ plaques, although further structural modifications are needed to improve the blood brain barrier permeability and washout from brain.  相似文献   

16.
The radiolabeled triplex-forming oligonucleotide (TFO) demonstrated the potential for sequence-specific DNA binding and destruction. In this study, by selecting the polypurine-polypyrimidine stretch (2950-2978) in the human N-myc gene as a target, the (111)In-labeled TFO targeting human N-myc gene (N-mycTFO(111)In) was tested for its cellular uptake and nuclear localization in vitro and in vivo. This is because the deregulated N-myc expression is strongly implicated in the pathogenesis of several important human malignancies, including breast carcinoma and neuroblastoma. N-mycTFO(111)In was bound selectively to the N-myc sequence in vitro. The total cellular uptake of TFO after the incubation of various normal and cancer cells with TFO for 24 h was 20-54.8% of the injected dose (%ID), and the nuclear localization was 6.59-30.0%ID, depending on cell lines. The highest cellular uptake was found in the human neuroblastoma SK-N-DZ (54.8%ID), human mammary ductal carcinoma T47-D (54%ID), human acute T cell leukemia Jurkat (54%ID), and multidrug-resistant human breast adenocarcinoma MCF7/TH (49.5%ID). The lowest was in the human normal mammary epithelium MCF10A (20.0%ID). The highest nuclear localization was found in MCF7/TH (30%ID) and SK-N-DZ (28.7%ID). The lowest was in MCF11A (6.59%ID). We next injected TFO into human mammary tumor-xenografted Balb/c nude mice. Tumor targeting of TFO in vivo reached its maximum peak 5 h after the intravenous injection in three types of tumor models. They are 21.0 +/- 3.23%ID per gram of tissue (%ID/g) for MCF7/TH, 7.77 +/- 2.11%ID/g for MCF7, and 4.53 +/- 1.20%ID/g for MCF10A. The TFO blood level decreased from 8.00 +/- 0.90%ID/g 15 min after the injection, to 1.30 +/- 0.30%ID/g after 19 h. The kidney TFO level increased rapidly from 5.93 +/- 0.94%ID/g after 15 min, to 25.1 +/- 5.60%ID/g after 19 h. A high TFO level (19.7-24.5%ID/g) in the liver was maintained until 19 h after the injection. Therefore, we suggest that the (111)In-labeled N-myc-targeting TFO, a promising modality for nanoexplosive gene therapy, could effectively target the nucleus of the multidrug-resistant breast carcinoma MCF7/TH in vitro and in vivo. It has approximately 130 min of half-life of blood TFO.  相似文献   

17.
The L-type amino acid transporter-1 (LAT1, SLC7A5) is upregulated in a wide range of human cancers, positively correlated with the biological aggressiveness of tumors, and a promising target for both imaging and therapy. Radiolabeled amino acids such as O-(2-[18F]fluoroethyl)-L-tyrosine (FET) that are transport substrates for system L amino acid transporters including LAT1 have met limited success for oncologic imaging outside of the brain, and thus new strategies are needed for imaging LAT1 in systemic cancers. Here, we describe the development and biological evaluation of a novel zirconium-89 labeled antibody, [89Zr]DFO-Ab2, targeting the extracellular domain of LAT1 in a preclinical model of colorectal cancer. This tracer demonstrated specificity for LAT1 in vitro and in vivo with excellent tumor imaging properties in mice with xenograft tumors. PET imaging studies showed high tumor uptake, with optimal tumor-to-non target contrast achieved at 7 days post administration. Biodistribution studies demonstrated tumor uptake of 10.5 ± 1.8 percent injected dose per gram (%ID/g) at 7 days with a tumor to muscle ratio of 13 to 1. In contrast, the peak tumor uptake of the radiolabeled amino acid [18F]FET was 4.4 ± 0.5 %ID/g at 30 min after injection with a tumor to muscle ratio of 1.4 to 1. Blocking studies with unlabeled anti-LAT1 antibody demonstrated a 55% reduction of [89Zr]DFO-Ab2 accumulation in the tumor at 7 days. These results are the first report of direct PET imaging of LAT1 and demonstrate the potential of immunoPET agents for imaging specific amino acid transporters.  相似文献   

18.
PurposeMultiple receptors are co-expressed in many types of cancers. Octreotate (TATE) and Arg-Gly-Asp (RGD) peptides target somatostatin receptor 2 (sstr2) and integrin αvβ3, respectively. We developed and synthesized a heterodimer NOTA-3PEG4-TATE-RGD (3PTATE-RGD) and aimed to investigate its characteristics for dual-targeting sstr2 and integrin αvβ3.MethodsTATE and RGD peptides and 1,4,7-triazacylononane-N’,N’’,N’’’-triacetic acid (NOTA) were linked through a glutamate and polyethylene glycol (PEG) linker, then 3PTATE-RGD was labeled with 68Ga ion. Receptor-binding characteristics and tumor-targeting efficacy were tested in vitro and in vivo using H69 and A549 lung cancer cell lines and tumor-bearing mice models.Results[68Ga]-3PTATE-RGD had comparable sstr2 and integrin αvβ3-binding affinity with monomeric TATE and RGD in cell uptake and PET imaging study, respectively. In the competition study, H69 and A549 tumor uptake of [68Ga]-3PTATE-RGD was completed inhibited in the presence of an excess amount of unlabeled TATE or RGD, respectively. The blocked level didn’t grow when both of TATE and RGD mixture was co-injected with [68Ga]-3PTATE-RGD. The pharmacokinetics of [68Ga]-3PTATE-RGD is comparable with [68Ga]-TATE and [68Ga]-RGD, resulting in a larger application.Conclusion[68Ga]-3PTATE-RGD showed improved and wider tumor-targeting efficacy compared with monomeric TATE and RGD peptides, which warrants its further investigation in detection both of sstr2 and integrin αvβ3-related carcinomas.  相似文献   

19.
The potential of the HER2-targeting antibody trastuzumab as a radioimmunoconjugate useful for both imaging and therapy was investigated. Conjugation of trastuzumab with the acyclic bifunctional chelator CHX-A″-DTPA yielded a chelate:protein ratio of 3.4 ± 0.3; the immunoreactivity of the antibody unaffected. Radiolabeling was efficient, routinely yielding a product with high specific activity. Tumor targeting was evaluated in mice bearing subcutaneous (s.c.) xenografts of colorectal, pancreatic, ovarian and prostate carcinomas. High uptake of the radioimmunoconjugate, injected intravenously (i.v.), was observed in each of the models and the highest tumor %ID/g (51.18 ± 13.58) was obtained with the ovarian (SKOV-3) tumor xenograft. Specificity was demonstrated by the absence of uptake of 111In-trastuzumab by melanoma (A375) s.c. xenografts and 111In-HuIgG by s.c. LS-174T xenografts. Minimal uptake of i.v. injected 111In-trastuzumab in normal organs was confirmed in non-tumor-bearing mice. The in vivo behavior of 111In-trastuzumab in mice bearing intraperitoneal (i.p.) LS-174T tumors resulted in a tumor %ID/g of 130.85 ± 273.34 at 24 h. Visualization of tumor, s.c. and i.p. xenografts was achieved by γ-scintigraphy and PET imaging. Blood pool was evident as expected but cleared over time. The blood pharmacokinetics of i.v. and i.p. injected 111In-trastuzumab was determined in mice with and without tumors. The data from these in vitro and in vivo studies supported advancement of radiolabeled trastuzumab into two clinical studies, a Phase 0 imaging study in the Molecular Imaging Program of the National Cancer Institute and a Phase 1 radioimmunotherapy study at the University of Alabama.Key words: monoclonal antibody, HER2, trastuzumab, radioimmunodiagnosis, radioimmunotherapy  相似文献   

20.
Little is known about the mechanism of integrin activation by cadherin 17 (CDH17). Here we observed the presence of a tri-peptide motif, RGD, in domain 6 of the human CDH17 sequence and other cadherins such as cadherin 5 and cadherin 6. The use of CDH17 RAD mutants demonstrated a considerable decrease of proliferation and adhesion in RKO and KM12SM colon cancer cells. Furthermore, RGD peptides inhibited the adhesion of both cell lines to recombinant CDH17 domain 6. The RGD motif added exogenously to the cells provoked a change in β1 integrin to an active, high-affinity conformation and an increase in focal adhesion kinase and ERK1/2 activation. In vivo experiments with Swiss nude mice demonstrated that cancer cells expressing the CDH17 RAD mutant showed a considerable delay in tumor growth and liver homing. CDH17 RGD effects were also active in pancreatic cancer cells. Our results suggest that α2β1 integrin interacts with two different ligands, collagen IV and CDH17, using two different binding sites. In summary, the RGD binding motif constitutes a switch for integrin pathway activation and shows a novel capacity of CDH17 as an integrin ligand. This motif could be targeted to avoid metastatic dissemination in tumors overexpressing CDH17 and other RGD-containing cadherins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号