首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies in motor control have shown that visuomotor rotations for reaching have narrow generalization functions: what we learn during movements in one direction only affects subsequent movements into close directions. Here we wanted to measure the generalization functions for wrist movement. To do so we had 7 subjects performing an experiment holding a mobile phone in their dominant hand. The mobile phone's built in acceleration sensor provided a convenient way to measure wrist movements and to run the behavioral protocol. Subjects moved a cursor on the screen by tilting the phone. Movements on the screen toward the training target were rotated and we then measured how learning of the rotation in the training direction affected subsequent movements in other directions. We find that generalization is local and similar to generalization patterns of visuomotor rotation for reaching.  相似文献   

2.
Does the observation of well-timed movements imply the existence of some internal representation of time, such as a hypothetical neural clock? Here we report the results of experiments designed to investigate whether subjects form a correct adaptive representation of mechanical environments that change in a very predictable manner. In these experiments, subjects were asked to execute arm movements over a two-dimensional workspace while experiencing time-dependent disturbing forces. We provide a formal definition for time representation and conclude that our subjects didn't use time representation for motor adaptation under the tested conditions. Subjects performed arm-reaching movements in the following experiments: (1) six experiments in a sinusoidal time-varying force field; (2) six experiments in a simple sequence of alternating viscous force fields, in which the number of targets allowed for the approximation of the force by a complex state-dependent force field; and (3) six experiments in the same simple sequence of alternating viscous force fields, in which no state-dependent force field approximation was possible. We found that the subjects did not adapt to the time-varying force field and were unable to form an adequate representation of the simple sequence of force fields. In the latter case, whenever possible, they adapted to a single state-dependent field that produced forces similar to the two alternating fields. This state-dependent field produced the same forces as the applied sequence of fields only over the trajectories that subjects executed during the training phase. However, the state-dependent field was inadequate to produce the correct forces generated by the field sequence over a new set of trajectories.These results are not consistent with the hypothesis that subjects would develop a correct representation of time-dependent forces, at least under the tested circumstances. We speculate that the system responsible for adaptation of movements to external forces may be unable to employ temporal representation. While it is possible that such a representation may emerge in a more prolonged and/or intense training, our findings indicate a preference by the adaptive system to generalize based on representing dependence of external forces upon state rather than upon time.  相似文献   

3.
In (re)learning of movements, haptic guidance can be used to direct the needed adaptations in motor control. Haptic guidance influences the main driving factors of motor adaptation, execution error, and control effort in different ways. Human-control effort is dissipated in the interactions that occur during haptic guidance. Minimizing the control effort would reduce the interaction forces and result in adaptation. However, guidance also decreases the magnitude of the execution errors, which could inhibit motor adaptation. The aim of this study was to assess how different types of haptic guidance affect kinematic adaptation in a novel visuomotor task. Five groups of subjects adapted to a reaching task in which the visual representation of the hand was rotated 30°. Each group was guided by a different force field. The force fields differed in magnitude and direction in order to discern the adaptation based on execution errors and control effort. The results demonstrated that the execution error did indeed play a key role in adaptation. The more the guiding forces restricted the occurrence of execution errors, the smaller the amount and rate of adaptation. However, the force field that enlarged the execution errors did not result in an increased rate of adaptation. The presence of a small amount of adaptation in the groups who did not experience execution errors during training suggested that adaptation could be driven on a much slower rate and on the basis of minimization of control effort as was evidenced by a gradual decrease of the interaction forces during training. Remarkably, also in the group in which the subjects were passive and completely guided, a small but significant adaptation occurred. The conclusion is that both minimization of execution errors and control effort drives kinematic adaptation in a novel visuomotor task, but the latter at a much slower rate.  相似文献   

4.

Background

When exposed to a continuous directional discrepancy between movements of a visible hand cursor and the actual hand (visuomotor rotation), subjects adapt their reaching movements so that the cursor is brought to the target. Abrupt removal of the discrepancy after training induces reaching error in the direction opposite to the original discrepancy, which is called an aftereffect. Previous studies have shown that training with gradually increasing visuomotor rotation results in a larger aftereffect than with a suddenly increasing one. Although the aftereffect difference implies a difference in the learning process, it is still unclear whether the learned visuomotor transformations are qualitatively different between the training conditions.

Methodology/Principal Findings

We examined the qualitative changes in the visuomotor transformation after the learning of the sudden and gradual visuomotor rotations. The learning of the sudden rotation led to a significant increase of the reaction time for arm movement initiation and then the reaching error decreased, indicating that the learning is associated with an increase of computational load in motor preparation (planning). In contrast, the learning of the gradual rotation did not change the reaction time but resulted in an increase of the gain of feedback control, suggesting that the online adjustment of the reaching contributes to the learning of the gradual rotation. When the online cursor feedback was eliminated during the learning of the gradual rotation, the reaction time increased, indicating that additional computations are involved in the learning of the gradual rotation.

Conclusions/Significance

The results suggest that the change in the motor planning and online feedback adjustment of the movement are involved in the learning of the visuomotor rotation. The contributions of those computations to the learning are flexibly modulated according to the visual environment. Such multiple learning strategies would be required for reaching adaptation within a short training period.  相似文献   

5.
In motor tasks, errors between planned and actual movements generally result in adaptive changes which reduce the occurrence of similar errors in the future. It has commonly been assumed that the motor adaptation arising from an error occurring on a particular movement is specifically associated with the motion that was planned. Here we show that this is not the case. Instead, we demonstrate the binding of the adaptation arising from an error on a particular trial to the motion experienced on that same trial. The formation of this association means that future movements planned to resemble the motion experienced on a given trial benefit maximally from the adaptation arising from it. This reflects the idea that actual rather than planned motions are assigned 'credit' for motor errors because, in a computational sense, the maximal adaptive response would be associated with the condition credited with the error. We studied this process by examining the patterns of generalization associated with motor adaptation to novel dynamic environments during reaching arm movements in humans. We found that these patterns consistently matched those predicted by adaptation associated with the actual rather than the planned motion, with maximal generalization observed where actual motions were clustered. We followed up these findings by showing that a novel training procedure designed to leverage this newfound understanding of the binding of learning to action, can improve adaptation rates by greater than 50%. Our results provide a mechanistic framework for understanding the effects of partial assistance and error augmentation during neurologic rehabilitation, and they suggest ways to optimize their use.  相似文献   

6.
Generalization of motor learning refers to our ability to apply what has been learned in one context to other contexts. When generalization is beneficial, it is termed transfer, and when it is detrimental, it is termed interference. Insight into the mechanism of generalization may be acquired from understanding why training transfers in some contexts but not others. However, identifying relevant contextual cues has proven surprisingly difficult, perhaps because the search has mainly been for cues that are explicit. We hypothesized instead that a relevant contextual cue is an implicit memory of action with a particular body part. To test this hypothesis we considered a task in which participants learned to control motion of a cursor under visuomotor rotation in two contexts: by moving their hand through motion of their shoulder and elbow, or through motion of their wrist. Use of these contextual cues led to three observations: First, in naive participants, learning in the wrist context was much faster than in the arm context. Second, generalization was asymmetric so that arm training benefited subsequent wrist training, but not vice versa. Third, in people who had prior wrist training, generalization from the arm to the wrist was blocked. That is, prior wrist training appeared to prevent both the interference and transfer that subsequent arm training should have caused. To explain the data, we posited that the learner collected statistics of contextual history: all upper arm movements also move the hand, but occasionally we move our hands without moving the upper arm. In a Bayesian framework, history of limb segment use strongly affects parameter uncertainty, which is a measure of the covariance of the contextual cues. This simple Bayesian prior dictated a generalization pattern that largely reproduced all three findings. For motor learning, generalization depends on context, which is determined by the statistics of how we have previously used the various parts of our limbs.  相似文献   

7.
Computational models of motor control have often explained the straightness of horizontal planar reaching movements as a consequence of optimal control. Departure from rectilinearity is thus regarded as sub-optimal. Here we examine if subjects may instead select to make curved trajectories following adaptation to force fields and visuomotor rotations. Separate subjects adapted to force fields with or without visual feedback of their hand trajectory and were retested after 24 hours. Following adaptation, comparable accuracies were achieved in two ways: with visual feedback, adapted trajectories in force fields were straight whereas without it, they remained curved. The results suggest that trajectory shape is not always straight, but is also influenced by the calibration of available feedback signals for the state estimation required by the task. In a follow-up experiment, where additional subjects learned a visuomotor rotation immediately after force field, the trajectories learned in force fields (straight or curved) were transferred when directions of the perturbations were similar but not when directions were opposing. This demonstrates a strong bias by prior experience to keep using a recently acquired control policy that continues to produce successful performance inspite of differences in tasks and feedback conditions. On relearning of force fields on the second day, facilitation by intervening visuomotor rotations occurred only when required motor adjustments and calibration of feedback signals were similar in both tasks. These results suggest that both the available feedback signals and prior history of learning influence the choice and maintenance of control policy during adaptations.  相似文献   

8.
Adaptability of reaching movements depends on a computation in the brain that transforms sensory cues, such as those that indicate the position and velocity of the arm, into motor commands. Theoretical consideration shows that the encoding properties of neural elements implementing this transformation dictate how errors should generalize from one limb position and velocity to another. To estimate how sensory cues are encoded by these neural elements, we designed experiments that quantified spatial generalization in environments where forces depended on both position and velocity of the limb. The patterns of error generalization suggest that the neural elements that compute the transformation encode limb position and velocity in intrinsic coordinates via a gain-field; i.e., the elements have directionally dependent tuning that is modulated monotonically with limb position. The gain-field encoding makes the counterintuitive prediction of hypergeneralization: there should be growing extrapolation beyond the trained workspace. Furthermore, nonmonotonic force patterns should be more difficult to learn than monotonic ones. We confirmed these predictions experimentally.  相似文献   

9.
 Some characteristics of arm movements that humans exhibit during learning the dynamics of reaching are consistent with a theoretical framework where training results in motor commands that are gradually modified to predict and compensate for novel forces that may act on the hand. As a first approximation, the motor control system behaves as an adapting controller that learns an internal model of the dynamics of the task. It approximates inverse dynamics and predicts motor commands that are appropriate for a desired limb trajectory. However, we had previously noted that subtle motion characteristics observed during changes in task dynamics challenged this simple model and raised the possibility that adaptation also involved sensory–motor feedback pathways. These pathways reacted to sensory feedback during the course of the movement. Here we hypothesize that adaptation to dynamics might also involve a modification of how the CNS responds to sensory feedback. We tested this through experiments that quantified how the motor system's response to errors during voluntary movements changed as it adapted to dynamics of a force field. We describe a nonlinear approach that approximates the impedance of the arm, i.e., force response as a function of arm displacement trajectory. We observe that after adaptation, the impedance function changes in a way that closely matches and counters the effect of the force field. This is particularly prominent in the long-latency (>100 ms) component of response to perturbations. Therefore, it appears that practice not only modifies the internal model with which the brain generates motor commands that initiate a movement, but also the internal model with which sensory feedback is integrated with the ongoing descending commands in order to respond to error during the movement. Received: 10 January 2001 / Accepted in revised form: 30 May 2001  相似文献   

10.
Handedness is a pronounced feature of human motor behavior, yet the underlying neural mechanisms remain unclear. We hypothesize that motor lateralization results from asymmetries in predictive control of task dynamics and in control of limb impedance. To test this hypothesis, we present an experiment with two different force field environments, a field with a predictable magnitude that varies with the square of velocity, and a field with a less predictable magnitude that varies linearly with velocity. These fields were designed to be compatible with controllers that are specialized in predicting limb and task dynamics, and modulating position and velocity dependent impedance, respectively. Because the velocity square field does not change the form of the equations of motion for the reaching arm, we reasoned that a forward dynamic-type controller should perform well in this field, while control of linear damping and stiffness terms should be less effective. In contrast, the unpredictable linear field should be most compatible with impedance control, but incompatible with predictive dynamics control. We measured steady state final position accuracy and 3 trajectory features during exposure to these fields: Mean squared jerk, Straightness, and Movement time. Our results confirmed that each arm made straighter, smoother, and quicker movements in its compatible field. Both arms showed similar final position accuracies, which were achieved using more extensive corrective sub-movements when either arm performed in its incompatible field. Finally, each arm showed limited adaptation to its incompatible field. Analysis of the dependence of trajectory errors on field magnitude suggested that dominant arm adaptation occurred by prediction of the mean field, thus exploiting predictive mechanisms for adaptation to the unpredictable field. Overall, our results support the hypothesis that motor lateralization reflects asymmetries in specific motor control mechanisms associated with predictive control of limb and task dynamics, and modulation of limb impedance.  相似文献   

11.
This study examined adaptive changes of eye-hand coordination during a visuomotor rotation task under the use of terminal visual feedback. Young adults made reaching movements to targets on a digitizer while looking at targets on a monitor where the rotated feedback (a cursor) of hand movements appeared after each movement. Three rotation angles (30°, 75° and 150°) were examined in three groups in order to vary the task difficulty. The results showed that the 30° group gradually reduced direction errors of reaching with practice and adapted well to the visuomotor rotation. The 75° group made large direction errors of reaching, and the 150° group applied a 180° reversal shift from early practice. The 75°and 150° groups, however, overcompensated the respective rotations at the end of practice. Despite these group differences in adaptive changes of reaching, all groups gradually adapted gaze directions prior to reaching from the target area to the areas related to the final positions of reaching during the course of practice. The adaptive changes of both hand and eye movements in all groups mainly reflected adjustments of movement directions based on explicit knowledge of the applied rotation acquired through practice. Only the 30° group showed small implicit adaptation in both effectors. The results suggest that by adapting gaze directions from the target to the final position of reaching based on explicit knowledge of the visuomotor rotation, the oculomotor system supports the limb-motor system to make precise preplanned adjustments of reaching directions during learning of visuomotor rotation under terminal visual feedback.  相似文献   

12.
In sports, the role of backswing is considered critical for generating a good shot, even though it plays no direct role in hitting the ball. We recently demonstrated the scientific basis of this phenomenon by showing that immediate past movement affects the learning and recall of motor memories. This effect occurred regardless of whether the past contextual movement was performed actively, passively, or shown visually. In force field studies, it has been shown that motor memories generalize locally and that the level of compensation decays as a function of movement angle away from the trained movement. Here we examine if the contextual effect of past movement exhibits similar patterns of generalization and whether it can explain behavior seen in interference studies. Using a single force-field learning task, the directional tuning curves of both the prior contextual movement and the subsequent force field adaptive movements were measured. The adaptation movement direction showed strong directional tuning, decaying to zero by 90° relative to the training direction. The contextual movement direction exhibited a similar directional tuning, although the effect was always above 60%. We then investigated the directional tuning of the passive contextual movement using interference tasks, where the contextual movements that uniquely specified the force field direction were separated by ±15° or ±45°. Both groups showed a pronounced tuning effect, which could be well explained by the directional tuning functions for single force fields. Our results show that contextual effect of past movement influences predictive force compensation, even when adaptation does not require contextual information. However, when such past movement contextual information is crucial to the task, such as in an interference study, it plays a strong role in motor memory learning and recall. This work demonstrates that similar tuning responses underlie both generalization of movement direction during dynamic learning and contextual movements in both single force field and interference tasks.  相似文献   

13.
Human motion studies have focused primarily on modeling straight point-to-point reaching movements. However, many goal-directed reaching movements, such as movements directed towards oneself, are not straight but rather follow highly curved trajectories. These movements are particularly interesting to study since they are essential in our everyday life, appear early in development and are routinely used to assess movement deficits following brain lesions. We argue that curved and straight-line reaching movements are generated by a unique neural controller and that the observed curvature of the movement is the result of an active control strategy that follows the geometry of one’s body, for instance to avoid trajectories that would hit the body or yield postures close to the joint limits. We present a mathematical model that accounts for such an active control strategy and show that the model reproduces with high accuracy the kinematic features of human data during unconstrained reaching movements directed toward the head. The model consists of a nonlinear dynamical system with a single stable attractor at the target. Embodiment-related task constraints are expressed as a force field that acts on the dynamical system. Finally, we discuss the biological plausibility and neural correlates of the model’s parameters and suggest that embodiment should be considered as a main cause for movement trajectory curvature.  相似文献   

14.
Learning to make reaching movements in force fields was used as a paradigm to explore the system architecture of the biological adaptive controller. We compared the performance of a number of candidate control systems that acted on a model of the neuromuscular system of the human arm and asked how well the dynamics of the candidate system compared with the movement characteristics of 16 subjects. We found that control via a supra-spinal system that utilized an adaptive inverse model resulted in dynamics that were similar to that observed in our subjects, but lacked essential characteristics. These characteristics pointed to a different architecture where descending commands were influenced by an adaptive forward model. However, we found that control via a forward model alone also resulted in dynamics that did not match the behavior of the human arm. We considered a third control architecture where a forward model was used in conjunction with an inverse model and found that the resulting dynamics were remarkably similar to that observed in the experimental data. The essential property of this control architecture was that it predicted a complex pattern of near-discontinuities in hand trajectory in the novel force field. A nearly identical pattern was observed in our subjects, suggesting that generation of descending motor commands was likely through a control system architecture that included both adaptive forward and inverse models. We found that as subjects learned to make reaching movements, adaptation rates for the forward and inverse models could be independently estimated and the resulting changes in performance of subjects from movement to movement could be accurately accounted for. Results suggested that the adaptation of the forward model played a dominant role in the motor learning of subjects. After a period of consolidation, the rates of adaptation in the internal models were significantly larger than those observed before the memory had consolidated. This suggested that consolidation of motor memory coincided with freeing of certain computational resources for subsequent learning. Received: 01 January 1998 / Accepted in revised form: 26 January 1999  相似文献   

15.
Motor training with the upper limb affected by stroke partially reverses the loss of cortical representation after lesion and has been proposed to increase spontaneous arm use. Moreover, repeated attempts to use the affected hand in daily activities create a form of practice that can potentially lead to further improvement in motor performance. We thus hypothesized that if motor retraining after stroke increases spontaneous arm use sufficiently, then the patient will enter a virtuous circle in which spontaneous arm use and motor performance reinforce each other. In contrast, if the dose of therapy is not sufficient to bring spontaneous use above threshold, then performance will not increase and the patient will further develop compensatory strategies with the less affected hand. To refine this hypothesis, we developed a computational model of bilateral hand use in arm reaching to study the interactions between adaptive decision making and motor relearning after motor cortex lesion. The model contains a left and a right motor cortex, each controlling the opposite arm, and a single action choice module. The action choice module learns, via reinforcement learning, the value of using each arm for reaching in specific directions. Each motor cortex uses a neural population code to specify the initial direction along which the contralateral hand moves towards a target. The motor cortex learns to minimize directional errors and to maximize neuronal activity for each movement. The derived learning rule accounts for the reversal of the loss of cortical representation after rehabilitation and the increase of this loss after stroke with insufficient rehabilitation. Further, our model exhibits nonlinear and bistable behavior: if natural recovery, motor training, or both, brings performance above a certain threshold, then training can be stopped, as the repeated spontaneous arm use provides a form of motor learning that further bootstraps performance and spontaneous use. Below this threshold, motor training is "in vain": there is little spontaneous arm use after training, the model exhibits learned nonuse, and compensatory movements with the less affected hand are reinforced. By exploring the nonlinear dynamics of stroke recovery using a biologically plausible neural model that accounts for reversal of the loss of motor cortex representation following rehabilitation or the lack thereof, respectively, we can explain previously hard to reconcile data on spontaneous arm use in stroke recovery. Further, our threshold prediction could be tested with an adaptive train-wait-train paradigm: if spontaneous arm use has increased in the "wait" period, then the threshold has been reached, and rehabilitation can be stopped. If spontaneous arm use is still low or has decreased, then another bout of rehabilitation is to be provided.  相似文献   

16.
A model for motor learning, generalization, and adaptation is presented. It is shown that the equations of motion of a limb can be expressed in a parametric form that facilitates transformation of desired trajectories into plans. These parametric equations are used in conjunction with a quantized multidimensional memory organized by state variables. The memory is supplied with data derived from the analysis of practice movements. A small computer and mechanical arm are used to implement the model and study its properties. Results verify the ability to acquire new movements, adapt to mechanical loads, and generalize between similar movements.This research was done while the author was a graduate student at the Massachusetts Institute of Technology in the Artificial Intelligence Laboratory and Department of Psychology. It was supported in part by training grant NGMS 5-T01-GM01064-15  相似文献   

17.
The posterior parietal cortex (PPC) is thought to play an important role in the sensorimotor transformations associated with reaching movements. In humans, damage to the PPC, particularly bilateral lesions, leads to impairments of visually guided reaching movements (optic ataxia). Recent accounts of optic ataxia based upon electrophysiological recordings in monkeys have proposed that this disorder arises because of a breakdown in the tuning fields of parietal neurons responsible for integrating spatially congruent retinal, eye, and hand position signals to produce coordinated eye and hand movements . We present neurological evidence that forces a reconceptualization of this view. We report a detailed case study of a patient with a limb-dependent form of optic ataxia who can accurately reach with either hand to objects that he can foveate (thereby demonstrating coordinated eye-hand movements) but who cannot effectively decouple reach direction from gaze direction for movements executed using his right arm. The demonstration that our patient's misreaching is confined to movements executed using his right limb, and only for movements that are directed to nonfoveal targets, rules out explanations based upon simple perceptual or motor deficits but indicates an impairment in the ability to dissociate the eye and limb visuomotor systems when appropriate.  相似文献   

18.
Learning a motor task with temporally spaced presentations or with other tasks intermixed between presentations reduces performance during training, but can enhance retention post training. These two effects are known as the spacing and contextual interference effect, respectively. Here, we aimed at testing a unifying hypothesis of the spacing and contextual interference effects in visuomotor adaptation, according to which forgetting between trials due to either spaced presentations or interference by another task will promote between-trial forgetting, which will depress performance during acquisition, but will promote retention. We first performed an experiment with three visuomotor adaptation conditions: a short inter-trial-interval (ITI) condition (SHORT-ITI); a long ITI condition (LONG-ITI); and an alternating condition with two alternated opposite tasks (ALT), with the same single-task ITI as in LONG-ITI. In the SHORT-ITI condition, there was fastest increase in performance during training and largest immediate forgetting in the retention tests. In contrast, in the ALT condition, there was slowest increase in performance during training and little immediate forgetting in the retention tests. Compared to these two conditions, in the LONG-ITI, we found intermediate increase in performance during training and intermediate immediate forgetting. To account for these results, we fitted to the data six possible adaptation models with one or two time scales, and with interference in the fast, or in the slow, or in both time scales. Model comparison confirmed that two time scales and some degree of interferences in either time scale are needed to account for our experimental results. In summary, our results suggest that retention following adaptation is modulated by the degree of between-trial forgetting, which is due to time-based decay in single adaptation task and interferences in multiple adaptation tasks.  相似文献   

19.
We must frequently adapt our movements in order to successfully perform motor tasks. These visuomotor adaptations can occur with or without our awareness and so, have generally been described by two mechanisms: strategic control and spatial realignment. Strategic control is a conscious modification used when discordance between an intended and actual movement is observed. Spatial realignment is an unconscious recalibration in response to subtle differences between an intended and efferent movement. Traditional methods of investigating visuomotor adaptation often involve simplistic, repetitive motor goals and so may be vulnerable to subject boredom or expectation. Our laboratory has recently developed a novel, engaging computer-based task, the Viewing Window, to investigate visuomotor adaptation to large, apparent distortions. Here, we contrast behavioural measures of visuomotor adaptation during the Viewing Window task when either gradual progressive rotations or large, sudden rotations are introduced in order to demonstrate that this paradigm can be utilized to investigate both strategic control and spatial realignment. The gradual rotation group demonstrated significantly faster mean velocities and spent significantly less time off the object compared to the sudden rotation group. These differences demonstrate adaptation to the distortion using spatial realignment. Scan paths revealed greater after-effects in the gradual rotation group reflected by greater time spent scanning areas off of the object. These results demonstrate the ability to investigate both strategic control and spatial realignment. Thus, the Viewing Window provides a powerful engaging tool for investigating the neural basis of visuomotor adaptation and impairment following injury and disease.  相似文献   

20.
Exercises can be categorized into either unilateral or bilateral movements. Despite the topic popularity, the answer to the question as to which (unilateral or bilateral) is superior for a certain athletic performance enhancement remains unclear. To compare the effect of unilateral and bilateral resistance training interventions on measures of athletic performance. Keywords related with unilateral, bilateral and performance were used to search in the Web of Science, PubMed databases, and Google Scholar and ResearchGate™ websites. 6365 articles were initially identified, 14 met the inclusion criteria and were included in the final analysis, with overall article quality being deemed moderate. The quantitative analysis comprised 392 subjects (aged: 16 to 26 years). Sub-group analysis showed that unilateral exercise resistance training resulted in a large effect in improving unilateral jump performance compared to bilateral training (ES = 0.89 [0.52, 1.26]). In contrast, bilateral exercise resistance training showed a small effect in improving bilateral strength compared to unilateral (ES = -0.43 [-0.71, -0.14]). Non-significant differences were found in improving unilateral strength (ES = 0.26 [-0.03, 0.55]), bilateral jump performance (ES = -0.04 [-0.31, 0.23]), change of direction (COD) (ES = 0.31 [-0.01, 0.63]) and speed (ES = -0.12 [-0.46, 0.21]) performance. Unilateral resistance training exercises should be chosen for improving unilateral jumping performance, and bilateral resistance training exercises should be chosen for improving bilateral strength performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号