首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are four isoforms of the α subunit (α1–4) and three isoforms of the β subunit (β1–3) of Na,K-ATPase, with distinct tissue-specific distribution and physiological functions. α2 is thought to play a key role in cardiac and smooth muscle contraction and be an important target of cardiac glycosides. An α2-selective cardiac glycoside could provide important insights into physiological and pharmacological properties of α2. The isoform selectivity of a large number of cardiac glycosides has been assessed utilizing α1β1, α2β1, and α3β1 isoforms of human Na,K-ATPase expressed in Pichia pastoris and the purified detergent-soluble isoform proteins. Binding affinities of the digitalis glycosides, digoxin, β-methyl digoxin, and digitoxin show moderate but highly significant selectivity (up to 4-fold) for α2/α3 over α1 (KD α1 > α2 = α3). By contrast, ouabain shows moderate selectivity (≈2.5-fold) for α1 over α2 (KD α1 ≤ α3 < α2). Binding affinities for the three isoforms of digoxigenin, digitoxigenin, and all other aglycones tested are indistinguishable (KD α1 = α3 = α2), showing that the sugar determines isoform selectivity. Selectivity patterns for inhibition of Na,K-ATPase activity of the purified isoform proteins are consistent with binding selectivities, modified somewhat by different affinities of K+ ions for antagonizing cardiac glycoside binding on the three isoforms. The mechanistic insight on the role of the sugars is strongly supported by a recent structure of Na,K-ATPase with bound ouabain, which implies that aglycones of cardiac glycosides cannot discriminate between isoforms. In conclusion, several digitalis glycosides, but not ouabain, are moderately α2-selective. This supports a major role of α2 in cardiac contraction and cardiotonic effects of digitalis glycosides.  相似文献   

2.
3.
We identified Certhrax, the first anthrax-like mART toxin from the pathogenic G9241 strain of Bacillus cereus. Certhrax shares 31% sequence identity with anthrax lethal factor from Bacillus anthracis; however, we have shown that the toxicity of Certhrax resides in the mART domain, whereas anthrax uses a metalloprotease mechanism. Like anthrax lethal factor, Certhrax was found to require protective antigen for host cell entry. This two-domain enzyme was shown to be 60-fold more toxic to mammalian cells than anthrax lethal factor. Certhrax localizes to distinct regions within mouse RAW264.7 cells by 10 min postinfection and is extranuclear in its cellular location. Substitution of catalytic residues shows that the mART function is responsible for the toxicity, and it binds NAD+ with high affinity (KD = 52.3 ± 12.2 μm). We report the 2.2 Å Certhrax structure, highlighting its structural similarities and differences with anthrax lethal factor. We also determined the crystal structures of two good inhibitors (P6 (KD = 1.7 ± 0.2 μm, Ki = 1.8 ± 0.4 μm) and PJ34 (KD = 5.8 ± 2.6 μm, Ki = 9.6 ± 0.3 μm)) in complex with Certhrax. As with other toxins in this family, the phosphate-nicotinamide loop moves toward the NAD+ binding site with bound inhibitor. These results indicate that Certhrax may be important in the pathogenesis of B. cereus.  相似文献   

4.
Breast cancer is the most common non-cutaneous malignancy in American women, and better preventative strategies are needed. Epidemiological and laboratory studies point to vitamin D3 as a promising chemopreventative agent for breast cancer. Vitamin D3 metabolites induce anti-proliferative effects in breast cancer cells in vitro and in vivo, but few studies have investigated their effects in normal mammary epithelial cells. We hypothesized that 1,25(OH)2D3, the metabolically active form of vitamin D3, is growth suppressive in normal mouse mammary epithelial cells. In addition, we have previously established a role for the cytokine interleukin-1 alpha (IL1α) in the anti-proliferative effects of 1,25(OH)2D3 in normal prostate cells, and so we hypothesized that IL1α is involved in the 1,25(OH)2D3 response in mammary cells. Evaluation of cell viability, clonogenicity, senescence, and induction of cell cycle regulators p21 and p27 supported an anti-proliferative role for 1,25(OH)2D3 in mammary epithelial cells. Furthermore, 1,25(OH)2D3 increased the intracellular expression of IL1α, which was necessary for the anti-proliferative effects of 1,25(OH)2D3 in mammary cells. Together, these findings support the chemopreventative potential of vitamin D3 in the mammary gland and present a role for IL1α in regulation of mammary cell proliferation by 1,25(OH)2D3.  相似文献   

5.
6.
Abundant evidences demonstrate that deuterium oxide (D2O) modulates various secretory activities, but specific mechanisms remain unclear. Using AtT20 cells, we examined effects of D2O on physiological processes underlying β-endorphin release. Immunofluorescent confocal microscopy demonstrated that 90% D2O buffer increased the amount of actin filament in cell somas and decreased it in cell processes, whereas β-tubulin was not affected. Ca2+ imaging demonstrated that high-K+-induced Ca2+ influx was not affected during D2O treatment, but was completely inhibited upon D2O washout. The H2O/D2O replacement in internal solutions of patch electrodes reduced Ca2+ currents evoked by depolarizing voltage steps, whereas additional extracellular H2O/D2O replacement recovered the currents, suggesting that D2O gradient across plasma membrane is critical for Ca2+ channel kinetics. Radioimmunoassay of high-K+-induced β-endorphin release demonstrated an increase during D2O treatment and a decrease upon D2O washout. These results demonstrate that the H2O-to-D2O-induced increase in β-endorphin release corresponded with the redistribution of actin, and the D2O-to-H2O-induced decrease in β-endorphin release corresponded with the inhibition of voltage-sensitive Ca2+ channels. The computer modeling suggests that the differences in the zero-point vibrational energy between protonated and deuterated amino acids produce an asymmetric distribution of these amino acids upon D2O washout and this causes the dysfunction of Ca2+ channels.  相似文献   

7.
Interaction of a given G protein-coupled receptor to multiple different G proteins is a widespread phenomenon. For instance, β2-adrenoceptor (β2-AR) couples dually to Gs and Gi proteins. Previous studies have shown that cAMP-dependent protein kinase (PKA)-mediated phosphorylation of β2-AR causes a switch in receptor coupling from Gs to Gi. More recent studies have demonstrated that phosphorylation of β2-AR by G protein-coupled receptor kinases, particularly GRK2, markedly enhances the Gi coupling. We have previously shown that although most β2-AR agonists cause both Gs and Gi activation, (R,R′)-fenoterol preferentially activates β2-AR-Gs signaling. However, the structural basis for this functional selectivity remains elusive. Here, using docking simulation and site-directed mutagenesis, we defined Tyr-308 as the key amino acid residue on β2-AR essential for Gs-biased signaling. Following stimulation with a β2-AR-Gs-biased agonist (R,R′)-4′-aminofenoterol, the Gi disruptor pertussis toxin produced no effects on the receptor-mediated ERK phosphorylation in HEK293 cells nor on the contractile response in cardiomyocytes expressing the wild-type β2-AR. Interestingly, Y308F substitution on β2-AR enabled (R,R′)-4′-aminofenoterol to activate Gi and to produce these responses in a pertussis toxin-sensitive manner without altering β2-AR phosphorylation by PKA or G protein-coupled receptor kinases. These results indicate that, in addition to the phosphorylation status, the intrinsic structural feature of β2-AR plays a crucial role in the receptor coupling selectivity to G proteins. We conclude that specific interactions between the ligand and the Tyr-308 residue of β2-AR stabilize receptor conformations favoring the receptor-Gs protein coupling and subsequently result in Gs-biased agonism.  相似文献   

8.
ΔNp63α, a proto-oncogene, is up-regulated in non-melanoma skin cancers and directly regulates the expression of both Vitamin D receptor (VDR) and phosphatase and tensin homologue deleted on chromosome ten (PTEN). Since ΔNp63α has been shown to inhibit cell invasion via regulation of VDR, we wanted to determine whether dietary Vitamin D3 protected against UVB induced tumor formation in SKH-1 mice, a model for squamous cell carcinoma development. We examined whether there was a correlation between dietary Vitamin D3 and ΔNp63α, VDR or PTEN expression in vivo in SKH-1 mice chronically exposed to UVB radiation and fed chow containing increasing concentrations of dietary Vitamin D3. Although we observed differential effects of the Vitamin D3 diet on ΔNp63α and VDR expression in chronically irradiated normal mouse skin as well as UVB induced tumors, Vitamin D3 had little effect on PTEN expression in vivo. While low-grade papillomas in mice exposed to UV and fed normal chow displayed increased levels of ΔNp63α, expression of both ΔNp63α and VDR was reduced in invasive tumors. Interestingly, in mice fed high Vitamin D3 chow, elevated levels of ΔNp63α were observed in both local and invasive tumors but not in normal skin suggesting that oral supplementation with Vitamin D3 may increase the proliferative potential of skin tumors by increasing ΔNp63α levels.  相似文献   

9.
The amiloride-sensitive epithelial Nachannel (ENaC) is a heteromultimeric channel made of three αβγ subunits. The structures involved in the ion permeation pathway have only been partially identified, and the respective contributions of each subunit in the formation of the conduction pore has not yet been established. Using a site-directed mutagenesis approach, we have identified in a short segment preceding the second membrane-spanning domain (the pre-M2 segment) amino acid residues involved in ion permeation and critical for channel block by amiloride. Cys substitutions of Gly residues in β and γ subunits at position βG525 and γG537 increased the apparent inhibitory constant (K i) for amiloride by >1,000-fold and decreased channel unitary current without affecting ion selectivity. The corresponding mutation S583 to C in the α subunit increased amiloride K i by 20-fold, without changing channel conducting properties. Coexpression of these mutated αβγ subunits resulted in a nonconducting channel expressed at the cell surface. Finally, these Cys substitutions increased channel affinity for block by externalZn2+ ions, in particular the αS583C mutant showing a K i for Zn2+of 29 μM. Mutations of residues αW582L or βG522D also increased amiloride K i, the later mutation generating a Ca2+blocking site located 15% within the membrane electric field. These experiments provide strong evidence that αβγ ENaCs are pore-forming subunits involved in ion permeation through the channel. The pre-M2 segment of αβγ subunits may form a pore loop structure at the extracellular face of the channel, where amiloride binds within the channel lumen. We propose that amiloride interacts with Na+ions at an external Na+binding site preventing ion permeation through the channel pore.  相似文献   

10.

Background

Alpha synuclein (α-Syn) is the main component of Lewy bodies which are associated with several neurodegenerative diseases such as Parkinson''s disease. While the glycation with D-glucose that results in α-Syn misfold and aggregation has been studied, the effects of glycation with D-ribose on α-Syn have not been investigated.

Methodology/Principal Findings

Here, we show that ribosylation induces α-Syn misfolding and generates advanced glycation end products (AGEs) which form protein molten globules with high cytotoxcity. Results from native- and SDS-PAGE showed that D-ribose reacted rapidly with α-Syn, leading to dimerization and polymerization. Trypsin digestion and sequencing analysis revealed that during ribosylation the lysinyl residues (K58, K60, K80, K96, K97 and K102) in the C-terminal region reacted more quickly with D-ribose than those of the N-terminal region. Using Western blotting, AGEs resulting from the glycation of α-Syn were observed within 24 h in the presence of D-ribose, but were not observed in the presence of D-glucose. Changes in fluorescence at 410 nm demonstrated again that AGEs were formed during early ribosylation. Changes in the secondary structure of ribosylated α-Syn were not clearly detected by CD spectrometry in studies on protein conformation. However, intrinsic fluorescence at 310 nm decreased markedly in the presence of D-ribose. Observations with atomic force microscopy showed that the surface morphology of glycated α-Syn looked like globular aggregates. thioflavin T (ThT) fluorescence increased during α-Syn incubation regardless of ribosylation. As incubation time increased, ribosylation of α-Syn resulted in a blue-shift (∼100 nm) in the fluorescence of ANS. The light scattering intensity of ribosylated α-Syn was not markedly different from native α-Syn, suggesting that ribosylated α-Syn is present as molten protein globules. Ribosylated products had a high cytotoxicity to SH-SY5Y cells, leading to LDH release and increase in the levels of reactive oxygen species (ROS).

Conclusions/Significance

α-Syn is rapidly glycated in the presence of D-ribose generating molten globule-like aggregations which cause cell oxidative stress and result in high cytotoxicity.  相似文献   

11.
Most neurons co-express two catalytic isoforms of Na,K-ATPase, the ubiquitous α1, and the more selectively expressed α3. Although neurological syndromes are associated with α3 mutations, the specific role of this isoform is not completely understood. Here, we used electrophysiological and Na+ imaging techniques to study the role of α3 in central nervous system neurons expressing both isoforms. Under basal conditions, selective inhibition of α3 using a low concentration of the cardiac glycoside, ouabain, resulted in a modest increase in intracellular Na+ concentration ([Na+]i) accompanied by membrane potential depolarization. When neurons were challenged with a large rapid increase in [Na+]i, similar to what could be expected following suprathreshold neuronal activity, selective inhibition of α3 almost completely abolished the capacity to restore [Na+]i in soma and dendrite. Recordings of Na,K-ATPase specific current supported the notion that when [Na+]i is elevated in the neuron, α3 is the predominant isoform responsible for rapid extrusion of Na+. Low concentrations of ouabain were also found to disrupt cortical network oscillations, providing further support for the importance of α3 function in the central nervous system. The α isoforms express a well conserved protein kinase A consensus site, which is structurally associated with an Na+ binding site. Following activation of protein kinase A, both the α3-dependent current and restoration of dendritic [Na+]i were significantly attenuated, indicating that α3 is a target for phosphorylation and may participate in short term regulation of neuronal function.  相似文献   

12.
G-protein signaling modulators (GPSM) play diverse functional roles through their interaction with G-protein subunits. AGS3 (GPSM1) contains four G-protein regulatory motifs (GPR) that directly bind Gαi free of Gβγ providing an unusual scaffold for the “G-switch” and signaling complexes, but the mechanism by which signals track into this scaffold are not well understood. We report the regulation of the AGS3·Gαi signaling module by a cell surface, seven-transmembrane receptor. AGS3 and Gαi1 tagged with Renilla luciferase or yellow fluorescent protein expressed in mammalian cells exhibited saturable, specific bioluminescence resonance energy transfer indicating complex formation in the cell. Activation of α2-adrenergic receptors or μ-opioid receptors reduced AGS3-RLuc·Gαi1-YFP energy transfer by over 30%. The agonist-mediated effects were inhibited by pertussis toxin and co-expression of RGS4, but were not altered by Gβγ sequestration with the carboxyl terminus of GRK2. Gαi-dependent and agonist-sensitive bioluminescence resonance energy transfer was also observed between AGS3 and cell-surface receptors typically coupled to Gαi and/or Gαo indicating that AGS3 is part of a larger signaling complex. Upon receptor activation, AGS3 reversibly dissociates from this complex at the cell cortex. Receptor coupling to both Gαβγ and GPR-Gαi offer additional flexibility for systems to respond and adapt to challenges and orchestrate complex behaviors.  相似文献   

13.
Water movement across plant tissues occurs along two paths: from cell-to-cell and in the apoplasm. We examined the contribution of these two paths to the kinetics of water transport across the parenchymatous midrib tissue of the maize (Zea mays L.) leaf. Water relations parameters (hydraulic conductivity, Lp; cell elastic coefficient, ε; half-time of water exchange for individual cells, T½) of individual parenchyma cells determined with the pressure probe varied in different regions of the midrib. In the adaxial region, Lp = (0.3 ± 0.3)·10−5 centimeters per second per bar, ε = 103 ± 72 bar, and T½ = 7.9 ± 4.8 seconds (n = seven cells); whereas, in the abaxial region, Lp = (2.5 ± 0.9)·10−5 centimeters per second per bar, ε = 41 ± 9 bar, and T½ = 1.3 ± 0.5 seconds (n = 7). This zonal variation in Lp, ε, and T½ indicates that tissue inhomogeneities exist for these parameters and could have an effect on the kinetics of water transport across the tissue.

The diffusivity of the tissue to water (Dt) obtained from the sorption kinetics of rehydrating tissue was Dt = (1.1 ± 0.4)·10−6 square centimeters per second (n = 6). The diffusivity of the cell-to-cell path (Dc) calculated from pressure probe data ranged from Dc = 0.4·10−6 square centimeters per second in the adaxial region to Dc = 6.1·10−6 square centimeters per second in the abaxial region of the tissue. Dt Dc suggests substantial cell-to-cell transport of water occurred during rehydration. However, the tissue diffusivity calculated from the kinetics of pressure-propagation across the tissue (Dt′) was Dt′ = (33.1 ± 8.0)·10−6 square centimeters per second (n = 8) and more than 1 order of magnitude larger than Dt. Also, the hydraulic conductance of the midrib tissue (Lpm per square centimeter of surface) estimated from pressure-induced flows across several parenchyma cell layers was Lpm = (8.9 ± 5.6)·10−5 centimeters per second per bar (n = 5) and much larger than Lp.

These results indicate that the preferential path for water transport across the midrib tissue depends on the nature of the driving forces present within the tissue. Under osmotic conditions, the cell-to-cell path dominates, whereas under hydrostatic conditions water moves primarily in the apoplasm.

  相似文献   

14.

Purpose

To develop a robust T magnetic resonance imaging (MRI) sequence for assessment of myocardial disease in humans.

Materials and Methods

We developed a breath-held T mapping method using a single-shot, T-prepared balanced steady-state free-precession (bSSFP) sequence. The magnetization trajectory was simulated to identify sources of T error. To limit motion artifacts, an optical flow-based image registration method was used to align T images. The reproducibility and accuracy of these methods was assessed in phantoms and 10 healthy subjects. Results are shown in 1 patient with pre-ventricular contractions (PVCs), 1 patient with chronic myocardial infarction (MI) and 2 patients with hypertrophic cardiomyopathy (HCM).

Results

In phantoms, the mean bias was 1.0 ± 2.7 msec (100 msec phantom) and 0.9 ± 0.9 msec (60 msec phantom) at 60 bpm and 2.2 ± 3.2 msec (100 msec) and 1.4 ± 0.9 msec (60 msec) at 80 bpm. The coefficient of variation (COV) was 2.2 (100 msec) and 1.3 (60 msec) at 60 bpm and 2.6 (100 msec) and 1.4 (60 msec) at 80 bpm. Motion correction improved the alignment of T images in subjects, as determined by the increase in Dice Score Coefficient (DSC) from 0.76 to 0.88. T reproducibility was high (COV < 0.05, intra-class correlation coefficient (ICC) = 0.85–0.97). Mean myocardial T value in healthy subjects was 63.5 ± 4.6 msec. There was good correspondence between late-gadolinium enhanced (LGE) MRI and increased T relaxation times in patients.

Conclusion

Single-shot, motion corrected, spin echo, spin lock MRI permits 2D T mapping in a breath-hold with good accuracy and precision.  相似文献   

15.
The active metabolite of vitamin D such as 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) is a well-known key regulatory factor in bone metabolism. However, little is known about the potential of vitamin D as an odontogenic inducer in human dental pulp cells (HDPCs) in vitro. The purpose of this study was to evaluate the effect of vitamin D3 metabolite, 1α,25(OH)2D3, on odontoblastic differentiation in HDPCs. HDPCs extracted from maxillary supernumerary incisors and third molars were directly cultured with 1α,25(OH)2D3 in the absence of differentiation-inducing factors. Treatment of HDPCs with 1α,25(OH)2D3 at a concentration of 10 nM or 100 nM significantly upregulated the expression of dentin sialophosphoprotein (DSPP) and dentin matrix protein1 (DMP1), the odontogenesis-related genes. Also, 1α,25(OH)2D3 enhanced the alkaline phosphatase (ALP) activity and mineralization in HDPCs. In addition, 1α,25(OH)2D3 induced activation of extracellular signal-regulated kinases (ERKs), whereas the ERK inhibitor U0126 ameliorated the upregulation of DSPP and DMP1 and reduced the mineralization enhanced by 1α,25(OH)2D3. These results demonstrated that 1α,25(OH)2D3 promoted odontoblastic differentiation of HDPCs via modulating ERK activation.  相似文献   

16.
The stationary volumetric elastic modulus (εs) of the leaf cells of three seagrasses (Halophila ovalis (R.Br.) Hook, Zostera capricorni Aschers, and Posidonia australis Hook f.) was evaluated from estimates of εs plus intracellular osmotic pressure (εs + IIi) and IIi. The estimates of (εs + IIi) were made using a linear displacement transducer to measure very small changes in thickness of leaf tissue produced by changes in external osmotic pressure (IIo). εs increases with increasing turgor pressure in each of the species and the maximum values of εs are: 22 megapascals for H. ovalis, 17 megapascals for Z. capricorni, and 51 megapascals for P. australis.  相似文献   

17.
β-Galactosidase-catalysed hydrolysis of β-d-galactopyranosyl azide   总被引:3,自引:3,他引:0  
1. β-d-Galactopyranosyl azide is hydrolysed by the β-galactosidase of Escherichia coli to galactose and azide ion at a mechanistically significant rate. 2. Methyl 1-thio-β-d-galactopyranoside is a competitive inhibitor of the hydrolysis of the azide and of o-nitrophenyl β-d-galactopyranoside with Ki 1.8mm. 3. β-Galactosidase can thus hydrolyse a range of substrates of general structure β-d-galactopyranosyl-X(Y), where the atom X has a lone pair of electrons on which the enzyme may act as a Lewis or Brønsted acid, but in which the length of the bond cleaved varies significantly, which is inconsistent with the orbital steering hypothesis.  相似文献   

18.
19.
BackgroundStent-assisted coil embolization (SACE) plays an important role in the treatment of intracranial aneurysms. The purpose of this study was to investigate geometrical changes caused by closed-cell design stents in bifurcation and sidewall aneurysms.Methods31 patients with 34 aneurysms underwent SACE with closed-cell design stents. Inflow angle α, determined by aneurysm neck and afferent vessel, and angle between afferent and efferent vessel close to (δ1), respectively, more remote from the aneurysm neck (δ2) were graphically determined in 2D angiography projections.ResultsStent assisted coiling resulted in a significant increase of all three angles from a mean value (±SEM) of α = 119° (±6.5°) pretreatment to 130° (±6.6°) posttreatment (P ≤ .001), δ1 = 129° (±6.4°) to 139° (±6.1°), (P ≤ .001) and δ2 = 115° (±8.4°) to 126° (±7.5°), (P ≤ .01). Angular change of δ1 in AcomA aneurysms was significant greater compared to sidewall aneurysms (26°±4.9° versus 8°± 2.3°, P ≤ .05). The initial angle of δ1 and δ2 revealed a significantly inverse relationship to the angle increase (δ1: r = -0.41, P ≤ .05 and δ2: r = -0.47, P ≤ .01). Moreover, angle δ1 was significantly higher in unruptured compared to ruptured aneurysms (135°±7.1° versus 103°±10.8°, P ≤ .05).ConclusionStent deployment modulates the geometry of the aneurysm-vessel complex, which may lead to favorable hemodynamic changes more similar to unruptured than to ruptured aneurysms. Our findings also suggest that the more acute-angled aneurysm-vessel anatomy, the larger the angular change. Further studies are needed to investigate whether these changes improve the clinical outcome.  相似文献   

20.
The cytoplasm and the vacuole were isolated from internodal cells of Chara corallina by using the intracellular perfusion technique, and their buffer capacities (βi) were determined from the titration curves. The pH of the isolated vacuolar sap was 5.19 ± 0.029 (mean ± standard error). At this pH, βi was minimal and amounted to 0.933 ± 0.11 millimoles H+/pH unit/liter vacuolar sap. The pH of isolated cytoplasm was 7.22 ± 0.028. βi was minimal in this pH region and amounted to 14.2 ± 0.80 millimoles H+/pH unit/liter cytoplasm. When 1% (volume/volume) Triton X-100 was added to the cytoplasmic solution to permeabilize the subcellular organelles, the cytoplasmic pH increased to 7.32 ± 0.026, where βi was 20.35 ± 2.66 millimoles H+/pH unit/liter cytoplasm. This shows that alkaline subcellular compartments exist in the cytoplasm and also that the cytoplasmic pH before adding Triton X-100 may represent the cytosolic pH. These data indicate that the pH values of the cytoplasm and the vacuole are regulated at the values where the βi values are minimal. This suggests that ATP- and inorganic pyrophosphate-dependent H+ pumps in the plasma membrane and the tonoplast could efficiently regulate the pH of both cytoplasm and vacuole in Chara internodal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号