首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Human coding variants in scavenger receptor class B member 1 (SR-BI; gene name SCARB1) have recently been identified as being associated with plasma levels of HDL cholesterol. However, a link between coding variants and atherosclerosis has not yet been established. In this study we set out to examine the impact of a SR-BI coding variant in vivo. A mouse model with a coding variant in SR-BI (I179N), identified through a mutagenesis screen, was crossed with Ldlr ?/? mice, and these mice were maintained on a Western-type diet to promote atherosclerosis. Mice showed 56 and 125 % increased atherosclerosis in female and male Ldlr ?/? Scarb1 I179N mice, respectively, when compared to gender-matched Ldlr ?/? control mice. As expected, HDL cholesteryl ester uptake was impaired in Ldlr ?/? Scarb1 I179N mice compared to Ldlr / control mice, with a net effect of increased small and very small LDL cholesterol in Ldlr ?/? Scarb1 I179N mice being the most probable cause of the observed increased atherosclerosis. Our data show that non-null coding variants in SR-BI can have a large significant impact on atherosclerosis, even if plasma lipid levels are not dramatically affected, and that human mutations in other candidate lipid genes could significantly impact atherosclerosis.  相似文献   

2.
This study examines the effect of mutation of the low-density lipoprotein receptor (LDLR) on cholesterol metabolism, and especially lipoprotein-derived cholesteryl ester uptake, in murine ovarian granulosa cells. Although the tests were conducted on cells prepared by two different procedures, the results are similar. Deletion of LDLR function did not noticeably affect key enzymes of the steroidogenic pathway or affect progestin production and secretion in granulosa cells. No change was found in expression of LDL-related protein (LRP). These data suggested that cholesterol turnover in cells from the knockout animals is within normal limits and that the cells are not stressed to acquire more cholesterol. Both biochemical and morphological data indicate that unstimulated granulosa cells from LDLR−/− mice are nonetheless programmed to take in double the amount of lipoprotein-derived cholesteryl ester (via the selective cholesteryl ester uptake pathway) and to process (hydrolyze, re-esterify, or utilize) more than twofold the cholesteryl ester processed by cells from wildtype (LDLR+/+) animals. Bt2cAMP stimulation of the murine granulosa cells increases the mass of cholesteryl ester taken up by the selective pathway by an additional 38%. To determine to what extent this increase is related to high-density lipoprotein (HDL) scavenger receptor protein (SR-BI) or caveolin function, Western blots and immunohistochemical studies were performed under a variety of conditions. SR-BI levels are found to be low in unstimulated cells of both LDLR+/+ and LDLR−/− animals, but highly expressed (∼20-fold increase over basal levels) in stimulated (Bt2cAMP) cells of both animal models. Thus, the functional relationship between selective cholesteryl ester uptake and SR-BI receptor protein is not as tight as in previously reported studies, suggesting a requirement for other tissue factors. Caveolin expression did not change under any of the conditions tested and appears not to be functionally involved in this process. J. Cell. Physiol. 180:190–202, 1999. Published 1999 Wiley-Liss, Inc.  相似文献   

3.
4.
Low density lipoprotein (LDL)-carried cholesterol is a primary substrate for steroid hormone synthesis by luteinized human granulosa cells. Chorionic gonadotropin and 8-bromo-cAMP both increase LDL receptor levels in granulosa cells by stimulating accumulation of the receptor mRNA. LDL and 25-hydroxycholesterol reduce LDL receptor expression, but this suppressive effect is partially overcome by 8-bromo-cAMP. Using fusion gene constructs containing the LDL receptor gene promoter transfected into JEG-3 cells, a cyclic AMP responsive enhancer could not be identified in the LDL receptor gene upstream promoter in transfection studies. We suggest that the LDL receptor gene in human steroidogenic cells is under negative control by a sterol effector, but that a cyclic AMP triggered process overcomes, to some extent, the sterol-mediated suppression. The detailed mechanisms by which sterol and cyclic AMP modulate LDL receptor gene expression remain to be elucidated.  相似文献   

5.
During luteinization, circulating high-density lipoproteins supply cholesterol to ovarian cells via the scavenger receptor-B1 (SCARB1). In the mouse, SCARB1 is expressed in cytoplasm and periphery of theca, granulosa, and cumulus cells of developing follicles and increases dramatically during formation of corpora lutea. Blockade of ovulation in mice with meloxicam, a prostaglandin synthase-2 inhibitor, resulted in follicles with oocytes entrapped in unexpanded cumulus complexes and with granulosa cells with luteinized morphology and expressing SCARB1 characteristic of luteinization. Mice bearing null mutation of the Scarb1 gene (SCARB1−/−) had ovaries with small corpora lutea, large follicles with hypertrophied theca cells, and follicular cysts with blood-filled cavities. Plasma progesterone concentrations were decreased 50% in mice with Scarb1 gene disruption. When SCARB1−/− mice were treated with a combination of mevinolin [an inhibitor of 3-hydroxy-3-methylglutaryl CoA reductase (HMGR)] and chloroquine (an inhibitor of lysosomal processing of low-density lipoproteins), serum progesterone was further reduced. HMGR protein expression increased in SCARB1−/− mice, independent of treatment. It was concluded that theca, granulosa, and cumulus cells express SCARB1 during follicle development, but maximum expression depends on luteinization. Knockout of SCARB1−/− leads to ovarian pathology and suboptimal luteal steroidogenesis. Therefore, SCARB1 expression is essential for maintaining normal ovarian cholesterol homeostasis and luteal steroid synthesis.  相似文献   

6.
Swine granulosa cells respond to follicle-stimulating hormone (FSH) and the insulin-like growth factor, IGF-I (somatomedin C), with synergistic increases in progesterone production. This facilitative interaction was not attributable to decreased catabolism of progesterone to 20 alpha-hydroxypregn-4-en-3-one, but rather to enhanced pregnenolone biosynthesis observed in response to provision of 25-hydroxycholesterol as exogenous sterol substrate. The latter evidence of increased functional cholesterol side-chain cleavage activity was accompanied by augmented incorporation of [35S]methionine into specific immunoisolated components of the cholesterol side-chain cleavage apparatus, viz. cytochrome P-450scc and adrenodoxin. The synergism between FSH and IGF-I could be sustained over 4 days of serum-free monolayer culture. Under these conditions, compactin, a competitive inhibitor of de novo endogenous cholesterol biosynthesis, suppressed stimulated progesterone production by approximately equal to 50%. However, synergism was not expressed at the levels of [14C]acetate incorporation into nonsaponifiable lipids or endogenous 3-hydroxy-3-methylglutaryl coenzyme A reductase activity per se. Conversely, exogenous sterol substrate provided in the form of low-density lipoprotein (LDL)-borne cholesterol increased the absolute magnitude of the combined actions of IGF-I and FSH by 3-6-fold. This increase in steroidogenesis in response to LDL was associated with enhanced surface binding, internalization, and degradation of [125I] iodo-LDL. In addition, when granulosa cells were incubated with [3H]cholesteryl linoleate-labeled LDL, FSH and IGF-I synergistically augmented the intracellular accumulation of [3H]cholesterol and [3H]cholesteryl ester and the production of [3H]progesterone. Moreover, FSH and IGF-I coordinately increased the total mass of free and esterified cholesterol contained in granulosa cells. We conclude that FSH and IGF-I can augment absolute rates of progestin biosynthesis by granulosa cells by activating dual mechanisms: stimulation of functional cholesterol side chain cleavage activity and enhancement of effective cellular uptake and utilization of low-density lipoprotein-borne sterol substrate.  相似文献   

7.
8.
T G Golos  J F Strauss 《Biochemistry》1988,27(9):3503-3506
Exposure of cultured human granulosa cells to 8-bromoadenosine cyclic 3',5'-phosphate (8-bromo-cAMP) resulted in a rapid increase in the content of the mRNA for 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, a rate-limiting enzyme in the de novo synthesis of cholesterol. HMG-CoA reductase mRNA levels increased within 2 h of stimulation and remained elevated for at least 6 h. Treatment of granulosa cells with 25-hydroxycholesterol, a soluble cholesterol analogue, in combination with aminoglutethimide to block conversion of cellular sterols to pregnenolone, resulted in suppression of HMG-CoA reductase mRNA. When cells were stimulated with 8-bromo-cAMP in the presence of 25-hydroxycholesterol and aminoglutethimide, the increase in HMG-CoA reductase mRNA provoked by the tropic agent was markedly attenuated. This indicates that 8-bromo-cAMP raises HMG-CoA reductase mRNA levels indirectly by accelerating steroidogenesis and depleting cellular sterol pools, thus relieving sterol-mediated negative feedback of HMG-CoA reductase gene expression. 25-Hydroxycholesterol in the presence of aminoglutethimide suppressed low-density lipoprotein (LDL) receptor mRNA, but 8-bromo-cAMP effected a significant stimulation of LDL receptor mRNA levels when added with hydroxysterol and aminoglutethimide. These findings reveal differential regulation of HMG-CoA reductase and LDL receptor mRNAs in the presence of sterol negative feedback.  相似文献   

9.
The class-B type-I scavenger receptor (SR-BI) plays a key role in cholesterol homeostasis; it mediates the selective uptake of lipoprotein cholesterol to steroidogenic tissues. We show by RT-PCR, western blot, in situ hybridization and immunohistochemistry analysis that SR-BI is highly expressed in different neuro-retinal and non-neuronal cells types on rat eye. Immunohistochemistry of the steroidogenic acute regulatory protein (StAR) involved in neurosteroid production showed the same expression pattern than SR-BI in rat eye. Our results may suggest a key role of these genes in the ocular cholesterol metabolism for membranes biosynthesis and neurosteroidogenesis.  相似文献   

10.
Soufi M  Ruppert V  Kurt B  Schaefer JR 《Gene》2012,499(1):218-222
Familial hypercholesterolemia (FH), Niemann-Pick disease type C (NPC) and Tangier disease (TD) are genetic inherited disorders with impaired processing of cholesterol, caused by mutations in genes that regulate cellular uptake, intracellular movement and transport of cholesterol. Various studies have shown a crucial regulatory role of the SREBP-pathway for cellular cholesterol homeostasis in these diseases. Since cholesterol is an essential structural component of cells, we assessed the impact of a severe FH causing LDLR mutation (FH p.W556R) on the SREBP pathway in primary FH fibroblasts. Primary FH fibroblasts derived from patients with the LDL receptor mutation p.W556R were used for gene expression experiments. Gene expression studies revealed increased expressions of SREBP regulated genes HMGCR, LDLR, SREBP-2, SREBP-1, SR-BI, INSIG-1, but interestingly not SCAP. In contrast expression of ABCA1, was strongly decreased in homozygous, but not in heterozygous p.W556R fibroblasts. Gene expression experiments with LDL receptor lacking primary FH fibroblasts, revealed that SR-BI and ABCA1 are important regulators for cholesterol acquisition in FH cells, consistent with findings in cells from NPC and TD patients.  相似文献   

11.
The scavenger receptor, class B, type I (SR-BI), is the predominant receptor that supplies plasma cholesterol to steroidogenic tissues in rodents. We showed previously that steroidogenic factor-1 (SF-1) binds a sequence in the human SR-BI promoter whose integrity is required for high-level SR-BI expression in cultured adrenocortical tumor cells. We now provide in vivo evidence that SF-1 regulates SR-BI. During mouse embryogenesis, SR-BI mRNA was initially expressed in the genital ridge of both sexes and persisted in the developing testes but not ovary. This sexually dimorphic expression profile of SR-BI expression in the gonads mirrors that of SF-1. No SR-BI mRNA was detected in the gonadal ridge of day 11.5 SF-1 knockout embryos. Both SR-BI and SF-1 mRNA were expressed in the cortical cells of the nascent adrenal glands. These studies directly support SF-1 participating in the regulation of SR-BI in vivo. We examined the effect of cAMP on SR-BI mRNA and protein in mouse adrenocortical (Y1-BS1) and testicular carcinoma Leydig (MA-10) cells. The time courses of induction were strikingly similar to those described for other cAMP- and SF-1-regulated genes. Addition of lipoproteins reduced SR-BI expression in Y1-BS1 cells, an effect that was reversed by administration of cAMP analogs. SR-BI mRNA and protein were expressed at high levels in the adrenal glands of knockout mice lacking the steroidogenic acute regulatory protein; these mice have extensive lipid deposits in the adrenocortical cells and high circulating levels of ACTH. Taken together, these studies suggest that trophic hormones can override the suppressive effect of cholesterol on SR-BI expression, thus ensuring that steroidogenesis is maintained during stress.  相似文献   

12.
Ovarian follicles luteinize after ovulation, requiring structural and molecular remodeling along with exponential increases in steroidogenesis. Cholesterol substrates for luteal steroidogenesis are imported via scavenger receptor-BI (SR-BI) and the low-density lipoprotein (LDL) receptor from circulating high-density lipoproteins and LDL. SR-BI mRNA is expressed in pig ovaries at all stages of folliculogenesis and in the corpus luteum (CL). An 82-kDa form of SR-BI predominates throughout, is weakly present in granulosa cells, and is robustly expressed in the CL, along with the less abundant 57-kDa form. Digestion of N-linked carbohydrates substantially reduced the SR-BI mass in luteal cells, indicating that differences between forms is attributable to glycosylation. Immunohistochemistry revealed SR-BI to be concentrated in the cytoplasm of follicular granulosa cells, although found mostly at the periphery of luteal cells. To examine receptor dynamics during gonadotropin-induced luteinization, pigs were treated with an ovulatory stimulus, and ovaries were collected at intervals to ovulation. SR-BI in granulosa cell cytoplasm increased through the periovulatory period, with migration to the cell periphery as the CL matured. In vitro culture of follicles with human chorionic gonadotropin induced time-dependent upregulation of 82-kDa SR-BI in granulosa cells. SR-BI and LDL receptor were reciprocally expressed, with the latter highest in follicular granulosa cells, declining precipitously with CL formation. We conclude that luteinization causes upregulation of SR-BI expression, its posttranslational maturation by glycosylation, and insertion into luteal cell membranes. Expression of the LDL receptor is extinguished during luteinization, indicating dynamic regulation of cholesterol importation to maintain elevated steroid output by the CL.  相似文献   

13.
Hypoxia is an important physiological process which ensures corpus luteum (CL) formation and development, thus playing an important role in steroidogenesis. Recent studies have shown that CL develops in an analogous to tumorigenesis by accumulation of hypoxia-inducible factor-1 alpha subunit (HIF1A) in response to hypoxia. To investigate the relationship among hypoxia, steroidogenesis, and cell proliferation during CL lifespan, histological and steroidogenic analyses of CL were performed at various CL stages in non-pregnant Holstein. Also, the hypoxia-mediated steroidogenesis and cell proliferation were studied in vitro with both primary luteal and luteinized granulosa cells. Our results showed that progesterone (P(4)) concentration increased with the upregulation of steroidogenic protein including steroidogenic acute regulatory protein (STAR) and CYP11A1 (P450scc) in the middle luteal stage. On the other hand, the cell proliferation- or hypoxia-associated proteins were upregulated in the early stage, including the proliferating cell nuclear antigen (PCNA), vascular endothelial growth factor A (VEGFA), HIF1A, and aryl hydrocarbon receptor nuclear translocator (ARNT). In primary culture, phospho-protein kinase A (p-PKA) was downregulated, as were P(4) secretion and steroidogenic proteins both under oxygen-conditioned hypoxia in luteal cells and cobalt chloride-induced hypoxia in luteinized granulosa cells. However, under the treatment of hypoxia, PCNA, which was downregulated in luteal cells, was upregulated together with HIF1A and VEGFA in luteinized granulosa cells. Taken together, present study suggested that hypoxia downregulated steroidogenesis through PKA signaling and that the hypoxia-regulated cell proliferation could be activated during CL formation.  相似文献   

14.
Recent studies revealed that scavenger receptor BI (SR-BI or Scarb1) plays a critical protective role in sepsis. However, the mechanisms underlying this protection remain largely unknown. In this study, using Scarb1I179N mice, a mouse model specifically deficient in hepatic SR-BI, we report that hepatic SR-BI protects against cecal ligation and puncture (CLP)-induced sepsis as shown by 75% fatality in Scarb1I179N mice, but only 21% fatality in C57BL/6J control mice. The increase in fatality in Scarb1I179N mice was associated with an exacerbated inflammatory cytokine production. Further study demonstrated that hepatic SR-BI exerts its protection against sepsis through its role in promoting LPS clearance without affecting the inflammatory response in macrophages, the glucocorticoid production in adrenal glands, the leukocyte recruitment to peritoneum or the bacterial clearance in liver. Our findings reveal hepatic SR-BI as a critical protective factor in sepsis and point out that promoting hepatic SR-BI-mediated LPS clearance may provide a therapeutic approach for sepsis.  相似文献   

15.
Progesterone receptor membrane component 1 (PGRMC1) mediates antimitotic and antiapoptotic actions of progesterone in granulosa cells, which indicates that PGRMC1 may play a key role in maintaining the status of granulosa cells. The current study investigated the effects of progesterone on intracellular signaling involved in differentiation, follicle development, inflammatory responses, and antioxidation, and determined the role of PGRMC1 in these processes. Our results demonstrated that progesterone slowed follicle development and inhibited p-ERK1/2, p-p38, caspase-3, p-NF-κB, and p-IκB-α signals involved in differentiation, steroidogenesis, and inflammatory responses in granulosa cells. Progesterone inhibited the steroidogenic acute regulatory protein and the cholesterol side-chain cleavage enzyme and decreased pregnenolone production. A PGRMC1 inhibitor and a PGRMC1 small interfering RNA ablated these inhibitory effects of progesterone. Interfering with PGRMC1 functions also decreased cellular antioxidative effects induced by an oxidant. These results suggest that PGRMC1 might play a critical role in maintaining the status of granulosa cells and balancing follicle numbers.  相似文献   

16.
Fetal testis steroidogenesis plays an important role in the reproductive development of the male fetus. While regulators of certain aspects of steroidogenesis are known, the initial driver of steroidogenesis in the human and rodent fetal testis is unclear. Through comparative analysis of rodent fetal testis microarray datasets, 54 candidate fetal Leydig cell-specific genes were identified. Fetal mouse testis interstitial expression of a subset of these genes with unknown expression (Crhr1, Gramd1b, Itih5, Vgll3, and Vsnl1) was verified by whole-mount in situ hybridization. Among the candidate fetal Leydig cell-specific factors, three receptors (CRHR1, PRLR, and PROKR2) were tested for a steroidogenic function using ex vivo fetal testes treated with receptor agonists (CRH, PRL, and PROK2). While PRL and PROK2 had no effect, CRH, at low (approximately 1 to 10) nM concentration, increased expression of the steroidogenic genes Cyp11a1, Cyp17a1, Scarb1, and Star in GD15 mouse and GD17 rat testes, and in conjunction, testosterone production was increased. Exposure of GD15 fetal mouse testis to a specific CRHR1 antagonist blunted the CRH-induced steroidogenic gene expression and testosterone responses. Similar to ex vivo rodent fetal testes, ≥10 nM CRH exposure of MA-10 Leydig cells increased steroidogenic pathway mRNA and progesterone levels, showing CRH can enhance steroidogenesis by directly targeting Leydig cells. Crh mRNA expression was observed in rodent fetal hypothalamus, and CRH peptide was detected in rodent amniotic fluid. Together, these data provide a resource for discovering factors controlling fetal Leydig cell biology and suggest that CRHR1 activation by CRH stimulates rat and mouse fetal Leydig cell steroidogenesis in vivo.  相似文献   

17.
18.
Cardiovascular disease (CVD) is the largest cause of premature death in human populations throughout the world. Circulating plasma lipid levels, specifically high levels of LDL or low levels of HDL, are predictive of susceptibility to CVD. The scavenger receptor class B member 1 (SCARB1) is the primary receptor for the selective uptake of HDL cholesterol by liver and steroidogenic tissues. Hepatic SCARB1 influences plasma HDL-cholesterol levels and is vital for reverse cholesterol transport. Here we describe the mapping of a novel N-ethyl-N-nitrosourea (ENU) induced point mutation in the Scarb1 gene identified in a C57BL/6J background. The mutation is located in a highly conserved amino acid in the extracellular loop and leads to the conversion of an isoleucine to an asparagine (I179N). Homozygous mutant mice express normal Scarb1 mRNA levels and are fertile. SCARB1 protein levels are markedly reduced in liver (∼90%), but not in steroidogenic tissues. This leads to ∼70% increased plasma HDL levels due to reduced HDL cholesteryl ester selective uptake. Pdzk1 knockout mice have liver-specific reduction of SCARB1 protein as does this mutant; however, in vitro analysis of the mutation indicates that the regulation of SCARB1 protein in this mutant is independent of PDZK1. This new Scarb1 model may help further our understanding of post-translational and tissue-specific regulation of SCARB1 that may aid the important clinical goal of raising functional HDL.  相似文献   

19.
High density lipoprotein cholesterol is thought to represent a preferred source of sterols secreted into bile following hepatic uptake by scavenger receptor class B type I (SR-BI). The present study aimed to determine the metabolic effects of an endothelial lipase (EL)–mediated stimulation of HDL cholesterol uptake on liver lipid metabolism and biliary cholesterol secretion in wild-type, SR-BI knockout, and SR-BI overexpressing mice. In each model, injection of an EL expressing adenovirus decreased plasma HDL cholesterol (P < 0.001) whereas hepatic cholesterol content increased (P < 0.05), translating into decreased expression of sterol-regulatory element binding protein 2 (SREBP2) and its target genes HMG-CoA reductase and LDL receptor (each P < 0.01). Biliary cholesterol secretion was dependent on hepatic SR-BI expression, being decreased in SR-BI knockouts (P < 0.001) and increased following hepatic SR-BI overexpression (P < 0.001). However, in each model, biliary secretion of cholesterol, bile acids, and phospholipids as well as fecal bile acid and neutral sterol content, remained unchanged in response to EL overexpression. Importantly, hepatic ABCG5/G8 expression did not correlate with biliary cholesterol secretion rates under these conditions. These results demonstrate that an acute decrease of plasma HDL cholesterol levels by overexpressing EL increases hepatic cholesterol content but leaves biliary sterol secretion unaltered. Instead, biliary cholesterol secretion rates are related to the hepatic expression level of SR-BI. These data stress the importance of SR-BI for biliary cholesterol secretion and might have relevance for concepts of reverse cholesterol transport.  相似文献   

20.
Stearoyl-coenzyme A desaturase 1 (SCD1) is the rate-limiting enzyme in the synthesis of monounsaturated fatty acids. However, the impact of SCD1 on atherosclerosis remains unclear. The aim of this study was to determine whether SCD1 affects macrophage reverse cholesterol transport (RCT) in mice. Compared to the control, adenoviral-mediated SCD1 overexpression in RAW264.7 macrophages increased cholesterol efflux to HDL, but not to apoA-I, without clear changes in ABCA1, ABCG1 and SR-BI expressions. While knockdown of ABCG1 and SR-BI did not affect the SCD1-induced cholesterol efflux to HDL, SCD1-overexpressing macrophages promoted the formation of both normal- and large-sized HDL in media, accompanying increased apolipoprotein A-I levels in HDL fractions. Transformation to larger particles of HDL was independently confirmed by nuclear magnetic resonance-based lipoprotein analysis. Interestingly, media transfer assays revealed that HDL generated by SCD1 had enhanced cholesterol efflux potential, indicating that SCD1 transformed HDL to a more anti-atherogenic phenotype. To study macrophage RCT in vivo, 3H-cholesterol-labeled RAW264.7 cells overexpressing SCD1 or the control were intraperitoneally injected into mice. Supporting the in vitro data, injection of SCD1-macrophages resulted in significant increases in 3H-tracer in plasma, liver, and feces compared to the control. Moreover, there was a shift towards larger particles in the 3H-tracer distribution of HDL fractions obtained from the mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号