首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microdamage, in the form of small cracks, may accumulate in trabecular bone loaded in fatigue. Specimens of bovine trabecular bone were loaded in compressive fatigue at one of four normalized stresses and loading was stopped after the specimens reached one of six maximum strains. Microdamage was identified using a fluorochrome staining technique, and microdamage parameters, including the number of damaged trabeculae and the damaged area fraction, were measured. No microdamage was observed during loading to strains below the yield strain; at higher strains, all microdamage parameters increased with increasing maximum compressive strain. Few significant differences were observed in the type or amount of microdamage accumulation between specimens loaded to the same maximum strain at different normalized stresses; however, more trabecular fractures were observed at high numbers of cycles, which corresponded to low normalized stresses.  相似文献   

2.
Microdamage in bone tissue is typically studied using destructive, two-dimensional histological techniques. Contrast-enhanced micro-computed tomography (micro-CT) was recently demonstrated to enable non-destructive, three-dimensional (3-D) detection of microdamage in machined cortical and trabecular bone specimens in vitro. However, the accumulation of microdamage in whole bones is influenced by variations in the magnitude and mode of loading due to the complex whole bone morphology. Therefore, the objective of this study was to detect the presence, spatial location, and accumulation of fatigue microdamage in whole rat femora in vitro using micro-CT with a BaSO4 contrast agent. Microdamage was detected and observed to accumulate at specific spatial locations within the cortex of femora loaded in cyclic three-point bending to a 5% or 10% reduction in secant modulus. The ratio of the segmented BaSO4 stain volume (SV) to the total volume (TV) of cortical bone was adopted as a measure of damage. The amount of microdamage measured by micro-CT (SV/TV) was significantly greater for both loaded groups compared to the control group (p<0.05), but the difference between loaded groups was not statistically significant. At least one distinct region of microdamage, as indicated by the segmented SV, was observed in 85% of loaded specimens. A specimen-specific finite element model confirmed elevated tensile principal strains localized in regions of tissue corresponding to the accumulated microdamage. These regions were not always located where one might expect a priori based upon Euler–Bernoulli beam theory, demonstrating the utility of contrast-enhanced micro-CT for non-destructive, 3-D detection of fatigue microdamage in whole bones in vitro.  相似文献   

3.
Vertebral fractures associated with osteoporosis are often the result of tissue damage accumulated over time. Microscopic tissue damage (microdamage) generated in vivo is believed to be a mechanically relevant aspect of bone quality that may contribute to fracture risk. Although the presence of microdamage in bone tissue has been documented, the relationship between loading, microdamage accumulation and mechanical failure is not well understood. The aim of the current study was to determine how microdamage accumulates in human vertebral cancellous bone subjected to cyclic fatigue loading. Cancellous bone cores (n = 32) from the third lumbar vertebra of 16 donors (10 male, 6 female, age 76±8.8, mean ± SD) were subjected to compressive cyclic loading at σ/E0 = 0.0035 (where σ is stress and E0 is the initial Young’s modulus). Cyclic loading was suspended before failure at one of seven different amounts of loading and specimens were stained for microdamage using lead uranyl acetate. Damage volume fraction (DV/BV) varied from 0.8±0.5% (no loading) to 3.4±2.1% (fatigue-loaded to complete failure) and was linearly related to the reductions in Young’s modulus caused by fatigue loading (r2 = 0.60, p<0.01). The relationship between reductions in Young’s modulus and proportion of fatigue life was nonlinear and suggests that most microdamage generation occurs late in fatigue loading, during the tertiary phase. Our results indicate that human vertebral cancellous bone tissue with a DV/BV of 1.5% is expected to have, on average, a Young’s modulus 31% lower than the same tissue without microdamage and is able to withstand 92% fewer cycles before failure than the same tissue without microdamage. Hence, even small amounts of microscopic tissue damage in human vertebral cancellous bone may have large effects on subsequent biomechanical performance.  相似文献   

4.
Non-collagenous proteins are a vital component of bone matrix. Amongst them, osteocalcin (OC) and osteopontin (OPN) hold special significance due to their intimate interaction with the mineral and collagenous matrix in bone. Both proteins have been associated with microdamage and fracture, but their structural role in energy dissipation is unclear. This study used bone tissue from genetic deficient mice lacking OC and/or OPN and subjected them to a series of creep-fatigue-creep tests. To this end, whole tibiae were loaded in four-point bending to 70% stiffness loss which captured the three characteristic phases of fatigue associated with initiation, propagation, and coalescence of microdamage. Fatigue loading preceded and followed creep tests to determine creep and dampening parameters. Microdamage in the form of linear microcracks and diffuse damage were analyzed by histology. It was shown that OC and OPN were ‘activated’ following stiffness loss associated with fatigue damage where they facilitated creep and dampening parameters (i.e. increased energy dissipation). More specifically, post-fatigue creep rate and dampening were significantly greater in wild-types (WTs) than genetic deficient mice (p < 0.05). These results were supported by microdamage analysis which showed significant increase in creep-associated diffuse damage formation in WTs compared to genetic deficient groups (p < 0.05). Based on these findings, we propose that during local yield events, OC and OPN rely on ionic interactions of their charged side chains and on hydrogen bonding to dissipate energy in bone.  相似文献   

5.
The amount of microdamage in bone tissue impairs mechanical performance and may act as a stimulus for bone remodeling. Here we determine how loading mode (tension vs. compression) and microstructure (trabecular microarchitecture, local trabecular thickness, and presence of resorption cavities) influence the number and volume of microdamage sites generated in cancellous bone following a single overload. Twenty paired cylindrical specimens of human vertebral cancellous bone from 10 donors (47–78 years) were mechanically loaded to apparent yield in either compression or tension, and imaged in three dimensions for microarchitecture and microdamage (voxel size 0.7×0.7×5.0 μm3). We found that the overall proportion of damaged tissue was greater (p=0.01) for apparent tension loading (3.9±2.4%, mean±SD) than for apparent compression loading (1.9±1.3%). Individual microdamage sites generated in tension were larger in volume (p<0.001) but not more numerous (p=0.64) than sites in compression. For both loading modes, the proportion of damaged tissue varied more across donors than with bone volume fraction, traditional measures of microarchitecture (trabecular thickness, trabecular separation, etc.), apparent Young?s modulus, or strength. Microdamage tended to occur in regions of greater trabecular thickness but not near observable resorption cavities. Taken together, these findings indicate that, regardless of loading mode, accumulation of microdamage in cancellous bone after monotonic loading to yield is influenced by donor characteristics other than traditional measures of microarchitecture, suggesting a possible role for tissue material properties.  相似文献   

6.
Microdamage propagation in trabecular bone due to changes in loading mode   总被引:6,自引:0,他引:6  
Microdamage induced by falls or other abnormal loads that cause shear stress in trabecular bone could impair the mechanical properties of the proximal femur or spine. Existing microdamage may also increase the initiation and propagation of further microdamage during subsequent normal, on-axis, loading conditions, resulting in atraumatic or "spontaneous" fractures. Microdamage formation due to shear and compressive strains was studied in 14 on-axis cylindrical bovine tibial trabecular bone specimens. Microdamage was induced by a torsional overload followed by an on-axis compressive overload and quantified microscopically. Fluorescent agents were used to label microdamage and differentiate damage due to the two loading modes. Both the microcrack density and diffuse damage area caused by the torsional overload increased with increasing shear strain from the center to the edge of the specimen. However, the mean microcrack length was uniform across the specimen, suggesting that microcrack length is limited by microstructural features. The mean density of microcracks caused by compressive overloading was slightly higher near the center of the specimen, and the diffuse damage area was uniform across the specimen. Over 20% of the microcracks formed in the initial torsional overloading propagated during compression. Moreover the propagating microcracks were, on average, longer than microcracks formed by a single overload. As such, changes in loading mode can cause propagation of microcracks beyond the microstructural barriers that normally limit the length. Damage induced by in vivo off-axis loads such as falls may similarly propagate during subsequent normal loading, which could affect both remodeling activity and fracture susceptibility.  相似文献   

7.
The primary aim of this work is to investigate the potential of nonlinear ultrasound for microdamage detection in human bone. Microdamage evaluation in human bone is of great importance, because it is considered a significant parameter for characterizing fracture risk. Experiments employing nonlinear acoustic vibro-modulation were carried out in human femoral trabecular specimens removed during surgery. A frequency mixing (inter-modulation) was observed between an ultrasound wave, propagating in the bone, and a low-frequency vibration applied directly to the bone specimens. The appearance of side frequencies, which are related to the vibrational excitation, around the fundamental ultrasound frequency manifests the modulation nonlinear phenomenon. Instead of inducing microdamage by mechanical fatigue loading, specimens with different degree of osteoporosis were used. The experiments demonstrated that osteoporotic bone exhibits stronger nonlinearity compared to healthy bone presenting significant increase of the modulation amplitude with increasing degree of osteoporosis. The obtained results indicate that, in contrast to conventional hysteretic nonlinearity, dissipative acoustic nonlinearity can be of significance in the generation of nonlinear modulation effects. In the proposed technique the size and the shape of samples are not crucial compared to nonlinear resonant ultrasound spectroscopy (NRUS). Furthermore, the method is sensitive to the presence of microdamage, non-invasive, easy to implement and most important, it can be proved valuable tool for in vivo bone damage characterization.  相似文献   

8.
Relatively small amounts of microdamage have been suggested to have a major effect on the mechanical properties of bone. A significant reduction in mechanical properties (e.g. modulus) can occur even before the appearance of microcracks. This study uses a novel non-linear microdamaging finite-element (FE) algorithm to simulate the low-cycle fatigue behavior of high-density trabecular bone. We aimed to investigate if diffuse microdamage accumulation and concomitant modulus reduction, without the need for complete trabecular strut fracture, may be an underlining mechanism for low-cycle fatigue failure (defined as a 30% reduction in apparent modulus). A microCT constructed FE model was subjected to a single cycle monotonic compression test, and constant and variable amplitude loading scenarios to study the initiation and accumulation of low-cycle fatigue microdamage. Microcrack initiation was simulated using four damage criteria: 30%, 40%, 50% and 60% reduction in bone element modulus (el-MR). Evaluation of structural (apparent) damage using the four different tissue level damage criteria resulted in specimen fatigue failure at 72, 316, 969 and 1518 cycles for the 30%, 40%, 50% and 60% el-MR models, respectively. Simulations based on the 50% el-MR model were consistent with previously published experimental findings. A strong, significant non-linear, power law relationship was found between cycles to failure (N) and effective strain (Deltasigma/E(0)): N=1.394x10(-25)(Deltasigma/E(0))(-12.17), r(2)=0.97, p<0.0001. The results suggest that microdamage and microcrack propagation, without the need for complete trabecular strut fracture, are mechanisms for high-density trabecular bone failure. Furthermore, the model is consistent with previous numerical fatigue simulations indicating that microdamage to a small number of trabeculae results in relatively large specimen modulus reductions and rapid failure.  相似文献   

9.
In this study we investigated how microdamage accumulated with increasing compressive strain in bovine trabecular bone. We found that little damage is created in the linear elastic region, up to -0.4 percent strain. At an average strain of -0.76 percent +/-0.25 percent, the stress-strain curve became nonlinear, and peaked at -1.91 percent +/-0.55 percent strain. Microdamage increases rapidly during the peak of the stress-strain curve, and a localized band of damage formed. At strains beyond the ultimate strain, the damaged band widened and the density of damage within the band increased. Microdamage occurred as groupings of cracks; the majority of damage occurred as regions of cross-hatching. All microdamage parameters increased with increasing maximum compressive strain. We also observed exponential relationships between crack numerical density and damage (1(o) - (o)Esec/E0) and between crack length density and damage.  相似文献   

10.
Karim L  Vashishth D 《PloS one》2012,7(4):e35047
Non-enzymatic glycation (NEG) and enzymatic biochemical processes create crosslinks that modify the extracellular matrix (ECM) and affect the turnover of bone tissue. Because NEG affects turnover and turnover at the local level affects microarchitecture and formation and removal of microdamage, we hypothesized that NEG in cancellous bone is heterogeneous and accounts partly for the contribution of microarchitecture and microdamage on bone fragility. Human trabecular bone cores from 23 donors were subjected to compression tests. Mechanically tested cores as well as an additional 19 cores were stained with lead-uranyl acetate and imaged to determine microarchitecture and measure microdamage. Post-yield mechanical properties were measured and damaged trabeculae were extracted from a subset of specimens and characterized for the morphology of induced microdamage. Tested specimens and extracted trabeculae were quantified for enzymatic and non-enzymatic crosslink content using a colorimetric assay and Ultra-high Performance Liquid Chromatography (UPLC). Results show that an increase in enzymatic crosslinks was beneficial for bone where they were associated with increased toughness and decreased microdamage. Conversely, bone with increased NEG required less strain to reach failure and were less tough. NEG heterogeneously modified trabecular microarchitecture where high amounts of NEG crosslinks were found in trabecular rods and with the mechanically deleterious form of microdamage (linear microcracks). The extent of NEG in tibial cancellous bone was the dominant predictor of bone fragility and was associated with changes in microarchitecture and microdamage.  相似文献   

11.
The macroscopic mechanical properties of trabecular bone can be predicted by its architecture using theoretical relationships between the elastic and architectural properties. Microdamage caused by overloading or fatigue decreases the apparent elastic moduli of trabecular bone requiring these relationships to be modified to predict the damaged elastic properties. In the case of isotropic damage, the apparent level elastic properties could be determined by multiplying all of the elastic constants by a single scalar factor. If the damage is anisotropic, the elastic constants may change by differing factors and the material coordinate system could become misaligned with the fabric coordinate system. High-resolution finite element models were used to simulate damage overloading on seven trabecular bone specimens subjected to pure shear strain in two planes. Comparison of the apparent elastic moduli of the specimens before and after damage showed that the reduction of the elastic moduli was anisotropic. This suggests that the microdamage within the specimens was inhomogeneous. However, after damage the specimens exhibited nearly orthotropic material symmetry as they did before damage. Changes in the orientation of the orthotropic material coordinate system were also small and occurred primarily in the transverse plane. Thus, while damage in trabecular bone is anisotropic, the material coordinate system remains aligned with the fabric tensor.  相似文献   

12.
This paper summarises four separate studies carried out by our group over the past number of years in the area of bone microdamage. The first study investigated the manner by which microcracks accumulate and interact with bone microstructure during fatigue testing of compact bone specimens. In a series of fatigue tests carried out at four different stress ranges between 50 and 80 MPA, crack density increased with loading cycles at a rate determined by the applied stress. Variations in the patterns of microdamage accumulation suggest that that at low stress levels, larger amounts of damage can build up without failure occurring. In a second study using a series of four-pont bending tests carried out on ovine bone samples, it was shown that bone microstructure influenced the ability of microcracks to propagate, with secondary osteons acting as barriers to crack growth. In a third study, the manner by which crack growth disrupts the canalicular processes connecting osteocytes was investigated. Analysis of individual cracks showed that disruption of the canalicular processes connecting osteocytes occurred due to shear displacement at the face of propagating microcracks, suggesting that this may play some role in the mechanism that signals bone remodelling. In a fourth in vivo study, it was shown that altering the mechanical load applied to the long bones of growing rats causes microcrack formation. In vivo microdamage was present in rats subjected to hindlimb suspension with a higher microcrack density found in the humeri than the femora. Microdamage was also found in control animals. This is the first study to demonstrate in vivo microcracks in normally loaded bones in a rat model.  相似文献   

13.
Microdamage density has been shown to increase with age in trabecular bone and is associated with decreased fracture toughness. Numerous studies of crack propagation in cortical bone have been conducted, but data in trabecular bone is lacking. In this study, propagation of severe, linear, and diffuse damage was examined in trabecular bone cores from the femoral head of younger (61.3±3.1 years) and older (75.0±3.9 years) men and women. Using a two-step mechanical testing protocol, damage was first initiated with static uniaxial compression to 0.8% strain then propagated at a normalized stress level of 0.005 to a strain endpoint of 0.8%. Coupling mechanical testing with a dual-fluorescent staining technique, the number and length/area of propagating cracks were quantified. It was found that the number of cycles to the test endpoint was substantially decreased in older compared to younger samples (younger: 77,372±15,984 cycles; older: 34,944±11,964 cycles, p=0.06). This corresponded with a greater number of severely damaged trabeculae expanding in area during the fatigue test in the older group. In the younger group, diffusely damaged trabeculae had a greater damage area, which illustrates an efficient energy dissipation mechanism. These results suggest that age-related differences in fatigue life of human trabecular bone may be due to differences in propagated microdamage morphology.  相似文献   

14.
A new method using fluorescent light microscopy has been developed to visualize and evaluate bone microdamage. We report the findings of two different experiments with a common aim of comparing the fluorescent light technique to the brightfield method for quantifying microdamage in bone. In Experiment 1, 36 canine femurs were tested in four-point cyclic bending until they had lost between 5 and 43% of their stiffness. The loaded portion of the bone was stained en bloc with basic fuchsin for the presence of damage. Standard point counting techniques were used to calculate fractional damaged area (Dm.Ar = Cr.Ar/B.Ar, mm2/mm2) under brightfield and fluorescent microscopy. In Experiment 2, bone microdamage adjacent to endosseous implants, subjected to fatigue loading (150,000 cycles, 2 Hz and 37 degrees C) ex vivo was examined. The bone around the implant was either allowed to heal (adapted specimen) for 12 weeks after placement in dog mid-femoral diaphyses prior to testing or was loaded immediately to simulate non-healed bone surrounding endosseous implants (non-adapted). Crack numerical density (Cr.Dn = Cr.N/B.Ar, #/mm2), crack surface density (Cr.S.Dn = Tt.Cr.Le/B.Ar, mm/mm2) and fractional damaged area were calculated separately by both techniques in the adapted and non-adapted specimens. In both Experiments 1 and 2, significantly more microdamage was detected by the fluorescent technique than by the brightfield method. Also, there was a trend towards higher intraobserver repeatability when using the fluorescent method. These results suggest that the brightfield technique underestimates microdamage accumulation and that the fluorescent technique better represents the actual amounts of microdamage present. The results demonstrate that the fluorescent method provides an accurate and precise approach for bone microdamage evaluation, and that it improves the prediction of stiffness loss from damage accumulation.  相似文献   

15.
The objective of the study was to evaluate the ability of a nonlinear ultrasound technique, the so-called nonlinear resonant ultrasound spectroscopy (NRUS) technique, for detecting early microdamage accumulation in cortical bone induced by four-point bending fatigue. Small parallelepiped beam-shaped human cortical bone specimens were subjected to cyclic four-point bending fatigue in several steps. The specimens were prepared to control damage localization during four-point bending fatigue cycling and to unambiguously identify resonant modes for NRUS measurements. NRUS measurements were achieved to follow the evolution of the nonlinear hysteretic elastic behavior during fatigue-induced damage. After each fatigue step, a small number of specimens was removed from the protocol and set apart to quantitatively assess the microcrack number density and length using synchrotron radiation micro-computed tomography (SR-µCT). The results showed a significant effect of damage steps on the nonlinear hysteretic elastic behavior. No significant change in the overall length of microcracks was observed in damaged regions compared to the load-free control regions. Only an increased number of shortest microcracks, those in the lowest quartile, was noticed. This was suggestive of newly formed microcracks during the early phases of damage accumulation. The variation of nonlinear hysteretic elastic behavior was significantly correlated to the variation of the density of short microcracks. Our results suggest that the nonlinear hysteretic elastic behavior is sensitive to early bone microdamage. Therefore NRUS technique can be used to monitor fatigue microdamage progression in in vitro experiments.  相似文献   

16.
Detection of trabecular bone microdamage by micro-computed tomography   总被引:3,自引:0,他引:3  
Microdamage is an important component of bone quality and affects bone remodeling. Improved techniques to assess microdamage without the need for histological sectioning would provide insight into the role of microdamage in trabecular bone strength by allowing the spatial distribution of damage within the trabecular microstructure to be measured. Nineteen cylindrical trabecular bone specimens were prepared and assigned to two groups. The specimens in group I were damaged to 3% compressive strain and labeled with BaSO(4). Group II was not loaded, but was labeled with BaSO(4). Micro-computed tomography (Micro-CT) images of the specimens were obtained at 10 microm resolution. The median intensity of the treated bone tissue was compared between groups. Thresholding was also used to measure the damaged area fraction in the micro-CT scans. The histologically measured damaged area fraction, the median CT intensity, and the micro-CT measured damaged area fraction were all higher in the loaded group than in the unloaded group, indicating that the micro-CT images could differentiate the damaged specimen group from the unloaded specimens. The histologically measured damaged area fraction was positively correlated with the micro-CT measured damaged area fraction and with the median CT intensity of the bone, indicating that the micro-CT images can detect microdamage in trabecular bone with sufficient accuracy to differentiate damage levels between samples. This technique provides a means to non-invasively assess the three-dimensional distribution of microdamage within trabecular bone test specimens and could be used to gain insight into the role of trabecular architecture in microdamage formation.  相似文献   

17.
Microdamage occurs in trabecular bone under normal loading, which impairs the mechanical properties. Architectural degradation associated with osteoporosis increases damage susceptibility, resulting in a cumulative negative effect on the mechanical properties. Treatments for osteoporosis could be targeted toward increased bone mineral density, improved architecture, or repair and prevention of microdamage. Delineating the relative roles of damage and architectural degradation on trabecular bone strength will provide insight into the most beneficial targets. In this study, damage was induced in bovine trabecular bone samples by axial compression, and the effects on the mechanical properties in shear were assessed. The damaged shear modulus, shear yield stress, ultimate shear stress, and energy to failure all depended on induced damage and decreased as the architecture became more rod-like. The changes in ultimate shear strength and toughness were proportional to the decrease in shear modulus, consistent with an effective decrease in the cross-section of trabeculae based on cellular solid analysis. For typical ranges of bone volume fraction in human bone, the strength and toughness were much more sensitive to decreased volume fraction than to induced mechanical damage. While ultimately repairing or avoiding damage to the bone structure and increasing bone density both improve mechanical properties, increasing bone density is the more important contributor to bone strength.  相似文献   

18.
Fatigue of cortical bone produces microcracks; it has been hypothesized that these cracks are analogous to those occurring in engineered composite materials and constitute a similar mechanism for fatigue resistance. However, the numbers of these linear microcracks increase substantially with age, suggesting that they contribute to increased fracture incidence among the elderly. To test these opposing hypotheses, we fatigued 20 beams of femoral cortical bone from elderly men and women in load-controlled four point bending having initial strain ranges of 3000 or 5000 microstrain. Loading was stopped at fracture or 10(6) cycles, whichever occurred first, and microcrack density and length were measured in the loaded region and in a control region that was not loaded. We studied the dependence of fatigue life and induced microdamage on initial microdamage, cortical region, subject gender and age, and several other variables. When the effect of modulus variability was controlled, longer fatigue life was associated with higher rather than lower initial crack density, particularly in the medial cortex. The increase in crack density following fatigue loading was greater in specimens from older individuals and those initially having longer microcracks. Crack density increased as much in specimens fatigued short of the failure point as in those that fractured, and microcracks were, on average, shorter in specimens with greater numbers of resorption spaces, a measure of remodeling rate.  相似文献   

19.
Microdamage of healthy bone leads to targeted removal and repair of the damage. This process must involve the production of specific targeting signals. The identity of these signals is unknown but constitutes a legitimate research goal since it is this targeting process which appears to become impaired in ageing and disease. Here we discuss the potential role of the matrix bound osteocyte in the sensing and targeting of microdamage. In particular we will review current understanding concerning the apoptotic death of osteocytes at sites of microdamage and discuss the potential physiological significance of these findings in the light of knowledge of the significance of apoptosis in other cell systems.  相似文献   

20.
Microdamage accumulation is a major pathway for energy dissipation during the post-yield deformation of bone. In this study, a two-dimensional probabilistic finite element model of a mineral–collagen composite was developed to investigate the influence of the tissue and ultrastructural properties of bone on the evolution of microdamage from an initial defect in tension. The probabilistic failure analyses indicated that the microdamage progression would be along the plane of the initial defect when the debonding at mineral–collagen interfaces was either absent or limited in the vicinity of the defect. In this case, the formation of a linear microcrack would be facilitated. However, the microdamage progression would be scattered away from the initial defect plane if interfacial debonding takes place at a large scale. This would suggest the possible formation of diffuse damage. In addition to interfacial debonding, the sensitivity analyses indicated that the microdamage progression was also dependent on the other material and ultrastructural properties of bone. The intensity of stress concentration accompanied with microdamage progression was more sensitive to the elastic modulus of the mineral phase and the nonlinearity of the collagen phase, whereas the scattering of failure location was largely dependent on the mineral to collagen ratio and the nonlinearity of the collagen phase. The findings of this study may help understanding the post-yield behavior of bone at the ultrastructural level and shed light on the underlying mechanism of bone fractures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号