首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Channelrhodopsin-2 (ChR2) is a microbial-type rhodopsin found in the green algae Chlamydomonas reinhardtii. Under physiological conditions, ChR2 is an inwardly rectifying cation channel that permeates a wide range of mono- and divalent cations. Although this protein shares a high sequence homology with other microbial-type rhodopsins, which are ion pumps, ChR2 is an ion channel. A sequence alignment of ChR2 with bacteriorhodopsin, a proton pump, reveals that ChR2 lacks specific motifs and residues, such as serine and threonine, known to contribute to non-covalent interactions within transmembrane domains. We hypothesized that reintroduction of the eight transmembrane serine residues present in bacteriorhodopsin, but not in ChR2, will restrict the conformational flexibility and reduce the pore diameter of ChR2. In this work, eight single serine mutations were created at homologous positions in ChR2. Additionally, an endogenous transmembrane serine was replaced with alanine. We measured kinetics, changes in reversal potential, and permeability ratios in different alkali metal solutions using two-electrode voltage clamp. Applying excluded volume theory, we calculated the minimum pore diameter of ChR2 constructs. An analysis of the results from our experiments show that reintroducing serine residues into the transmembrane domain of ChR2 can restrict the minimum pore diameter through inter- and intrahelical hydrogen bonds while the removal of a transmembrane serine results in a larger pore diameter. Therefore, multiple positions along the intracellular side of the transmembrane domains contribute to the cation permeability of ChR2.  相似文献   

2.
Channelrhodopsin 2 (ChR2) is a microbial-type rhodopsin with a putative heptahelical structure that binds all-trans-retinal. Blue light illumination of ChR2 activates an intrinsic leak channel conductive for cations. Sequence comparison of ChR2 with the related ChR1 protein revealed a cluster of charged amino acids within the predicted transmembrane domain 2 (TM2), which includes glutamates E90, E97 and E101. Charge inversion substitutions of these residues significantly altered ChR2 function as revealed by two-electrode voltage-clamp recordings of light-induced currents from Xenopus laevis oocytes expressing the respective mutant proteins. Specifically, replacement of E90 by lysine or alanine resulted in differential effects on H+- and Na+-mediated currents. Our results are consistent with this glutamate side chain within the proposed TM2 contributing to ion flux through and the cation selectivity of ChR2.  相似文献   

3.
Channelrhodopsin-2 (ChR2) is a light-gated cation channel widely used as a biotechnological tool to control membrane depolarization in various cell types and tissues. Although several ChR2 variants with modified properties have been generated, the structural determinants of the protein function are largely unresolved. We used bioinformatic modeling of the ChR2 structure to identify the putative cationic pathway within the channel, which is formed by a system of inner cavities that are uniquely present in this microbial rhodopsin. Site-directed mutagenesis combined with patch clamp analysis in HeLa cells was used to determine key residues involved in ChR2 conductance and selectivity. Among them, Gln-56 is important for ion conductance, whereas Ser-63, Thr-250, and Asn-258 are previously unrecognized residues involved in ion selectivity and photocurrent kinetics. This study widens the current structural information on ChR2 and can assist in the design of new improved variants for specific biological applications.  相似文献   

4.
The intracellular domain of the serotonin type 3A receptor, a pentameric ligand-gated ion channel, is crucial for regulating conductance. Ion permeation through the extracellular vestibule and the transmembrane channel is well understood, whereas the specific ion conduction pathway through the intracellular domain is less clear. The intracellular domain starts with a short loop after the third transmembrane segment, followed by a short α-helical segment, a large unstructured loop, and finally, the membrane-associated MA-helix that continues into the last transmembrane segment. The MA-helices from all five subunits form the extension of the transmembrane ion channel and shape what has been described as a “closed vestibule,” with their lateral portals obstructed by loops and their cytosolic ends forming a tight hydrophobic constriction. The question remains whether the lateral portals or cytosolic constriction conduct ions upon channel opening. In our study, we used disulfide bond formation between pairs of engineered cysteines to probe the proximity and mobility of segments of the MA-helices most distal to the membrane bilayer. Our results indicate that the proximity and orientation for cysteine pairs at I409C/R410C, in close proximity to the lateral windows, and L402C/L403C, at the cytosolic ends of the MA-helices, are conducive for disulfide bond formation. Although conformational changes associated with gating promote cross-linking for I409C/R410C, which in turn decreases channel currents, cross-linking of L402C/L403C is functionally silent in macroscopic currents. These results support the hypothesis that concerted conformational changes open the lateral portals for ion conduction, rendering ion conduction through the vertical portal unlikely.  相似文献   

5.
Channelrhodopsin-2 (ChR2) is the prototype of a new class of light-gated ion channels that is finding widespread applications in optogenetics and biomedical research. We present a  6-Å projection map of ChR2, obtained by cryo-electron microscopy of two-dimensional crystals grown from pure, heterologously expressed protein. The map shows that ChR2 is the same dimer with non-crystallographic 2-fold symmetry in three different membrane crystals. This is consistent with biochemical analysis, which shows a stable dimer in detergent solution. Comparison to the projection map to bacteriorhodopsin indicates a similar structure of seven transmembrane alpha helices. Based on the projection map and sequence alignments, we built a homology model of ChR2 that potentially accounts for light-induced channel gating. Although a monomeric channel is not ruled out, comparison to other membrane channels and transporters suggests that the ChR2 channel is located at the dimer interface on the 2-fold axis, lined by transmembrane helices 3 and 4.  相似文献   

6.
Drosophila Big Brain (BIB) is a transmembrane protein encoded by the neurogenic gene big brain (bib), which is important for early development of the fly nervous system. BIB expressed in Xenopus oocytes is a monovalent cation channel modulated by tyrosine kinase signaling. Results here demonstrate that the BIB conductance shows voltage- and dose-dependent block by extracellular divalent cations Ca(2+) and Ba(2+) but not by Mg(2+) in wild-type channels. Site-directed mutagenesis of negatively charged glutamate (Glu(274)) and aspartate (Asp(253)) residues had no effect on divalent cation block. However, mutation of a conserved glutamate at position 71 (Glu(71)) in the first transmembrane domain (M1) altered channel properties. Mutation of Glu(71) to Asp introduced a new sensitivity to block by extracellular Mg(2+); substitutions with asparagine or glutamine decreased whole-cell conductance; and substitution with lysine compromised plasma membrane expression. Block by divalent cations is important in other ion channels for voltage-dependent function, enhanced signal resolution, and feedback regulation. Our data show that the wild-type BIB conductance is attenuated by external Ca(2+), suggesting that endogenous divalent cation block might be relevant for enhancing signal resolution or voltage dependence for the native signaling process in neuronal cell fate determination.  相似文献   

7.
The aquaporin-1 (AQP1) water channel protein is known to facilitate the rapid movement of water across cell membranes, but a proposed secondary role as an ion channel is still unsettled. Here we describe a method to simultaneously measure water permeability and ion conductance of purified human AQP1 after reconstitution into planar lipid bilayers. Water permeability was determined by measuring Na(+) concentrations adjacent to the membrane. Comparisons with the known single channel water permeability of AQP1 indicate that the planar lipid bilayers contain from 10(6) to 10(7) water channels. Addition of cGMP induced ion conductance in planar bilayers containing AQP1, whereas cAMP was without effect. The number of water channels exceeded the number of active ion channels by approximately 1 million-fold, yet p-chloromethylbenzenesulfonate inhibited the water permeability but not ion conductance. Identical ion channel parameters were achieved with AQP1 purified from human red blood cells or AQP1 heterologously expressed in Saccharomyces cerevisae and affinity purified with either N- or C-terminal poly-histidine tags. Rp-8-Br-cGMP inhibited all of the observed conductance levels of the cation selective channel (2, 6, and 10 pS in 100 mm Na(+) or K(+)). Deletion of the putative cGMP binding motif at the C terminus by introduction of a stop codon at position 237 yielded a truncated AQP1 protein that was still permeated by water but not by ions. Our studies demonstrate a method for simultaneously measuring water permeability and ion conductance of AQP1 reconstituted into planar lipid bilayers. The ion conductance occurs (i) through a pathway distinct from the aqueous pathway, (ii) when stimulated directly by cGMP, and (iii) in only an exceedingly small fraction of AQP1 molecules.  相似文献   

8.
The nicotinic acetylcholine receptor (nAChR) is a ligand gated ion channel protein, composed of three domains: a transmembrane domain (TM-domain), extracellular domain (EC-domain), and intracellular domain (IC-domain). Due to its biological importance, much experimental and theoretical research has been carried out to explore its mechanisms of gating and selectivity, but there are still many unresolved issues, especially on the ion selectivity. Moreover, most of the previous theoretical work has concentrated on the TM-domain or EC-domain of nAChR, which may be insufficient to understand the entire structure–function relation. In this work, we perform molecular dynamics, Brownian dynamics simulations and continuum electrostatic calculations to investigate the role of different nAChR domains in ion conduction and selectivity. The results show that although both the EC and IC domains contain strong negative charges that create large cation concentrations at either end of the pore, this alone is not sufficient to create the observed cation selectivity and may play a greater role in determining the channel conductance. The presence of cations in the wide regions of the pore can screen out the protein charge allowing anions to enter, meaning that local regions of the TM-domain are most likely responsible for discriminating between ions. These new results complement our understanding about the ion conduction and selectivity mechanism of nAChR.  相似文献   

9.
Channelrhodopsin (ChR) is a light-gated cation channel that responds to blue light. Since ChR can be readily expressed in specific neurons to precisely control their activities by light, it has become a powerful tool in neuroscience. Although the recently solved crystal structure of a chimeric ChR, C1C2, provided the structural basis for ChR, our understanding of the molecular mechanism of ChR still remains limited. Here we performed electrophysiological analyses and all-atom molecular dynamics (MD) simulations, to investigate the importance of the intracellular and central constrictions of the ion conducting pore observed in the crystal structure of C1C2. Our electrophysiological analysis revealed that two glutamate residues, Glu122 and Glu129, in the intracellular and central constrictions, respectively, should be deprotonated in the photocycle. The simulation results suggested that the deprotonation of Glu129 in the central constriction leads to ion leakage in the ground state, and implied that the protonation of Glu129 is important for preventing ion leakage in the ground state. Moreover, we modeled the 13-cis retinal bound; i.e., activated C1C2, and performed MD simulations to investigate the conformational changes in the early stage of the photocycle. Our simulations suggested that retinal photoisomerization induces the conformational change toward channel opening, including the movements of TM6, TM7 and TM2. These insights into the dynamics of the ground states and the early photocycle stages enhance our understanding of the channel function of ChR.  相似文献   

10.
Channelrhodopsin 2 (ChR2), a light-activated nonselective cationic channel from Chlamydomonas reinhardtii, has become a useful tool to excite neurons into which it is transfected. The other ChR from Chlamydomonas, ChR1, has attracted less attention because of its proton-selective permeability. By making chimeras of the transmembrane domains of ChR1 and ChR2, combined with site-directed mutagenesis, we developed a ChR variant, named ChEF, that exhibits significantly less inactivation during persistent light stimulation. ChEF undergoes only 33% inactivation, compared with 77% for ChR2. Point mutation of Ile170 of ChEF to Val (yielding “ChIEF”) accelerates the rate of channel closure while retaining reduced inactivation, leading to more consistent responses when stimulated above 25 Hz in both HEK293 cells and cultured hippocampal neurons. In addition, these variants have altered spectral responses, light sensitivity, and channel selectivity. ChEF and ChIEF allow more precise temporal control of depolarization, and can induce action potential trains that more closely resemble natural spiking patterns.  相似文献   

11.
The mucolipin (TRPML) ion channel proteins represent a distinct subfamily of channel proteins within the transient receptor potential (TRP) superfamily of cation channels. Mucolipin 1, 2, and 3 (TRPML1, -2, and -3, respectively) are channel proteins that share high sequence homology with each other and homology in the transmembrane domain with other TRPs. Mutations in the TRPML1 protein are implicated in mucolipidosis type IV, whereas mutations in TRPML3 are found in the varitint-waddler mouse. The properties of the wild type TRPML2 channel are not well known. Here we show functional expression of the wild type human TRPML2 channel (h-TRPML2). The channel is functional at the plasma membrane and characterized by a significant inward rectification similar to other constitutively active TRPML mutant isoforms. The h-TRPML2 channel displays nonselective cation permeability, which is Ca2+-permeable and inhibited by low extracytosolic pH but not Ca2+ regulated. In addition, constitutively active h-TRPML2 leads to cell death by causing Ca2+ overload. Furthermore, we demonstrate by functional mutation analysis that h-TRPML2 shares similar characteristics and structural similarities with other TRPML channels that regulate the channel in a similar manner. Hence, in addition to overall structure, all three TRPML channels also share common modes of regulation.  相似文献   

12.
The cystic fibrosis transmembrane conductance regulator (CFTR) exhibits two conductance states, 9 picosiemens (pS) and 3 pS. To investigate the origin of these two distinct conductance states, we measured the single-channel activity of three truncated forms of CFTR. These include: TNR, which contains the first transmembrane domain, the first nucleotide binding domain, and the R domain; RT2N2, which contains the R domain, the second transmembrane domain, and the second nucleotide-binding domain; and T2N2, which contains only the second transmembrane domain and the second nucleotide-binding domain. The results show that TNR exhibits only the large conductance of 9.2 pS, whereas RT2N2 and T2N2 exhibit only the small conductance (3.8-4.0 pS). Co-expression of TNR with T2N2 resulted in a mixed pattern of two conductance states, which is similar to that observed in wild-type CFTR. In further studies, a "dual-R mutant," R334W and R347P in the transmembrane segment 6 of the first half of CFTR, severely impaired the large conductance channel without affecting the small conductance channel. The ion selectivity and gating behavior of the two conductance channels are different regardless of whether they are measured in wild-type CFTR or in truncated CFTRs. The ion selectivity of the large conductance channel is Br(-) > Cl(-) > I(-), whereas the ion selectivity of the small conductance channel is Br(-) = Cl(-) = I(-). The open probability (P(o)) of the large conductance is about 4-fold higher than that of the small conductance. Transition from closed to open states of the small conductance is not dependent upon the open or closed states of the large conductance. The independent behaviors of the two conductances in CFTR strongly suggest that CFTR may have two distinct pores. Thus, like ClC0, CFTR is likely to be a double-barreled ion channel, with the first half of CFTR forming the large conductance and the second half forming the small conductance.  相似文献   

13.
Under appropriate conditions, the interaction of the plant alkaloid ryanodine with a single cardiac sarcoplasmic reticulum Ca(2+)-release channel results in a profound modification of both channel gating and conduction. On modification, the channel undergoes a dramatic increase in open probability and a change in single-channel conductance. In this paper we aim to provide a mechanistic framework for the interpretation of the altered conductance seen after ryanodine binding to the channel protein. To do this we have characterized single-channel conductance with representative members of three classes of permeant cation; group 1a monovalent cations, alkaline earth divalent cations, and organic monovalent cations. We have quantified the change in single-channel conductance induced by ryanodine and have expressed this as a fraction of conductance in the absence of ryanodine. Fractional conductance seen in symmetrical 210 mM solutions is not fixed but varies with the nature of the permeant cation. The group 1a monovalent cations (K+, Na+, Cs+, Li+) have values of fractional conductance in a narrow range (0.60- 0.66). With divalent cations fractional conductance is considerably lower (Ba2+, 0.22 and Sr2+, 0.28), whereas values of fractional conductance vary considerably with the organic monovalent cations (ammonia 0.66, ethylamine 0.76, propanolamine 0.65, diethanolamine 0.92, diethylamine 1.2). To establish the mechanisms governing these differences, we have monitored the affinity of the conduction pathway for, and the relative permeability of, representative cations in the ryanodine-modified channel. These parameters have been compared with those obtained in previous studies from this laboratory using the channel in the absence of ryanodine and have been modeled by modifying our existing single-ion, four-barrier three-well rate theory model of conduction in the unmodified channel. Our findings indicate that the high affinity, essentially irreversible, interaction of ryanodine with the cardiac sarcoplasmic reticulum Ca(2+)-release channel produces a conformational alteration of the protein which results in modified ion handling. We suggest that, on modification, the affinity of the channel for the group 1a monovalent cations is increased while the relative permeability of this class of cations remains essentially unaltered. The affinity of the conduction pathway for the alkaline earth divalent cations is also increased, however the relative permeability of this class of cations is reduced compared to the unmodified channel. The influence of modification on the handling by the channel of the organic monovalent cations is determined by both the size and the nature of the cation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Gap junction (GJ) channels provide an important pathway for direct intercellular transmission of signaling molecules. Previously we showed that fixed negative charges in the first extracellular loop domain (E1) strongly influence charge selectivity, conductance, and rectification of channels and hemichannels formed of Cx46. Here, using excised patches containing Cx46 hemichannels, we applied the substituted cysteine accessibility method (SCAM) at the single channel level to residues in E1 to determine if they are pore-lining. We demonstrate residues D51, G46, and E43 at the amino end of E1 are accessible to modification in open hemichannels to positively and negatively charged methanethiosulfonate (MTS) reagents added to cytoplasmic or extracellular sides. Positional effects of modification along the length of the pore and opposing effects of oppositely charged modifying reagents on hemichannel conductance and rectification are consistent with placement in the channel pore and indicate a dominant electrostatic influence of the side chains of accessible residues on ion fluxes. Hemichannels modified by MTS-EA+, MTS-ET+, or MTS-ES- were refractory to further modification and effects of substitutions with positively charged residues that electrostatically mimicked those caused by modification with the positively charged MTS reagents were similar, indicating all six subunits were likely modified. The large reductions in conductance caused by MTS-ET+ were visible as stepwise reductions in single-channel current, indicative of reactions occurring at individual subunits. Extension of single-channel SCAM using MTS-ET+ into the first transmembrane domain, TM1, revealed continued accessibility at the extracellular end at A39 and L35. The topologically complementary region in TM3 showed no evidence of reactivity. Structural models show GJ channels in the extracellular gap to have continuous inner and outer walls of protein. If representative of open channels and hemichannels, these data indicate E1 as constituting a significant portion of this inner, pore-forming wall, and TM1 contributing as pore-lining in the extracellular portion of transmembrane span.  相似文献   

15.
Cyclic nucleotide-gated (CNG) ion channels are nonselective cation channels with a high permeability for Ca(2+). Not surprisingly, they are blocked by a number of Ca(2+) channel blockers including tetracaine, pimozide, and diltiazem. We studied the effects of dequalinium, an extracellular blocker of the small conductance Ca(2+)-activated K(+) channel. We previously noted that dequalinium is a high-affinity blocker of CNGA1 channels from the intracellular side, with little or no state dependence at 0 mV. Here we examined block by dequalinium at a broad range of voltages in both CNGA1 and CNGA2 channels. We found that dequalinium block was mildly state dependent for both channels, with the affinity for closed channels 3-5 times higher than that for open channels. Mutations in the S4-S5 linker did not alter the affinity of open channels for dequalinium, but increased the affinity of closed channels by 10-20-fold. The state-specific effect of these mutations raises the question of whether/how the S4-S5 linker alters the binding of a blocker within the ion permeation pathway.  相似文献   

16.
The sarcoplasmic reticulum Ca(2+)-release channel plays a central role in cardiac muscle function by providing a ligand-regulated pathway for the release of sequestered Ca2+ to initiate contraction following cell excitation. The efficiency of the channel as a Ca(2+)-release pathway will be influenced by both gating and conductance properties of the system. In the past we have investigated conduction and discrimination of inorganic mono- and divalent cations with the aim of describing the mechanisms governing ion handling in the channel (Tinker, A., A.R. G. Lindsay, and A.J. Williams. 1992. Journal of General Physiology. 100:495-517.). In the present study, we have used permeant and impermeant organic cations to provide additional information on structural features of the conduction pathway. The use of permeant organic cations in biological channels to explore structural motifs underlying selectivity has been an important tool for the electrophysiologist. We have examined the conduction properties of a series of monovalent organic cations of varying size in the purified sheep cardiac sarcoplasmic reticulum Ca(2+)-release channel. Relative permeability, determined from the reversal potential measured under bi- ionic conditions with 210-mM test cation at the cytoplasmic face of the channel and 210 mM K+ at the luminal, was related inversely to the minimum circular cation radius. The reversal potential was concentration-independent. The excluded area hypothesis, with and without a term for solute-wall friction, described the data well and gave a lower estimate for minimum pore radius of 3.3-3.5 A. Blocking studies with the impermeant charged derivative of triethylamine reveal that this narrowing occurs over the first 10-20% of the voltage drop when crossing from the lumen of the SR to the cytoplasm. Single-channel conductances were measured in symmetrical 210 mM salt. Factors other than relative permeability determine conductance as ions with similar relative permeability can have widely varying single-channel conductance. Permeant ions, such as the charged derivatives of trimethylamine and diethylmethylamine, can also inhibit K+ current. The reduction in relative conductance with increasing concentrations of these two ions at a holding potential of 60 mV was described by a rectangular hyperbola and revealed higher affinity binding for diethylmethylamine as compared to trimethylamine. It was possible to describe the complex permeation properties of these two ions using a single-ion four barrier, three binding site Eyring rate theory model. In conclusion, these studies reveal that the cardiac Ca(2+)-release channel has a selectivity filter of approximately 3.5-A radius located at the luminal face of the protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Takeuchi H  Okada A  Miura T 《FEBS letters》2003,552(1):35-38
The M2 protein form influenza A virus forms a tetrameric ion channel, which enables proton passage across biological membranes when the N-terminal side is acidified. Among the amino acid residues in the transmembrane domain of the M2 protein, His37 and Trp41 are essential for the pH-regulated proton conductance. Current knowledge about the structures and interactions of His37 and Trp41 suggests a model for the M2 ion channel, in which the channel is closed by a network of His37 hydrogen bonds at neutral pH and is opened by a His37-Trp41 cation-pi interaction at acidic pH.  相似文献   

18.
Apolipoprotein L-I (APOL1) is a channel-forming effector of innate immunity. The common human APOL1 variant G0 provides protection against infection with certain Trypanosoma and Leishmania parasite species, but it cannot protect against the trypanosomes responsible for human African trypanosomiasis. Human APOL1 variants G1 and G2 protect against human-infective trypanosomes but also confer a higher risk of developing chronic kidney disease. Trypanosome-killing activity is dependent on the ability of APOL1 to insert into membranes at acidic pH and form pH-gated cation channels. We previously mapped the channel’s pore-lining region to the C-terminal domain (residues 332–398) and identified a membrane-insertion domain (MID, residues 177–228) that facilitates acidic pH-dependent membrane insertion. In this article, we further investigate structural determinants of cation channel formation by APOL1. Using a combination of site-directed mutagenesis and targeted chemical modification, our data indicate that the C-terminal heptad-repeat sequence (residues 368–395) is a bona fide leucine zipper domain (ZIP) that is required for cation channel formation as well as lysis of trypanosomes and mammalian cells. Using protein-wide cysteine-scanning mutagenesis, coupled with the substituted cysteine accessibility method, we determined that, in the open channel state, both the N-terminal domain and the C-terminal ZIP domain are exposed on the intralumenal/extracellular side of the membrane and provide evidence that each APOL1 monomer contributes four transmembrane domains to the open cation channel conformation. Based on these data, we propose an oligomeric topology model in which the open APOL1 cation channel is assembled from the coiled-coil association of C-terminal ZIP domains.  相似文献   

19.
Guennoun S  Horisberger JD 《FEBS letters》2002,513(2-3):277-281
The accessibility of the residues of the sixth transmembrane segment (TM) of the Bufo marinus Na,K-ATPase alpha subunit was explored by cysteine scanning mutagenesis. Methanethiosulfonate reagents reached only the two most extracellular positions (T803, D804) in the native conformation of the Na,K-pump. Palytoxin induced a conductance in all mutants, including D811C, T814C and D815C which showed no active electrogenic transport. After palytoxin treatment, four additional positions (V805, L808, D811 and M816) became accessible to the sulfhydryl reagent. We conclude that one side of the sixth TM helix forms a wall of the palytoxin-induced channel pore and, probably, of the cation pathway from the extracellular side to one of their binding sites.  相似文献   

20.
While ~30% of the human genome encodes membrane proteins, only a handful of structures of membrane proteins have been resolved to high resolution. Here, we studied the structure of a member of the Cys-loop ligand gated ion channel protein superfamily of receptors, human type A γ2α1β2α1β2 gamma amino butyric acid receptor complex in a lipid bilayer environment. Studying the correlation between the structure and function of the gamma amino butyric acid receptor may enhance our understanding of the molecular basis of ion channel dysfunctions linked with epilepsy, ataxia, migraine, schizophrenia and other neurodegenerative diseases. The structure of human γ2α1β2α1β2 has been modeled based on the X-ray structure of the Caenorhabditis elegans glutamate-gated chloride channel via homology modeling. The template provided the first inhibitory channel structure for the Cys-loop superfamily of ligand-gated ion channels. The only available template structure before this glutamate-gated chloride channel was a cation selective channel which had very low sequence identity with gamma aminobutyric acid receptor. Here, our aim was to study the effect of structural corrections originating from modeling on a more reliable template structure. The homology model was analyzed for structural properties via a 100 ns molecular dynamics (MD) study. Due to the structural shifts and the removal of an open channel potentiator molecule, ivermectin, from the template structure, helical packing changes were observed in the transmembrane segment. Namely removal of ivermectin molecule caused a closure around the Leu 9 position along the ion channel. In terms of the structural shifts, there are three potential disulfide bridges between the M1 and M3 helices of the γ2 and 2 α1 subunits in the model. The effect of these disulfide bridges was investigated via monitoring the differences in root mean square fluctuations (RMSF) of individual amino acids and principal component analysis of the MD trajectory of the two homology models—one with the disulfide bridge and one with protonated Cys residues. In all subunit types, RMSF of the transmembrane domain helices are reduced in the presence of disulfide bridges. Additionally, loop A, loop F and loop C fluctuations were affected in the extracellular domain. In cross-correlation analysis of the trajectory, the two model structures displayed different coupling in between the M2–M3 linker region, protruding from the membrane, and the β1-β2/D loop and cys-loop regions in the extracellular domain. Correlations of the C loop, which collapses directly over the bound ligand molecule, were also affected by differences in the packing of transmembrane helices. Finally, more localized correlations were observed in the transmembrane helices when disulfide bridges were present in the model. The differences observed in this study suggest that dynamic coupling at the interface of extracellular and ion channel domains differs from the coupling introduced by disulfide bridges in the transmembrane region. We hope that this hypothesis will be tested experimentally in the near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号