首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the role of extracellular matrix (ECM) and growth factors in the survival of nonadherent human neuroblastoma cells (line SK-N-BE). Cells cultured in serum-free medium under nonadherent conditions died with apoptotic-like features (cromatin condensation and nuclear fragmentation). SK-N-BE cells underwent neuronal differentiation in response to retinoic acid (RA). While RA itself did not induce apoptosis, differentiation increased the susceptibility of SK-N-BE cells to detachment-induced apoptosis. The appearance of the apoptotic-like phenotype required the maintenance in suspension of SK-N-BE cells for at least 16 h (12.43 ± 1.40% of cells undergoing apoptosis) and the percentage increased up to 46.84 ± 3.15% after 24 h. Suspension-induced apoptosis did not depend on increased intracellular Ca2+levels nor onde novoprotein synthesis and was not associated with extensive DNA degradation. Stimulation by soluble collagen I rescued suspended cells from apoptosis, even in the absence of cell adhesion and spreading. The survival promoting effect of ECM was mediated by the integrin receptors, since ([1]) the protective effect of soluble collagen I was blocked by anti-integrin antibodies to β1and α1subunits and ([2]) the antibody-induced clustering of α1, α3, αv, β1, and β3integrins rescued SK-N-BE cells cultured in suspension from apoptosis. As expected, adhesion on immobilized ECM proteins, collagen I, or laminin (0.1 to 10 μg/ml) also rescued SK-N-BE cells from apoptosis in a dose-dependent manner. Thede novoprotein synthesis was required to promote the survival effect of ECM, since cycloheximide completely abolished the protective effect of collagen I and protection from apoptosis by ECM or by anti-β1antibody was associated with the increased expression ofbcl-2.In addition to integrin stimulation, serum, insulin, and nerve growth factor inhibited suspension-induced apoptosis of SK-N-BE cells. The survival effect of serum and growth factors did not require the synthesis of new proteins, unlike the ECM effect. These data show that matrix proteins can promote cell survival in neuronal cells via integrin receptors. This effect does not require cell adhesion and the subsequent changes in cell shape as it can be mediated by soluble integrin ligands in suspended cells and involves a signaling pathway different from that triggered by growth factors.  相似文献   

2.
3.
In vascular smooth muscle cells (VSMCs) integrin-mediated adhesion to extracellular matrix (ECM) proteins play important roles in sustaining vascular tone and resistance. The main goal of this study was to determine whether VSMCs adhesion to type I collagen (COL-I) was altered in parallel with the changes in the VSMCs contractile state induced by vasoconstrictors and vasodilators. VSMCs were isolated from rat cremaster skeletal muscle arterioles and maintained in primary culture without passage. Cell adhesion and cell E-modulus were assessed using atomic force microscopy (AFM) by repetitive nano-indentation of the AFM probe on the cell surface at 0.1 Hz sampling frequency and 3200 nm Z-piezo travelling distance (approach and retraction). AFM probes were tipped with a 5 μm diameter microbead functionalized with COL-I (1mg\ml). Results showed that the vasoconstrictor angiotensin II (ANG-II; 10−6) significantly increased (p<0.05) VSMC E-modulus and adhesion probability to COL-I by approximately 35% and 33%, respectively. In contrast, the vasodilator adenosine (ADO; 10−4) significantly decreased (p<0.05) VSMC E-modulus and adhesion probability by approximately −33% and −17%, respectively. Similarly, the NO donor (PANOate, 10−6 M), a potent vasodilator, also significantly decreased (p<0.05) the VSMC E-modulus and COL-I adhesion probability by −38% and −35%, respectively. These observations support the hypothesis that integrin-mediated VSMC adhesion to the ECM protein COL-I is dynamically regulated in parallel with VSMC contractile activation. These data suggest that the signal transduction pathways modulating VSMC contractile activation and relaxation, in addition to ECM adhesion, interact during regulation of contractile state.  相似文献   

4.
Beginning with the observation that hepatocyte growth factor (HGF) induces the formation of branching tubular structures in Madin-Darby canine kidney (MDCK) cells cultured in Type I collagen gels but not in basement membrane Matrigel, we examined the individual components within this complex basement membrane extract to determine the effect of these proteins on the morphogenetic changes mediated by HGF. After extraction of several growth factors from Matrigel, HGF was still unable to induce process formation, an early event in tubulogenesis, indicating that one or more of the remaining extracellular matrix (ECM) proteins or growth factors were exerting the inhibitory effect. By individually adding back these components to MDCK cells grown in Type I collagen gels in the presence of HGF, we were able to establish that: (1) certain ECM proteins, such as laminin, entactin, and fibronectln, actually facilitated the formation of branching tubular structures and increased their complexity; (2) other ECM proteins, such as Type IV collagen, heparan sulfate proteoglycan, and vitronectin, caused marked inhibition of HGF-induced morphogenesis; and (3) not only did transforming growth factor-β (TGF-β) inhibit the formation of tubular structures, but those which did form exhibited little branching, thereby suggesting that TGF-β modulates tubulogenesis as well as branching. These results suggest that a tubulogenic morphogen such as HGF and a tubulogenesis-inhibitory morphogen such as TGF-β can, in the context of the dynamic matrix known to exist during epithelial tissue development, modulate the degree of tubule (or ductal) formation, the length of these tubules, and the extent of their arborization. The relevance of these findings to tubulogenesis and branching during kidney development is discussed.  相似文献   

5.
Adhesion to extracellular matrix (ECM) proteins plays a crucial role in invasive fungal diseases. ECM proteins bind to the surface of Paracoccidioides brasiliensis yeast cells in distinct qualitative patterns. Extracts from Pb18 strain, before (18a) and after animal inoculation (18b), exhibited differential adhesion to ECM components. Pb18b extract had a higher capacity for binding to ECM components than Pb18a. Laminin was the most adherent component for both samples, followed by type I collagen, fibronectin, and type IV collagen for Pb18b. A remarkable difference was seen in the interaction of the two extracts with fibronectin and their fragments. Pb18b extract interacted significantly with the 120-kDa fragment. Ligand affinity binding assays showed that type I collagen recognized two components (47 and 80kDa) and gp43 bound both fibronectin and laminin. The peptide 1 (NLGRDAKRHL) from gp43, with several positively charged amino acids, contributed most to the adhesion of P. brasiliensis to Vero cells. Synthetic peptides derived from peptide YIGRS of laminin or from RGD of both laminin and fibronectin showed the greatest inhibition of adhesion of gp43 to Vero cells. In conclusion, this work provided new molecular details on the interaction between P. brasiliensis and ECM components.  相似文献   

6.
Suggestions exist that, in addition to traditional growth factors, the extracellular matrix (ECM) of a cell can regulate its proliferation. This hypothesis was investigated with normal and transformed fibroblasts because they exhibit specific intracellular responses after adherence to ECM and produce large quantities of ECM proteins. Although cells cultured on different ECM proteins grew more rapidly than those on plastic, adherence and cell growth on an individual ECM protein were not correlated. To test if ECM can stimulate cell growth, soluble ECM proteins were given to cells after plating. In this culture system only collagen VI (CVI), at a concentration of 20 μg/ml in medium, increased 3T3 cell number to 402% of control by 72 h. Similar increases of human fibroblasts and HT 1080 cell numbers were noted. DNA synthesis of all three cell types increased 24 h after addition of soluble CVI. A mixture of CVI single chains, yielded by reduction and alkylation, was not stimulatory. However, this mixture efficiently inhibited the DNA synthesis induced by native CVI. Antibody inhibition studies showed that the region of CVI stimulating proliferation differs from the site bound by the integrin receptor α2β1, which mediates cell adhesion to immobilized CVI. Heparin inhibited a portion of CVI-induced proliferation. These data demonstrate that CVI can stimulate mesenchymal cell growth via a pathway that is independent of the integrin α2β1 and that the stimulatory region appears to be within the native helical portion of the collagen.  相似文献   

7.
Tenascin-C (TN-C) is induced in pulmonary vascular disease, where it colocalizes with proliferating smooth muscle cells (SMCs) and epidermal growth factor (EGF). Furthermore, cultured SMCs require TN-C for EGF-dependent growth on type I collagen. In this study, we explore the regulation and function of TN-C in SMCs. We show that a matix metalloproteinase (MMP) inhibitor (GM6001) suppresses SMC TN-C expression on native collagen, whereas denatured collagen promotes TN-C expression in a β3 integrin– dependent manner, independent of MMPs. Floating type I collagen gel also suppresses SMC MMP activity and TN-C protein synthesis and induces apoptosis, in the presence of EGF. Addition of exogenous TN-C to SMCs on floating collagen, or to SMCs treated with GM6001, restores the EGF growth response and “rescues” cells from apoptosis. The mechanism by which TN-C facilitates EGF-dependent survival and growth was then investigated. We show that TN-C interactions with αvβ3 integrins modify SMC shape, and EGF- dependent growth. These features are associated with redistribution of filamentous actin to focal adhesion complexes, which colocalize with clusters of EGF-Rs, tyrosine-phosphorylated proteins, and increased activation of EGF-Rs after addition of EGF. Cross-linking SMC β3 integrins replicates the effect of TN-C on EGF-R clustering and tyrosine phosphorylation. Together, these studies represent a functional paradigm for ECM-dependent cell survival whereby MMPs upregulate TN-C by generating β3 integrin ligands in type I collagen. In turn, αvβ3 interactions with TN-C alter SMC shape and increase EGF-R clustering and EGF-dependent growth. Conversely, suppression of MMPs downregulates TN-C and induces apoptosis.  相似文献   

8.
LAIR-1 (Leukocyte Associated Ig-like Receptor -1) is a collagen receptor that functions as an inhibitory receptor on immune cells. It has a soluble family member, LAIR-2, that also binds collagen and can interfere with LAIR-1/collagen interactions. Collagen is a main initiator for platelet adhesion and aggregation. Here, we explored the potential of soluble LAIR proteins to inhibit thrombus formation in vitro. LAIR-2/Fc but not LAIR-1/Fc inhibited collagen-induced platelet aggregation. In addition, LAIR-2/Fc also interfered with platelet adhesion to collagen at low shear rate (300 s−1; IC50 = 18 µg/ml) and high shear rate (1500 s−1; IC50 = 30 µg/ml). Additional experiments revealed that LAIR-2/Fc leaves interactions between collagen and α2β1 unaffected, but efficiently prevents binding of collagen to Glycoprotein VI and von Willebrand factor. Thus, LAIR-2/Fc has the capacity to interfere with platelet-collagen interactions mediated by Glycoprotein VI and the VWF/Glycoprotein Ib axis.  相似文献   

9.
Pathophysiological conditions such as fibrosis, inflammation, and tumor progression are associated with modification of the extracellular matrix (ECM). These modifications create ligands that differentially interact with cells to promote responses that drive pathological processes. Within the tumor stroma, fibroblasts are activated and increase the expression of type I collagen. In addition, activated fibroblasts specifically express fibroblast activation protein-α (FAP), a post-prolyl peptidase. Although FAP reportedly cleaves type I collagen and contributes to tumor progression, the specific pathophysiologic role of FAP is not clear. In this study, the possibility that FAP-mediated cleavage of type I collagen modulates macrophage interaction with collagen was examined using macrophage adhesion assays. Our results demonstrate that FAP selectively cleaves type I collagen resulting in increased macrophage adhesion. Increased macrophage adhesion to FAP-cleaved collagen was not affected by inhibiting integrin-mediated interactions, but was abolished in macrophages lacking the class A scavenger receptor (SR-A/CD204). Further, SR-A expressing macrophages localize with activated fibroblasts in breast tumors of MMTV-PyMT mice. Together, these results demonstrate that FAP-cleaved collagen is a substrate for SR-A-dependent macrophage adhesion, and suggest that by modifying the ECM, FAP plays a novel role in mediating communication between activated fibroblasts and macrophages.  相似文献   

10.
Denervation or inactivity is known to decrease the mass and alter the phenotype of muscle and the mechanics of tendon. It has been proposed that a shift in the collagen of the extracellular matrix (ECM) of the muscle, increasing type III and decreasing type I collagen, may be partially responsible for the observed changes. We directly investigated this hypothesis using quantitative real-time PCR on muscles and tendons that had been denervated for 5 wk. Five weeks of denervation resulted in a 2.91-fold increase in collagen concentration but no change in the content of collagen in the muscle, whereas in the tendon there was no change in either the concentration or content of collagen. The expression of collagen I, collagen III, and lysyl oxidase mRNA in the ECM of muscle decreased (76 +/- 1.6%, 73 +/- 2.3%, and 83 +/- 3.2%, respectively) after 5 wk of denervation. Staining with picrosirius red confirmed the earlier observation of a change in staining color from red to green. Taken with the observed equivalent decreases in collagen I and III mRNA, this suggests that there was a change in orientation of the ECM of muscle becoming more aligned with the axis of the muscle fibers and no change in collagen type. The change in collagen orientation may serve to protect the smaller muscle fibers from damage by increasing the stiffness of the ECM and may partly explain why the region of the tendon closest to the muscle becomes stiffer after inactivity.  相似文献   

11.
Abstract

Advanced diabetic nephropathy is characterized by abnormal synthesis of extracellular matrix (ECM) proteins, such as collagen I (COL I). The present experiments were designed to test the hypothesis that the presence of abnormal ECM proteins may be responsible for increased generation of reactive oxygen species (ROS) that are thought to have an important role in the pathogenesis of diabetic nephropathy. SV40 MES 13 murine mesangial cells were plated on COL I or collagen IV (COL IV) for 3 h at 5.5 or 25 mM D-glucose concentration. Increased intracellular ROS generation and reduced intracellular nitric oxide (NO) production was measured in cells attached to COL I compared with cells attached to COL IV. Treatment with Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME), an inhibitor of NO synthase, reduced this difference in ROS generation between cells attached to either COL I or IV. The results using antibodies against integrins also indicated that an α2 integrin-mediated pathway was involved in the different response in ROS generation caused by ECM proteins. These results suggest that contact between altered ECM proteins that are present in advanced diabetic nephropathy and mesangial cells has the potential to increase intracellular oxidative stress, leading to progressive glomerular damage.  相似文献   

12.
The adhesion and aggregation of platelets during hemostasis and thrombosis represents one of the best-understood examples of cell–matrix adhesion. Platelets are exposed to a wide variety of extracellular matrix (ECM) proteins once blood vessels are damaged and basement membranes and interstitial ECM are exposed. Platelet adhesion to these ECM proteins involves ECM receptors familiar in other contexts, such as integrins. The major platelet-specific integrin, αIIbβ3, is the best-understood ECM receptor and exhibits the most tightly regulated switch between inactive and active states. Once activated, αIIbβ3 binds many different ECM proteins, including fibrinogen, its major ligand. In addition to αIIbβ3, there are other integrins expressed at lower levels on platelets and responsible for adhesion to additional ECM proteins. There are also some important nonintegrin ECM receptors, GPIb-V-IX and GPVI, which are specific to platelets. These receptors play major roles in platelet adhesion and in the activation of the integrins and of other platelet responses, such as cytoskeletal organization and exocytosis of additional ECM ligands and autoactivators of the platelets.The balance between hemostasis and thrombosis relies on a finely tuned adhesive response of blood platelets. Inadequate adhesion leads to bleeding, whereas excessive or inappropriate adhesion leads to thrombosis. Resting platelets are nonadhesive anuclear discs and do not interact with the vessel wall, but they have a plethora of receptors that sense activating signals (agonists) of various sorts. The activating signals include soluble factors such as thrombin, adenosine diphosphate (ADP), and epinephrine, all of which act on G-protein-coupled receptors (GPCRs) on the platelets. In addition, certain receptors for extracellular matrix (ECM) proteins (e.g., GPIb, GPVI, and some integrins) can also act as activating receptors. These diverse receptors trigger intracellular signaling pathways that activate (1) actin assembly leading to cell shape change and extension of filopodia; (2) exocytosis of secretory granules that release additional platelet agonists as well as adhesive ECM proteins; and (3) activation of additional cell-surface receptors such as the major platelet-specific integrin, αIIbβ3, that contribute further to the adhesion and aggregation of activated platelets. Thus, the interactions of platelet-ECM adhesion receptors with ECM proteins from the vessel wall, from the plasma, and from the platelets themselves, are central to both the initial adhesion and the subsequent activation and aggregation of platelets (Varga-Szabo et al. 2008). These adhesive interactions, together with coagulation (to which platelets also contribute), generate the fibrin clot, essentially a facultative ECM that forms the initial occlusion of the damaged vessel but also serves as a subsequent ECM substrate for wound healing. In this article, we will review what is known about the roles of ECM proteins and their receptors in platelet adhesion and aggregation, summarize the roles of the clot and provisional ECM in subsequent wound healing, point out various unanswered questions, and discuss briefly the contributions of the relevant cell–ECM interactions to disease and the potential for therapeutic interventions.  相似文献   

13.
Hypoxia-inducible factors (HIFs) are the master regulators of hypoxia-responsive genes. They play a critical role in the survival, development, and differentiation of chondrocytes in the avascular hypoxic fetal growth plate, which is rich in extracellular matrix (ECM) and in its main component, collagens. Several genes involved in the synthesis, maintenance, and degradation of ECM are regulated by HIFs. Collagen prolyl 4-hydroxylases (C-P4Hs) are key enzymes in collagen synthesis because the resulting 4-hydroxyprolines are necessary for the stability of all collagen molecules. The vertebrate C-P4Hs are α2β2 tetramers with three isoforms of the catalytic α subunit, yielding C-P4Hs of types I–III. C-P4H-I is the main form in most cells, but C-P4H-II is the major form in chondrocytes. We postulated here that post-translational modification of collagens, particularly 4-hydroxylation of proline residues, could be one of the modalities by which HIF regulates the adaptive responses of chondrocytes in fetal growth plates. To address this hypothesis, we used primary epiphyseal growth plate chondrocytes isolated from newborn mice with conditionally inactivated genes for HIF-1α, HIF-2α, or the von Hippel-Lindau protein. The data obtained showed that C-P4H α(I) and α(II) mRNA levels were increased in hypoxic chondrocytes in a manner dependent on HIF-1 but not on HIF-2. Furthermore, the increases in the C-P4H mRNA levels were associated with both increased amounts of the C-P4H tetramers and augmented C-P4H activity in hypoxia. The hypoxia inducibility of the C-P4H isoenzymes is thus likely to ensure sufficient C-P4H activity for collagen synthesis occurring in chondrocytes in a hypoxic environment.  相似文献   

14.
Macrophages (Mφs) are multifunctional immune cells which are involved in the regulation of immune and inflammatory responses, as well as in tissue repair and remodeling. In tissues, Mφs reside in areas which are rich in extracellular matrix (ECM), the structural component which also plays an essential role in regulating a variety of cellular functions. A major ECM protein encountered by Mφs is type I collagen, the most abundant of the fibril-forming collagens. In this study, the adhesion of RAW 264.7 murine Mphis to native fibrillar, monomeric, and denatured type I collagen was investigated. Using atomic force microscopy, structural differences between fibrillar and monomeric type I collagen were clearly resolved. When cultured on fibrillar type I collagen, Mphis adhered poorly. In contrast, they adhered significantly to monomeric, heat-denatured, or collagenase-modified type I collagen. Studies utilizing anti-beta1 and -beta2 integrin adhesion-blocking antibodies, RGD-containing peptides, or divalent cation-free conditions did not inhibit Mphi; adhesion to monomeric or denatured type I collagen. However, macrophage scavenger receptor (MSR) ligands and anti-MSR antibodies significantly blocked Mphi; adhesion to denatured and monomeric type I collagen strongly suggesting the involvement of the MSR as an adhesion molecule for denatured type I collagen. Further analysis by Western blot identified the MSR as the primary receptor for denatured type I collagen among Mphi; proteins purified from a heat-denatured type I collagen affinity column. These findings indicate that Mphis adhere selectively to denatured forms of type I collagen, but not the native fibrillar conformation, via their scavenger receptors.  相似文献   

15.
Morphological adaptations of vascular smooth muscle cells (VSMC) to the mechanically active environment in which they reside, are mediated by direct interactions with the extracellular matrix (ECM) which induces physiological changes at the intracellular level. This study aimed to analyze the effects of the ECM on RhoA-induced mechanical signaling that controls actin organization and focal adhesion formation. VSMC were transfected with RhoA constructs (wild type, dominant negative or constitutively active) and plated on different ECM proteins used as substrate (fibronectin, collagen IV, collagen I, and laminin) or poly-l-lysine as control. Morphological changes of the VSMC were detected by fluorescence confocal microscopy and total internal reflection fluorescence (TIRF) microscopy, and were independently verified using adhesion assays and Western blot analysis. Our results showed that the ECM has an important role in cell spreading, adhesion and morphology with a direct effect on modulating RhoA signaling. RhoA activity significantly affected the stress fibers and focal adhesions reorganization, but in a context imposed by the ECM. Thus, RhoA activity modulation in VSMC induced an increased activation of stress fibers and FA formation at 5 h, while a significant inhibition was recorded at 24 h after plating on the different ECM. Our findings provide biophysical evidence that ECM modulates VSMC response to mechanical stimuli inducing intracellular biochemical signaling involved in cellular adaptation to the local microenvironment.  相似文献   

16.
Altered extracellular matrix (ECM) deposition contributing to airway wall remodeling is an important feature of asthma and chronic obstructive pulmonary disease (COPD). The molecular mechanisms of this process are poorly understood. One of the key pathological features of these diseases is thickening of airway walls. This thickening is largely to the result of airway smooth muscle (ASM) cell hyperplasia and hypertrophy as well as increased deposition of ECM proteins such as collagens, elastin, laminin, and proteoglycans around the smooth muscle. Many growth factors and cytokines, including fibroblast growth factor (FGF)-1, FGF-2, and transforming growth factor (TGF)-α1, that are released from the airway wall have the potential to contribute to airway remodeling, revealed by enhanced ASM proliferation and increased ECM protein deposition. TGF-α1 and FGF-1 stimulate mRNA expression of collagen I and III in ASM cells, suggesting their role in the deposition of extracellular matrix proteins by ASM cells in the airways of patients with chronic lung diseases. Focus is now on the bidirectional relationship between ASM cells and the ECM. In addition to increased synthesis of ECM proteins, ASM cells can be involved in downregulation of matrix metalloproteinases (MMPs) and upregulation of tissue inhibitors of metalloproteinases (TIMPs), thus eventually contributing to the alteration in ECM. In turn, ECM proteins promote the survival, proliferation, cytokine synthesis, migration, and contraction of human airway smooth muscle cells. Thus, the intertwined relationship of ASM and ECM and their response to stimuli such as chronic inflammation in diseases such as asthma and COPD contribute to the remodeling seen in airways of patients with these diseases.  相似文献   

17.
In microvascular vessels, endothelial cells are aligned longitudinally whereas several components of the extracellular matrix (ECM) are organized circumferentially. While current three-dimensional (3D) in vitro models for microvasculature have allowed the study of ECM-regulated tubulogenesis, they have limited control over topographical cues presented by the ECM and impart a barrier for the high-resolution and dynamic study of multicellular and extracellular organization. Here we exploit a 3D fibrin microfiber scaffold to develop a novel in vitro model of the microvasculature that recapitulates endothelial alignment and ECM deposition in a setting that also allows the sequential co-culture of mural cells. We show that the microfibers'' nanotopography induces longitudinal adhesion and alignment of endothelial colony-forming cells (ECFCs), and that these deposit circumferentially organized ECM. We found that ECM wrapping on the microfibers is independent of ECFCs'' actin and microtubule organization, but it is dependent on the curvature of the microfiber. Microfibers with smaller diameters (100–400 µm) guided circumferential ECM deposition, whereas microfibers with larger diameters (450 µm) failed to support wrapping ECM. Finally, we demonstrate that vascular smooth muscle cells attached on ECFC-seeded microfibers, depositing collagen I and elastin. Collectively, we establish a novel in vitro model for the sequential control and study of microvasculature development and reveal the unprecedented role of the endothelium in organized ECM deposition regulated by the microfiber curvature.  相似文献   

18.
Enterohaemorrhagic Escherichia coli (EHEC) are a subgroup of Shiga toxin-producing E. coli that cause gastrointestinal disease with the potential for life-threatening sequelae. Cattle serve as the natural reservoir for EHEC and outbreaks occur sporadically as a result of contaminated beef and other farming products. While certain EHEC virulence mechanisms have been extensively studied, the factors that mediate host colonization are poorly defined. Previously, we identified four proteins (EhaA,B,C,D) from the prototypic EHEC strain EDL933 that belong to the autotransporter (AT) family. Here we characterize the EhaB AT protein. EhaB was shown to be located at the cell surface and overexpression in E. coli K-12 resulted in significant biofilm formation under continuous flow conditions. Overexpression of EhaB in E. coli K12 and EDL933 backgrounds also promoted adhesion to the extracellular matrix proteins collagen I and laminin. An EhaB-specific antibody revealed that EhaB is expressed in E. coli EDL933 following in vitro growth. EhaB also cross-reacted with serum IgA from cattle challenged with E. coli O157:H7, indicating that EhaB is expressed in vivo and elicits a host IgA immune response.  相似文献   

19.
Fibulin-1 (FBLN-1) is a secreted glycoprotein that is associated with extracellular matrix (ECM) formation and rebuilding. Abnormal and exaggerated deposition of ECM proteins is a hallmark of many fibrotic diseases, such as chronic obstructive pulmonary disease (COPD) where small airway fibrosis occurs. The aim of this study was to investigate the regulation of FBLN-1 by transforming growth factor beta 1 (TGF-β1) (a pro-fibrotic stimulus) in primary human airway smooth muscle (ASM) cells from volunteers with and without COPD. Human ASM cells were seeded at a density of 1×104 cells/cm2, and stimulated with or without TGF-β1 (10 ng/ml) for 72 hours before FBLN-1 deposition and soluble FBLN-1 were measured. Fold change in FBLN-1 mRNA was measured at 4, 8, 24, 48, 72 hours. In some experiments, cycloheximide (0.5 µg/ml) was used to assess the regulation of FBLN-1 production. TGF-β1 decreased the amount of soluble FBLN-1 both from COPD and non-COPD ASM cells. In contrast, the deposition of FBLN-1 into the ECM was increased in ASM cells obtained from both groups. TGF-β1 did not increase FBLN-1 gene expression at any of the time points. There were no differences in the TGF-β1 induced FBLN-1 levels between cells from people with or without COPD. Cycloheximide treatment, which inhibits protein synthesis, decreased both the constitutive release of soluble FBLN-1, and TGF-β1 induced ECM FBLN-1 deposition. Furthermore, in cycloheximide treated cells addition of soluble FBLN-1 resulted in incorporation of FBLN-1 into the ECM. Therefore the increased deposition of FBLN-1 by ASM cells into the ECM following treatment with TGF-β1 is likely due to incorporation of soluble FBLN-1 rather than de-novo synthesis.  相似文献   

20.
Trimeric autotransporter proteins (TAAs) are important virulence factors of many Gram-negative bacterial pathogens. A common feature of most TAAs is the ability to mediate adherence to eukaryotic cells or extracellular matrix (ECM) proteins via a cell surface-exposed passenger domain. Here we describe the characterization of EhaG, a TAA identified from enterohemorrhagic Escherichia coli (EHEC) O157:H7. EhaG is a positional orthologue of the recently characterized UpaG TAA from uropathogenic E. coli (UPEC). Similarly to UpaG, EhaG localized at the bacterial cell surface and promoted cell aggregation, biofilm formation, and adherence to a range of ECM proteins. However, the two orthologues display differential cellular binding: EhaG mediates specific adhesion to colorectal epithelial cells while UpaG promotes specific binding to bladder epithelial cells. The EhaG and UpaG TAAs contain extensive sequence divergence in their respective passenger domains that could account for these differences. Indeed, sequence analyses of UpaG and EhaG homologues from several E. coli genomes revealed grouping of the proteins in clades almost exclusively represented by distinct E. coli pathotypes. The expression of EhaG (in EHEC) and UpaG (in UPEC) was also investigated and shown to be significantly enhanced in an hns isogenic mutant, suggesting that H-NS acts as a negative regulator of both TAAs. Thus, while the EhaG and UpaG TAAs contain some conserved binding and regulatory features, they also possess important differences that correlate with the distinct pathogenic lifestyles of EHEC and UPEC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号