首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bacterial community composition in small streams and a river in central Germany was examined by temperature gradient gel electrophoresis (TGGE) with PCR products of 16S rRNA gene fragments and sequence analysis. Complex TGGE band patterns suggested high levels of diversity of bacterial species in all habitats of these environments. Cluster analyses demonstrated distinct differences among the communities in stream and spring water, sandy sediments, biofilms on stones, degrading leaves, and soil. The differences between stream water and sediment were more significant than those between sites within the same habitat along the stretch from the stream source to the mouth. TGGE data from an entire stream course suggest that, in the upper reach of the stream, a special suspended bacterial community is already established and changes only slightly downstream. The bacterial communities in water and sediment in an acidic headwater with a pH below 5 were highly similar to each other but deviated distinctly from the communities at the other sites. As ascertained by nucleotide sequence analysis, stream water communities were dominated by Betaproteobacteria (one-third of the total bacteria), whereas sediment communities were composed mainly of Betaproteobacteria and members of the Fibrobacteres/Acidobacteria group (each accounting for about 25% of bacteria). Sequences obtained from bacteria from water samples indicated the presence of typical cosmopolitan freshwater organisms. TGGE bands shared between stream and soil samples, as well as sequences found in bacteria from stream samples that were related to those of soil bacteria, demonstrated the occurrence of some species in both stream and soil habitats. Changes in bacterial community composition were correlated with geographic distance along a stream, but in comparisons of different streams and rivers, community composition was correlated only with environmental conditions.  相似文献   

2.
Changes in epilithic cyanobacterial communities were determined in a river characterized by variations in nutrient content. The cyanobacterial community composition of the upstream sites was different from that of the downstream communities, where anthropogenic influences lead to an increase in nutrients (principally soluble reactive phosphate, SRP). There was a general trend in downstream sites towards a decrease in species richness, abundance, and diversity of cyanobacteria. The reduced cyanobacterial species richness in downstream locations was due largely to a marked decrease in the number of heterocystous species, although the number of non-heterocystous species also decreased. Epilithic phycobiliprotein content was positively correlated with the number of cyanobacterial cells, implying that this pigment provides information about the abundance of the cyanobacteria community in the epilithon. The lowest concentrations of phycobiliprotein in the epilithon were observed where concentrations of phosphate were highest. Similarly, the number of heterocystous and non-heterocystous species tended to decrease as the SRP increased, and as the DIN:SRP ratio decreased. However, no relation was found with dissolved inorganic nitrogen (DIN). The differences among cyanobacterial communities could be interpreted as being a consequence of variations in nutrient composition. Finally, the usefulness of cyanobacteria as an alternative tool for assessing changes in water quality is discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
The Antarctic Dry Valleys are unable to support higher plant and animal life and so microbial communities dominate biotic ecosystem processes. Soil communities are well characterized, but rocky surfaces have also emerged as a significant microbial habitat. Here, we identify extensive colonization of weathered granite on a landscape scale by chasmoendolithic microbial communities. A transect across north-facing and south-facing slopes plus valley floor moraines revealed 30–100 % of available substrate was colonized up to an altitude of 800 m. Communities were assessed at a multidomain level and were clearly distinct from those in surrounding soils and other rock-inhabiting cryptoendolithic and hypolithic communities. All colonized rocks were dominated by the cyanobacterial genus Leptolyngbya (Oscillatoriales), with heterotrophic bacteria, archaea, algae, and fungi also identified. Striking patterns in community distribution were evident with regard to microclimate as determined by aspect. Notably, a shift in cyanobacterial assemblages from Chroococcidiopsis-like phylotypes (Pleurocapsales) on colder–drier slopes, to Synechococcus-like phylotypes (Chroococcales) on warmer–wetter slopes. Greater relative abundance of known desiccation-tolerant bacterial taxa occurred on colder–drier slopes. Archaeal phylotypes indicated halotolerant taxa and also taxa possibly derived from nearby volcanic sources. Among the eukaryotes, the lichen photobiont Trebouxia (Chlorophyta) was ubiquitous, but known lichen-forming fungi were not recovered. Instead, fungal assemblages were dominated by ascomycetous yeasts. We conclude that chasmoendoliths likely constitute a significant geobiological phenomenon at lower elevations in granite-dominated Antarctic Dry Valley systems.  相似文献   

4.
The diversity and nitrogenase activity of epilithic marine microbes in a Holocene beach rock (Heron Island, Great Barrier Reef, Australia) with a proposed biological calcification “microbialite” origin were examined. Partial 16S rRNA gene sequences from the dominant mat (a coherent and layered pink-pigmented community spread over the beach rock) and biofilms (nonstratified, differently pigmented microbial communities of small shallow depressions) were retrieved using denaturing gradient gel electrophoresis (DGGE), and a clone library was retrieved from the dominant mat. The 16S rRNA gene sequences and morphological analyses revealed heterogeneity in the cyanobacterial distribution patterns. The nonheterocystous filamentous genus Blennothrix sp., phylogenetically related to Lyngbya, dominated the mat together with unidentified nonheterocystous filaments of members of the Pseudanabaenaceae and the unicellular genus Chroococcidiopsis. The dominance and three-dimensional intertwined distribution of these organisms were confirmed by nonintrusive scanning microscopy. In contrast, the less pronounced biofilms were dominated by the heterocystous cyanobacterial genus Calothrix, two unicellular Entophysalis morphotypes, Lyngbya spp., and members of the Pseudanabaenaceae family. Cytophaga-Flavobacterium-Bacteroides and Alphaproteobacteria phylotypes were also retrieved from the beach rock. The microbial diversity of the dominant mat was accompanied by high nocturnal nitrogenase activities (as determined by in situ acetylene reduction assays). A new DGGE nifH gene optimization approach for cyanobacterial nitrogen fixers showed that the sequences retrieved from the dominant mat were related to nonheterocystous uncultured cyanobacterial phylotypes, only distantly related to sequences of nitrogen-fixing cultured cyanobacteria. These data stress the occurrence and importance of nonheterocystous epilithic cyanobacteria, and it is hypothesized that such epilithic cyanobacteria are the principal nitrogen fixers of the Heron Island beach rock.  相似文献   

5.
The archaeal community present in a sample of Mixed Thermophilic Culture-B (MTC-B) from a laboratory-scale thermophilic bioleaching reactor was investigated by temperature gradient gel electrophoresis (TGGE) and fluorescence in situ hybridisation (FISH). Both techniques were specifically adapted for use on native state bioleaching samples, with a view to establishing convenient means for monitoring culture composition. Using the TGGE protocol developed, the relative species composition of the thermophilic bioleaching sample was analysed, and included four phylotypes belonging to the Sulfolobales, which were related to Stygiolobus azoricus, Metallosphaera sp. J1, Acidianus infernus and Sulfurisphaera ohwakuensis. However, the St. azoricus-like phylotype was difficult to resolve and some micro-heterogeneity was observed within this phylotype. Specific FISH probes were designed to qualitatively assess the presence of the phylotypes in MTC-B. The sample was dominated by Sf. ohwakuensis-like Archaea. In addition, the St. azoricus-like, Metallosphaera species-like and Acidianus species-like cells appeared in similar low abundance in the community. Most strikingly, FISH identified Sulfolobus shibatae-like cells present in low numbers in the sample even though these were not detected by PCR-dependent TGGE. These results highlight the importance of using more than one molecular technique when investigating the archaeal diversity of complex bioleaching reactor samples.  相似文献   

6.
454 Pyrosequencing was applied to examine bacterial communities in sediment samples collected from a river receiving effluent discharge from rural domestic sewage (RDS) and various factories, including a tannery (TNS), clothing plant (CTS), and button factory (BTS), respectively. For each sample, 4,510 effective sequences were selected and utilized to do the bacterial diversity and abundance analysis, respectively. In total, 1,288, 2,036, 1,800, and 2,150 operational taxonomic units were obtained at 3 % distance cutoff in TNS, CTS, BTS, and RDS, respectively. Bacterial phylotype richness in RDS was higher than the other samples, and TNS had the least richness. The most predominant class in the TNS, CTS, and BTS samples is Betaproteobacteria. Cyanobacteria (no_rank) is the most predominant one in the RDS sample. Circa 31 % sequences in TNS were affiliated with the Rhodocyclales order. In the four samples, Aeromonas, Arcobacter, Clostridium, Legionella, Leptospira, Mycobacterium, Pseudomonas, and Treponema genera containing pathogenic bacteria were detected. Characterization of bacterial communities in sediments from various downstream branches indicated that distinct wastewater effluents have similar potential to reduce the natural variability in river ecosystems and contribute to the river biotic homogenization.  相似文献   

7.
The community structure of the bacteria associated with Nodularia spumigena (Mertens) cyanobacterial aggregates in the Baltic Sea was studied with temperature gradient gel electrophoresis (TGGE), using a 16S rRNA gene fragment as a target. Various developmental stages of the aggregates and free-floating cyanobacterial filaments were sampled to reveal possible changes in associated microbial community structure during development and senescence of the aggregates. The microbial community structures of all samples differed, and the communities of young and decaying aggregates were separated by cluster analysis of the TGGE fingerprint data. Sequencing of the TGGE fragments indicated the presence of bacteria from the α-, β-, and γ-proteobacterial groups, as well as members of Cytophaga–Flexibacter–Bacteroides lineages and gram-positive Actinobacteria spp. The majority of the Nodularia-associated sequences were not closely related to previously reported 16S rDNA sequences from the Baltic Sea or any other environment. The structure of the bacterial assemblage reflects the environmental changes associated with the succession and decay of the cyanobacterial aggregates. In addition, the sequence data suggest that the N. spumigena (Mertens) blooms in the Baltic Sea may host thus far uncharacterized bacterial species.  相似文献   

8.
Variation in the abiotic environment and host plant preferences can affect the composition of arbuscular mycorrhizal (AMF) assemblages. This study analyzed the AMF taxa present in soil and seedlings of Artemisia tridentata ssp. wyomingensis collected from sagebrush steppe communities in southwestern Idaho, USA. Our aims were to determine the AMF diversity within and among these communities and the extent to which preferential AMF–plant associations develop during seedling establishment. Mycorrhizae were identified using molecular methods following DNA extraction from field and pot culture samples. The extracted DNA was amplified using Glomeromycota specific primers, and identification of AMF was based on phylogenetic analysis of sequences from the large subunit-D2 rDNA region. The phylogenetic analyses revealed seven phylotypes, two within the Claroideoglomeraceae and five within the Glomeraceae. Four phylotypes clustered with known species including Claroideoglomus claroideum, Rhizophagus irregularis, Glomus microaggregatum, and Funneliformis mosseae. The other three phylotypes were similar to several published sequences not included in the phylogenetic analysis, but all of these were from uncultured and unnamed glomeromycetes. Pairwise distance analysis revealed some phylotypes with high genetic variation. The most diverse was the phylotype that included R. irregularis, which contained sequences showing pairwise differences up to 12 %. Most of the diversity in AMF sequences occurred within sites. The smaller genetic differentiation detected among sites was correlated with differences in soil texture. In addition, multiplication in pot cultures led to differentiation of AMF communities. Comparison of sequences obtained from the soil with those from A. tridentata roots revealed no significant differences between the AMF present in these samples. Overall, the sites sampled were dominated by cosmopolitan AMF taxa, and young seedlings of A. tridentata ssp. wyomingensis were colonized in relation to the abundance of these taxa in the soil.  相似文献   

9.
This study aimed to assess AMF diversity in various plant species in lakes with low and relatively high P concentrations to elucidate possible correlations with environmental factors in order for better understanding the functioning of mycorrhizal fungi in submerged plants. A considerable diversity of AMF communities was observed in the lakes with low dissolved P concentrations, especially in the roots of Littorella uniflora. Glomus group A, Archaeospora and Acaulospora were the most frequent and diverse AMF lineages with eight, seven and four phylotypes at Littorella uniflora in at least six lakes with low dissolved P concentrations. In theses lakes, AMF were for the first time observed in the roots of J. bulbosus, a member of a family previously thought to be non-mycorrhizal. In the lakes with relatively high dissolved P concentrations, the frequency decreased from Acaulospora, found at three locations, to Archaeospora at two locations and Glomus group A and Paraglomus at one location.All chemical parameters of the surface water layer, except pH, revealed significant (p ≤ 0.01) differences between the lakes with low and relatively high dissolved P concentrations. Mean Mg2+, Ca2+, K+, NH4+, CO2, o-PO43− and HCO3 were 3, 13.5, 15.7, 19.5, 31 and 42.6 times higher, respectively, in the lakes with relatively high dissolved P concentrations compared to the lakes with low dissolved P concentrations. AMF occurred more abundantly with low phosphate and high redox values in the lakes than with high phosphate and low redox values. The pH-value, the total-calcium and total-phosphorus concentrations were strongly correlated with the occurrence of Glomus phylotypes 4 and Archaeospora phylotypes 5 and 8, and a bit less with Acaulospora phylotype 4 and Archaeospora phylotype 3. In such lakes the presence of a diverse AMF community still enables the uptake of sufficient P for isoetid plant species despite the prevailing ‘ultra-oligotrophic’ conditions. As a consequence, macrophyte plant communities in lakes with relatively high dissolved P concentrations are less dependent on AMF colonization for their development.  相似文献   

10.
The abundance and diversity of chemotactic heterotrophic bacteria associated with Arctic cyanobacteria was determined. The viable numbers ranged between 104 and 106 cell g?1 cyanobacterial biomass. A total of 112 morphotypes, representing 22 phylotypes based on their 16S rRNA sequence similarity were isolated from the samples. All the phylotypes were Gram-negative with affiliation to the proteobacterial and bacteroidetes divisions. Among the 22 phylotypes, 14 were chemotactic to glucose. Majority of the phylotypes were psychrotolerant showing growth up to 30 °C. Representatives of Alphaproteobacteria, the genus Flavobacterium and the gammaproteobacterial Alcanivorax sp, were psychrophilic with growth at or below 18 °C. A significant percentage of phylotypes were pigmented (~68 %), rich in unsaturated membrane fatty acids and tolerated pH values and NaCl concentrations between 5.0–8.0 and 0.15–1.0 M, respectively. The percentages of phylotypes producing extracellular cold-active enzymes at 4 °C were amylase (18.18 %), lipase and urease (45.45 %), caseinase (59.09 %) and gelatinase (31.8 %).  相似文献   

11.
To understand the structure of marine diazotrophic communities in the tropical and subtropical Atlantic Ocean, the molecular diversity of the nifH gene was studied by nested PCR amplification using degenerate primers, followed by cloning and sequencing. Sequences of nifH genes were amplified from environmental DNA samples collected during three cruises (November-December 2000, March 2002, and October-November 2002) covering an area between 0 to 28.3°N and 56.6 to 18.5°W. A total of 170 unique sequences were recovered from 18 stations and 23 depths. Samples from the November-December 2000 cruise contained both unicellular and filamentous cyanobacterial nifH phylotypes, as well as γ-proteobacterial and cluster III sequences, so far only reported in the Pacific Ocean. In contrast, samples from the March 2002 cruise contained only phylotypes related to the uncultured group A unicellular cyanobacteria. The October-November 2002 cruise contained both filamentous and unicellular cyanobacterial and γ-proteobacterial sequences. Several sequences were identical at the nucleotide level to previously described environmental sequences from the Pacific Ocean, including group A sequences. The data suggest a community shift from filamentous cyanobacteria in surface waters to unicellular cyanobacteria and/or heterotrophic bacteria in deeper waters. With one exception, filamentous cyanobacterial nifH sequences were present within temperatures ranging between 26.5 and 30°C and where nitrate was undetectable. In contrast, nonfilamentous nifH sequences were found throughout a broader temperature range, 15 to 30°C, more often in waters with temperature of <26°C, and were sometimes recovered from waters with detectable nitrate concentrations.  相似文献   

12.
Understanding the factors that influence the distribution and abundance of marine diazotrophs is important in order to assess their role in the oceanic nitrogen cycle. Environmental DNA samples from four cruises to the North Atlantic Ocean, covering a sampling area of 0°N to 42°N and 67°W to 13°W, were analyzed for the presence and amount of seven nifH phylotypes using real-time quantitative PCR and TaqMan probes. The cyanobacterial phylotypes dominated in abundance (94% of all nifH copies detected) and were the most widely distributed. The filamentous cyanobacterial type, which included both Trichodesmium and Katagnymene, was the most abundant (51%), followed by group A, an uncultured unicellular cyanobacterium (33%), and gamma A, an uncultured gammaproteobacterium (6%). Group B, unicellular cyanobacterium Crocosphaera, and group C Cyanothece-like phylotypes were not often detected (6.9% and 2.3%, respectively), but where present, could reach high concentrations. Gamma P, another uncultured gammaproteobacterium, was seldom detected (0.5%). Water temperature appeared to influence the distribution of many nifH phylotypes. Very high (up to 1 × 106 copies liter−1) nifH concentrations of group A were detected in the eastern basin (25 to 17°N, 27 to 30°W), where the temperature ranged from 20 to 23°C. The highest concentrations of filamentous phylotypes were measured between 25 and 30°C. The uncultured cluster III phylotype was uncommon (0.4%) and was associated with mean water temperatures of 18°C. Diazotroph abundance was highest in regions where modeled average dust deposition was between 1 and 2 g/m2/year.  相似文献   

13.
Antibiotic resistance represents a global health problem, requiring better understanding of the ecology of antibiotic resistance genes (ARGs), their selection and their spread in the environment. Antibiotics are constantly released to the environment through wastewater treatment plant (WWTP) effluents. We investigated, therefore, the effect of these discharges on the prevalence of ARGs and bacterial community composition in biofilm and sediment samples of a receiving river. We used culture-independent approaches such as quantitative PCR to determine the prevalence of eleven ARGs and 16S rRNA gene-based pyrosequencing to examine the composition of bacterial communities. Concentration of antibiotics in WWTP influent and effluent were also determined. ARGs such as qnrS, bla TEM, bla CTX-M, bla SHV, erm(B), sul(I), sul(II), tet(O) and tet(W) were detected in all biofilm and sediment samples analyzed. Moreover, we observed a significant increase in the relative abundance of ARGs in biofilm samples collected downstream of the WWTP discharge. We also found significant differences with respect to community structure and composition between upstream and downstream samples. Therefore, our results indicate that WWTP discharges may contribute to the spread of ARGs into the environment and may also impact on the bacterial communities of the receiving river.  相似文献   

14.
Phosphorus is a vital nutrient for cyanobacterial growth. Aside from dissolved inorganic phosphorus, dissolved organic phosphorus (DOP) is used by cyanobacterial species via the activity of alkaline phosphatase (APase), which likely plays an important role in acquiring phosphorus for algal growth in the same manner as it does in other bacteria. In this work, APase genes phoA, phoD, and phoX were found distributed in the cyanobacterial strains included in the algal genome collection of the NCBI database. PhoX has a wider distribution than the classical phoA and phoD. Furthermore, multiple types of APase genes were simultaneously identified in a single strain or genome. Anabaena flos-aquae FACHB-245 was selected as a typical strain to study the performance of cyanobacteria growing on DOP. In algal growth involving AMP or lecithin, APase regulates the release of phosphorus from DOP as confirmed by the relative quantification of phoD and phoX expression levels. Our results confirmed that the distribution of APase is prevalent in cyanobacteria and thus provides a new insight into the potential role of cyanobacterial APase on phosphorus acquisition in natural environment.  相似文献   

15.
The study of Antarctic cyanobacterial diversity has been mostly limited to morphological identification and traditional molecular techniques. High‐throughput sequencing (HTS) allows a much better understanding of microbial distribution in the environment, but its application is hampered by several methodological and analytical challenges. In this work, we explored the use of HTS as a tool for the study of cyanobacterial diversity in Antarctic aquatic mats. Our results highlight the importance of using artificial communities to validate the parameters of the bioinformatics procedure used to analyze natural communities, since pipeline‐dependent biases had a strong effect on the observed community structures. Analysis of microbial mats from five Antarctic lakes and an aquatic biofilm from the Sub‐Antarctic showed that HTS is a valuable tool for the assessment of cyanobacterial diversity. The majority of the operational taxonomic units retrieved were related to filamentous taxa such as Leptolyngbya and Phormidium, which are common genera in Antarctic lacustrine microbial mats. However, other phylotypes related to different taxa such as Geitlerinema, Pseudanabaena, Synechococcus, Chamaesiphon, Calothrix, and Coleodesmium were also found. Results revealed a much higher diversity than what had been reported using traditional methods and also highlighted remarkable differences between the cyanobacterial communities of the studied lakes. The aquatic biofilm from the Sub‐Antarctic had a distinct cyanobacterial community from the Antarctic lakes, which in turn displayed a salinity‐dependent community structure at the phylotype level.  相似文献   

16.
To better understand the diversity and species composition of arbuscular mycorrhizal fungi (AMF) in mangrove ecosystems, the AMF colonization and distribution in four semi-mangrove plant communities were investigated. Typical AMF hyphal, vesicle and arbuscular structures were commonly observed in all the root samples, indicating that AMF are important components on the landward fringe of mangrove habitats. AMF spores were extracted from the rhizospheric soils, and an SSU rDNA fragment from each spore morph-type was amplified and sequenced for species identification. AMF species composition and diversity in the roots of each semi-mangrove species were also analyzed based on an SSU-ITS-LSU fragment, which was amplified, cloned and sequenced from root samples. In total, 11 unique AMF sequences were obtained from spores and 172 from roots. Phylogenetic analyses indicated that the sequences from the soil and roots were grouped into 5 and 14 phylotypes, respectively. AMF from six genera including Acaulospora, Claroideoglomus, Diversispora, Funneliformis, Paraglomus, and Rhizophagus were identified, with a further six phylotypes from the Glomeraceae family that could not be identified to the genus level. The AMF genus composition in the investigated semi-mangrove communities was very similar to that in the intertidal zone of this mangrove ecosystem and other investigated mangrove ecosystems, implying possible fungal adaptation to mangrove conditions.  相似文献   

17.
The β-subgroup of the Proteobacteria has been shown to be important in aquatic habitats and was investigated in depth here by molecular 16S rRNA techniques in biofilms of the Elbe River and its polluted tributary, the Spittelwasser River. The bacterial 16S rRNA genes were cloned from each site, screened for β-proteobacterial clones and sequenced. River biofilm clones from both rivers grouped into 9 clusters (RBFs). RBFs 1, 2, and 3 fell into the recently described βI cluster of cosmopolitan freshwater bacteria, where they represented new species related to Rhodoferax, Aquaspirillum, and Hydrogenophaga. RBFs 4 to 7 affiliated with Aquabacterium commune, Ideonella dechloratans, and Sphaerotilus natans, respectively. The two remaining RBFs were uncultivated clusters, one of them being distantly related to Gallionella ferruginea. Seasonal changes in the relative intensity of the β-proteobacterial 16S rRNA genes of biofilms harvested monthly for 1 year were determined by specific amplification and separation by temperature gradient gel electrophoresis (TGGE). Bands were identified by comparison of clones to community fingerprints by TGGE. Eight of 13 identified bands were shared by both habitats but showed different relative abundance and seasonal variability in the two rivers, probably caused by differences in temperature and pollutants. The data indicate new not-yet-cultivated clusters of river biofilm organisms, some of them probably distributed globally. They confirm the importance of certain known freshwater genera in river biofilms. The high phylogenetic resolution obtained by clone library analysis combined with the high temporal resolution obtained by TGGE suggest that the observed microdiversity in the river biofilm clone libraries might be caused by phylogenetically closely related microbial populations which are adapted to ecological parameters.  相似文献   

18.
The different drainage basins of large rivers such as the Mississippi River represent interesting systems in which to study patterns in freshwater microbial biogeography. Spatial variability in bacterioplankton communities in six major rivers (the Upper Mississippi, Missouri, Illinois, Ohio, Tennessee, and Arkansas) of the Mississippi River Basin was characterized using Ion Torrent 16S rRNA amplicon sequencing. When all systems were combined, particle-associated (>3 μm) bacterial assemblages were found to be different from free-living bacterioplankton in terms of overall community structure, partly because of differences in the proportional abundance of sequences affiliated with major bacterial lineages (Alphaproteobacteria, Cyanobacteria, and Planctomycetes). Both particle-associated and free-living communities ordinated by river system, a pattern that was apparent even after rare sequences or those affiliated with Cyanobacteria were removed from the analyses. Ordination of samples by river system correlated with environmental characteristics of each river, such as nutrient status and turbidity. Communities in the Upper Mississippi and the Missouri and in the Ohio and the Tennessee, pairs of rivers that join each other, contained similar taxa in terms of presence-absence data but differed in the proportional abundance of major lineages. The most common sequence types detected in particle-associated communities were picocyanobacteria in the Synechococcus/Prochlorococcus/Cyanobium (Syn/Pro) clade, while free-living communities also contained a high proportion of LD12 (SAR11/Pelagibacter)-like Alphaproteobacteria. This research shows that while different tributaries of large river systems such as the Mississippi River harbor distinct bacterioplankton communities, there is also microhabitat variation such as that between free-living and particle-associated assemblages.  相似文献   

19.
The diversity of the predominant bacteria in the human gastrointestinal tract was studied by using 16S rRNA-based approaches. PCR amplicons of the V6 to V8 regions of fecal 16S rRNA and ribosomal DNA (rDNA) were analyzed by temperature gradient gel electrophoresis (TGGE). TGGE of fecal 16S rDNA amplicons from 16 individuals showed different profiles, with some bands in common. Fecal samples from two individuals were monitored over time and showed remarkably stable profiles over a period of at least 6 months. TGGE profiles derived from 16S rRNA and rDNA amplicons showed similar banding patterns. However, the intensities of bands with similar mobilities differed in some cases, indicating a different contribution to the total active fraction of the prominent fecal bacteria. Most 16S rRNA amplicons in the TGGE pattern of one subject were identified by cloning and sequence analysis. Forty-five of the 78 clones matched 15 bands, and 33 clones did not match any visible band in the TGGE pattern. Nested PCR of amplified 16S rDNA indicated preferential amplification of a sequence corresponding to 12 of the 33 nonmatching clones with similar mobilities in TGGE. The sequences matching 15 bands in the TGGE pattern showed 91.5 to 98.7% homology to sequences derived from different Clostridium clusters. Most of these were related to strains derived from the human intestine. The results indicate that the combination of cloning and TGGE analysis of 16S rDNA amplicons is a reliable approach to monitoring different microbial communities in feces.  相似文献   

20.
Degradative strains of fast-growing Mycobacterium spp. are commonly isolated from polycyclic aromatic hydrocarbon (PAH)-contaminated soils. Little is known, however, about the ecology and diversity of indigenous populations of these fast-growing mycobacteria in contaminated environments. In the present study 16S rRNA genes were PCR amplified using Mycobacterium-specific primers and separated by temperature gradient gel electrophoresis (TGGE), and prominent bands were sequenced to compare the indigenous Mycobacterium community structures in four pairs of soil samples taken from heavily contaminated and less contaminated areas at four different sites. Overall, TGGE profiles obtained from heavily contaminated soils were less diverse than those from less contaminated soils. This decrease in diversity may be due to toxicity, since significantly fewer Mycobacterium phylotypes were detected in soils determined to be toxic by the Microtox assay than in nontoxic soils. Sequencing and phylogenetic analysis of prominent TGGE bands indicated that novel strains dominated the soil Mycobacterium community. Mineralization studies using [14C]pyrene added to four petroleum-contaminated soils, with and without the addition of the known pyrene degrader Mycobacterium sp. strain RJGII-135, indicated that inoculation increased the level of degradation in three of the four soils. Mineralization results obtained from a sterilized soil inoculated with strain RJGII-135 suggested that competition with indigenous microorganisms may be a significant factor affecting biodegradation of PAHs. Pyrene-amended soils, with and without inoculation with strain RJGII-135, experienced both increases and decreases in the population sizes of the inoculated strain and indigenous Mycobacterium populations during incubation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号