首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accumulation of cholesterol by macrophage uptake of LDL is a key event in the formation of atherosclerotic plaques. Previous research has shown that granulocyte-macrophage colony-stimulating factor (GM-CSF) is present in atherosclerotic plaques and promotes aortic lipid accumulation. However, it has not been determined whether murine GM-CSF-differentiated macrophages take up LDL to become foam cells. GM-CSF-differentiated macrophages from LDL receptor-null mice were incubated with LDL, resulting in massive macrophage cholesterol accumulation. Incubation of LDL receptor-null or wild-type macrophages with increasing concentrations of 125I-LDL showed nonsaturable macrophage LDL uptake that was linearly related to the amount of LDL added, indicating that LDL uptake was mediated by fluid-phase pinocytosis. Previous studies suggest that phosphoinositide 3-kinases (PI3K) mediate macrophage fluid-phase pinocytosis, although the isoform mediating this process has not been determined. Because PI3Kγ is known to promote aortic lipid accumulation, we investigated its role in mediating macrophage fluid-phase pinocytosis of LDL. Wild-type macrophages incubated with LDL and the PI3Kγ inhibitor AS605240 or PI3Kγ-null macrophages incubated with LDL showed an ∼50% reduction in LDL uptake and cholesterol accumulation compared with wild-type macrophages incubated with LDL only. These results show that GM-CSF-differentiated murine macrophages become foam cells by fluid-phase pinocytosis of LDL and identify PI3Kγ as contributing to this process.  相似文献   

2.
Previously, we reported that fluid-phase endocytosis of native LDL by PMA-activated human monocytederived macrophages converted these macrophages into cholesterol-enriched foam cells (Kruth, H. S., Huang, W., Ishii, I., and Zhang, W. Y. (2002) J. Biol. Chem. 277, 34573-34580). Uptake of fluid by cells can occur either by micropinocytosis within vesicles (<0.1 microm diameter) or by macropinocytosis within vacuoles ( approximately 0.5-5.0 microm) named macropinosomes. The current investigation has identified macropinocytosis as the pathway for fluid-phase LDL endocytosis and determined signaling and cytoskeletal components involved in this LDL endocytosis. The phosphatidylinositol 3-kinase inhibitor, LY294002, which inhibits macropinocytosis but does not inhibit micropinocytosis, completely blocked PMA-activated macrophage uptake of fluid and LDL. Also, nystatin and filipin, inhibitors of micropinocytosis from lipid-raft plasma membrane domains, both failed to inhibit PMA-stimulated macrophage cholesterol accumulation. Time-lapse video phase-contrast microscopy and time-lapse digital confocal-fluorescence microscopy with fluorescent DiI-LDL showed that PMA-activated macrophages took up LDL in the fluid phase by macropinocytosis. Macropinocytosis of LDL depended on Rho GTPase signaling, actin, and microtubules. Bafilomycin A1, the vacuolar H+-ATPase inhibitor, inhibited degradation of LDL and caused accumulation of undegraded LDL within macropinosomes and multivesicular body endosomes. LDL in multivesicular body endosomes was concentrated >40-fold over its concentration in the culture medium consistent with macropinosome shrinkage by maturation into multivesicular body endosomes. Macropinocytosis of LDL taken up in the fluid phase without receptor-mediated binding of LDL is a novel endocytic pathway that generates macrophage foam cells. Macropinocytosis in macrophages and possibly other vascular cells is a new pathway to target for modulating foam cell formation in atherosclerosis.  相似文献   

3.
Recently, we have shown that macrophage uptake of low density lipoprotein (LDL) and cholesterol accumulation can occur by nonreceptor mediated fluid-phase macropinocytosis when macrophages are differentiated from human monocytes in human serum and the macrophages are activated by stimulation of protein kinase C (Kruth, H. S., Jones, N. L., Huang, W., Zhao, B., Ishii, I., Chang, J., Combs, C. A., Malide, D., and Zhang, W. Y. (2005) J. Biol. Chem. 280, 2352-2360). Differentiation of human monocytes in human serum produces a distinct macrophage phenotype. In this study, we examined the effect on LDL uptake of an alternative macrophage differentiation phenotype. Differentiation of macrophages from human monocytes in fetal bovine serum with macrophage-colony-stimulating factor (M-CSF) produced a macrophage phenotype demonstrating constitutive fluid-phase uptake of native LDL leading to macrophage cholesterol accumulation. Fluid-phase endocytosis of LDL by M-CSF human macrophages showed non-saturable uptake of LDL that did not down-regulate over 48 h. LDL uptake was mediated by continuous actin-dependent macropinocytosis of LDL by these M-CSF-differentiated macrophages. M-CSF is a cytokine present within atherosclerotic lesions. Thus, macropinocytosis of LDL by macrophages differentiated from monocytes under the influence of M-CSF is a plausible mechanism to account for macrophage foam cell formation in atherosclerotic lesions. This mechanism of macrophage foam cell formation does not depend on LDL modification or macrophage receptors.  相似文献   

4.
5.

Background

Legionella pneumophila, is an intracellular pathogen that causes Legionnaires'' disease in humans, a potentially lethal pneumonia. L. pneumophila has the ability to enter and replicate in the host and is essential for pathogenesis.

Methodology/Principal Findings

Phagocytosis was measured by cell invasion assays. Construction of PI3K mutant by PCR cloning and expression of dominant negative mutant was detected by Western blot. PI3K activity was measured by 32P labeling and detection of phospholipids products by thin layer chromatography. Infection of macrophages with virulent L. pneumophila stimulated the formation of phosphatidylinositol 3-phosphate (PIP3), a phosphorylated lipid product of PI3K whereas two structurally distinct phosphatidylinositol 3 kinase (PI3K) inhibitors, wortmannin and LY294002, reduced L. pneumophila entry into macrophages in a dose-dependent fashion. Furthermore, PI3K activation led to Akt stimulation, a serine/threonine kinase, which was also inhibited by wortmannin and LY294002. In contrast, PI3K and protein kinase B (PKB/Akt) activities were lower in macrophages infected with an avirulent bacterial strain. Only virulent L. pneumophila increased lipid kinase activity present in immunoprecipitates of the p85α subunit of class I PI3K and tyrosine phosphorylated proteins. In addition, macrophages expressing a specific dominant negative mutant of PI3K reduced L. pneumophila entry into these cells.

Conclusion/Significance

Entry of L. pneumophila is mediated by PI3K/Akt signaling pathway. These results suggest an important role for PI3K and Akt in the L. pneumophila infection process. They point to possible novel strategies for undermining L. pneumophila host uptake and reducing pathogenesis of Legionnaires'' disease.  相似文献   

6.
7.
The mechanism of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance in cancer cells is not fully understood. Here, we show that the Akt survival pathway plays an important role in TRAIL resistance in human cancer cells. Specifically, we found that TRAIL treatment activates the Akt survival pathway and that inhibition of this pathway by the PI3K inhibitor LY294002 or knockdown of Akt sensitizes resistant cancer cells to TRAIL. Since Akt is negatively regulated by the tumor suppressor PTEN, we examined the TRAIL sensitivity in PTEN knockdown mouse prostate epithelial cells and found that PTEN−/− cells are more resistant than PTEN+/+ cells while the sensitivity of PTEN+/− cells fell in between. Further, we showed that overexpression of a mutant PTEN confers TRAIL resistance in PTEN+/+ cells, supporting a role of PTEN in TRAIL sensitivity. In TRAIL resistant breast T47D cells, overexpression of the mutant PTEN further increased their resistance to TRAIL. Taken together, our data indicate that inactivation of functional PTEN and the consequent activation of the Akt pathway prevents TRAIL-induced apoptosis, leading to TRAIL resistance. Therefore, our results suggest that TRAIL resistance can be overcome by targeting PTEN or the Akt survival pathway in cancer cells.  相似文献   

8.
Bacterial flagellin triggers inflammatory responses. Phosphoinositide 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) regulate the production of pro- and anti-inflammatory cytokines that are induced by extrinsic antigens, but the function of mTORC1 in flagellin-induced inflammatory response is unknown. The purpose of this study was to examine the role and the mechanism of PI3K/Akt/mTOR pathway in flagellin-induced cytokine expression in mouse macrophages. We observed that flagellin upregulated TNF-α time- and dose-dependently. Flagellin stimulated rapid (<15 min) PI3K/Akt/mTOR phosphorylation that was mediated by TLR5. Inhibition of PI3K with LY294002 and wortmannin, and of mTORC1 with rapamycin decreased flagellin-induced TNF-α and IL-6 expression and cell proliferation. The activation of NF-κB p65 and STAT3 was regulated by mTORC1 via degradation of IκBα and phosphorylation of STAT3 in response to flagellin, respectively. Thus, the PI3K/Akt/mTORC1 pathway regulates the innate immune response to bacterial flagellin. Rapamycin is potential therapy that can regulate host defense against pathogenic infections.  相似文献   

9.
Glycoprotein (GP) VI is a critical platelet collagen receptor. Phosphoinositide 3-kinase (PI3K) plays an important role in GPVI-mediated platelet activation, yet the major PI3K isoforms involved in this process have not been identified. In addition, stimulation of GPVI results in the activation of Akt, a downstream effector of PI3K. Thus, we investigated the contribution of PI3K isoforms to GPVI-mediated platelet activation and Akt activation. A protein kinase C inhibitor GF 109203X or a P2Y12 receptor antagonist AR-C69931MX partly reduced GPVI-induced Akt phosphorylation. Platelets from mice dosed with clopidogrel also showed partial Akt phosphorylation, indicating that GPVI-mediated Akt phosphorylation is regulated by both secretion-dependent and -independent pathways. In addition, GPVI-induced Akt phosphorylation in the presence of ADP antagonists was completely inhibited by PI3K inhibitor LY294002 and PI3Kβ inhibitor TGX-221 indicating an essential role of PI3Kβ in Akt activation directly downstream of GPVI. Moreover, GPVI-mediated platelet aggregation, secretion, and intracellular Ca2+ mobilization were significantly inhibited by TGX-221, and less strongly inhibited by PI3Kα inhibitor PIK75, but were not affected by PI3Kγ inhibitor AS252424 and PI3Kδ inhibitor IC87114. Consistently, GPVI-induced integrin αIIbβ3 activation of PI3Kγ−/− and PI3Kδ−/− platelets also showed no significant difference compared with wild-type platelets. These results demonstrate that GPVI-induced Akt activation in platelets is dependent in part on Gi stimulation through P2Y12 receptor activation by secreted ADP. In addition, a significant portion of GPVI-dependent, ADP-independent Akt activation also exists, and PI3Kβ plays an essential role in GPVI-mediated platelet aggregation and Akt activation.  相似文献   

10.
Phosphatidylinositol 3-kinases (PI3K) participate in numerous signaling pathways, and control distinct biological functions. Studies using pan-PI3K inhibitors suggest roles for PI3K in osteoclasts, but little is known about specific PI3K isoforms in these cells. Our objective was to determine effects of isoform-selective PI3K inhibitors on osteoclasts. The following inhibitors were investigated (targets in parentheses): wortmannin and LY294002 (pan-p110), PIK75 (α), GDC0941 (α, δ), TGX221 (β), AS252424 (γ), and IC87114 (δ). In addition, we characterized a new potent and selective PI3Kδ inhibitor, GS-9820, and explored roles of PI3K isoforms in regulating osteoclast function. Osteoclasts were isolated from long bones of neonatal rats and rabbits. Wortmannin, LY294002, GDC0941, IC87114, and GS-9820 induced a dramatic retraction of osteoclasts within 15–20 min to 65–75% of the initial area. In contrast, there was no significant retraction in response to vehicle, PIK75, TGX221, or AS252424. Moreover, wortmannin and GS-9820, but not PIK75 or TGX221, disrupted actin belts. We examined effects of PI3K inhibitors on osteoclast survival. Whereas PIK75, TGX221, and GS-9820 had no significant effect on basal survival, all blocked RANKL-stimulated survival. When studied on resorbable substrates, osteoclastic resorption was suppressed by wortmannin and inhibitors of PI3Kβ and PI3Kδ, but not other isoforms. These data are consistent with a critical role for PI3Kδ in regulating osteoclast cytoskeleton and resorptive activity. In contrast, multiple PI3K isoforms contribute to the control of osteoclast survival. Thus, the PI3Kδ isoform, which is predominantly expressed in cells of hematopoietic origin, is an attractive target for anti-resorptive therapeutics.  相似文献   

11.

Background

Upon lipopolysaccharide (LPS) stimulation, activation of both the Toll-like receptor 4 (TLR4) and phosphoinositide 3-kinase (PI3K) pathways serves to balance proinflammatory and anti-inflammatory responses. Although the antagonist to TLR4 represents an emerging promising target for the treatment of sepsis; however, the role of the PI3K pathway under TLR4-null conditions is not well understood. This goal of this study was to investigate the effect of inhibition of PI3K on innate resistance to LPS toxicity in a murine model.

Results

The overall survival of the cohorts receiving intraperitoneal injections of 100, 500, or 1000 μg LPS from Escherichia coli serotype 026:B6 after 7 d was 100%, 10%, and 10%, respectively. In contrast, no mortality was noted after 500-μg LPS injection in Tlr4-/- mice. When the PI3K inhibitor LY294002 was injected (1 mg/25 g body weight) 1 h prior to the administration of LPS, the overall survival of the Tlr4-/- mice was 30%. In the Tlr4-/- mice, the LPS injection induced no NF-κB activation but an increased Akt phosphorylation in the lung and liver, when compared to that of the C57BL/6 mice. Injection of 500 μg LPS led to a significant induction in O2- detected by electron paramagnetic resonance (EPR) spin trapping spectroscopy in the lung and liver at 3 and 6 h in C57BL/6 but not Tlr4-/- mice. Addition of LY294002 only significantly increased the O2- level in the lung and liver of the Tlr4-/- mice but not in the C57BL/6 mice following 500-μg LPS injection. In addition, the serum IL-1β and IL-2 levels were more elevated in C57BL/6 mice than in Tlr4-/- mice. Notably, IL-1β and IL-2 were significantly increased in Tlr4-/- mice but not in the C57BL/6 mice when the PI3K pathway was inhibited by LY294002 prior to LPS injection.

Conclusions

In this study, we demonstrate that innate resistance to LPS toxicity in Tlr4-/- mice is impaired by inhibition of the PI3K pathway, with a corresponding increase in mortality and production of tissue O2- and inflammatory cytokines.  相似文献   

12.
SARA has been shown to be a regulator of epithelial cell phenotype, with reduced expression during TGF-β1-mediated epithelial-to-mesenchymal transition. Examination of the pathways that might play a role in regulating SARA expression identified phosphatidylinositol 3-kinase (PI3K) pathway inhibition as sufficient to reduce SARA expression. The mechanism of PI3K inhibition-mediated SARA down-regulation differs from that induced by TGF-β1 in that, unlike TGF-β1, PI3K-dependent depletion of SARA was apparent within 6 h and did not occur at the mRNA or promoter level but was blocked by inhibition of proteasome-mediated degradation. This effect was independent of Akt activity because neither reducing nor enhancing Akt activity modulated the expression of SARA. Therefore, this is likely a direct effect of p85α action, and co-immunoprecipitation of SARA and p85α confirmed that these proteins interact. Both SARA and PI3K have been shown to be associated with endosomes, and either LY294002 or p85α knockdown enlarged SARA-containing endocytic vesicles. Inhibition of clathrin-mediated endocytosis blocked SARA down-regulation, and a localization-deficient mutant SARA was protected against down-regulation. As inhibiting PI3K can activate the endosomal fusion-regulatory small GTPase Rab5, we expressed GTPase-deficient Rab5 and observed endosomal enlargement and reduced SARA protein expression, similar to that seen with PI3K inhibition. Importantly, either interference with PI3K via LY294002 or p85α knockdown, or constitutive activity of the Rab5 pathway, enhanced the expression of smooth muscle α-actin. Together, these data suggest that although TGF-β1 can induce epithelial-to-mesenchymal transition through reduction in SARA expression, SARA is also basally regulated by its interaction with PI3K.  相似文献   

13.

Background

Transplantation with bone marrow-derived mesenchymal stem cells (BMSCs) improves the survival of neurons and axonal outgrowth after stroke remains undetermined. Here, we investigated whether PI3K/AKT signaling pathway is involved in these therapeutic effects of BMSCs.

Methodology/Principal Findings

(1) BMSCs and cortical neurons were derived from Sprague-Dawley rats. The injured neurons were induced by Oxygen–Glucose Deprivation (OGD), and then were respectively co-cultured for 48 hours with BMSCs at different densities (5×103, 5×105/ml) in transwell co-culture system. The average length of axon and expression of GAP-43 were examined to assess the effect of BMSCs on axonal outgrowth after the damage of neurons induced by OGD. (2) The injured neurons were cultured with a conditioned medium (CM) of BMSCs cultured for 24 hours in neurobasal medium. During the process, we further identified whether PI3K/AKT signaling pathway is involved through the adjunction of LY294002 (a specific phosphatidylinositide-3-kinase (PI3K) inhibitor). Two hours later, the expression of pAKT (phosphorylated AKT) and AKT were analyzed by Western blotting. The length of axons, the expression of GAP-43 and the survival of neurons were measured at 48 hours.

Results

Both BMSCs and CM from BMSCs inreased the axonal length and GAP-43 expression in OGD-injured cortical neurons. There was no difference between the effects of BMSCs of 5×105/ml and of 5×103/ml on axonal outgrowth. Expression of pAKT enhanced significantly at 2 hours and the neuron survival increased at 48 hours after the injured neurons cultured with the CM, respectively. These effects of CM were prevented by inhibitor LY294002.

Conclusions/Significance

BMSCs promote axonal outgrowth and the survival of neurons against the damage from OGD in vitro by the paracrine effects through PI3K/AKT signaling pathway.  相似文献   

14.
CDDP [cisplatin or cis-diamminedichloroplatinum(II)] and CDDP-based combination chemotherapy have been confirmed effective against gastric cancer. However, CDDP efficiency is limited because of development of drug resistance. In this study, we found that PAK4 (p21-activated kinase 4) expression and activity were elevated in gastric cancer cells with acquired CDDP resistance (AGS/CDDP and MKN-45/CDDP) compared with their parental cells. Inhibition of PAK4 or knockdown of PAK4 expression by specific siRNA (small interfering RNA)-sensitized CDDP-resistant cells to CDDP and overcome CDDP resistance. Combination treatment of LY294002 [the inhibitor of PI3K (phosphoinositide 3-kinase)/Akt (protein kinase B or PKB) pathway] or PD98509 {the inhibitor of MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase] pathway} with PF-3758309 (the PAK4 inhibitor) resulted in increased CDDP efficacy compared with LY294002 or PD98509 alone. However, after the concomitant treatment of LY294002 and PD98509, PF-3758309 administration exerted no additional enhancement of CDDP cytotoxicity in CDDP-resistant cells. Inhibition of PAK4 by PF-3758309 could significantly suppress MEK/ERK and PI3K/Akt signalling in CDDP-resistant cells. Furthermore, inhibition of PI3K/Akt pathway while not MEK/ERK pathway could inhibit PAK4 activity in these cells. The in vivo results were similar with those of in vitro. In conclusion, these results indicate that PAK4 confers CDDP resistance via the activation of MEK/ERK and PI3K/Akt pathways. PAK4 and PI3K/Akt pathways can reciprocally activate each other. Therefore, PAK4 may be a potential target for overcoming CDDP resistance in gastric cancer.  相似文献   

15.
ObjectiveTo investigate the effect of ursolic acid on autophagy mediated through the miRNA-21-targeted phosphoinositide 3 kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway in rat mesangial cells cultured under high glucose (HG) conditions.MethodsRat glomerular mesangial cells were cultured under normal glucose, HG, HG with the PI3K inhibitor LY294002 or HG with ursolic acid conditions. Cell proliferation and hypertrophy were assayed using an MTT assay and the ratio of total protein to cell number, respectively. The miRNA-21 expression was detected using RT-qPCR. The expression of phosphatase and tensin homolog (PTEN)/AKT/mTOR signaling signatures, autophagy-associated protein and collagen I was detected by western blotting and RT-qPCR. Autophagosomes were observed using electron microscopy.ResultsCompared with mesangial cells cultured under normal glucose conditions, the cells exposed to HG showed up-regulated miRNA-21 expression, down-regulated PTEN protein and mRNA expression, up-regulated p85PI3K, pAkt, pmTOR, p62/SQSTMI, and collagen I expression and down-regulated LC3II expression. Ursolic acid and LY294002 inhibited HG-induced mesangial cell hypertrophy and proliferation, down-regulated p85PI3K, pAkt, pmTOR, p62/SQSTMI, and collagen I expression and up-regulated LC3II expression. However, LY294002 did not affect the expression of miRNA-21 and PTEN. Ursolic acid down-regulated miRNA-21 expression and up-regulated PTEN protein and mRNA expression.ConclusionsUrsolic acid inhibits the glucose-induced up-regulation of mesangial cell miRNA-21 expression, up-regulates PTEN expression, inhibits the activation of PI3K/Akt/mTOR signaling pathway, and enhances autophagy to reduce the accumulation of the extracellular matrix and ameliorate cell hypertrophy and proliferation.  相似文献   

16.
Our previous studies demonstrated that glimepiride enhanced the proliferation and differentiation of osteoblasts and led to activation of the PI3K/Akt pathway. Recent genetic evidence shows that endothelial nitric oxide synthase (eNOS) plays an important role in bone homeostasis. In this study, we further elucidated the roles of eNOS, PI3K and Akt in bone formation by osteoblasts induced by glimepiride in a high glucose microenvironment. We demonstrated that high glucose (16.5 mM) inhibits the osteogenic differentiation potential and proliferation of rat osteoblasts. Glimepiride activated eNOS expression in rat osteoblasts cultured with two different concentrations of glucose. High glucose-induced osteogenic differentiation was significantly enhanced by glimepiride. Down-regulation of PI3K P85 levels by treatment with LY294002 (a PI3K inhibitor) led to suppression of P-eNOS and P-AKT expression levels, which in turn resulted in inhibition of RUNX2, OCN and ALP mRNA expression in osteoblasts induced by glimepiride at both glucose concentrations. ALP activity was partially inhibited by 10 µM LY294002. Taken together, our results demonstrate that glimepiride-induced osteogenic differentiation of osteoblasts occurs via eNOS activation and is dependent on the PI3K/Akt signaling pathway in a high glucose microenvironment.  相似文献   

17.
The phosphoinositide 3-kinases (PI3K/Akt) dependent signaling pathway plays an important role in cardiac function, specifically cardiac contractility. We have reported that sepsis decreases myocardial Akt activation, which correlates with cardiac dysfunction in sepsis. We also reported that preventing sepsis induced changes in myocardial Akt activation ameliorates cardiovascular dysfunction. In this study we investigated the role of PI3K/Akt on cardiomyocyte function by examining the role of PI3K/Akt-dependent signaling on [Ca2+]i, Ca2+ transients and membrane Ca2+ current, ICa, in cultured murine HL-1 cardiomyocytes. LY294002 (1–20 μM), a specific PI3K inhibitor, dramatically decreased HL-1 [Ca2+]i, Ca2+ transients and ICa. We also examined the effect of PI3K isoform specific inhibitors, i.e. α (PI3-kinase α inhibitor 2; 2–8 nM); β (TGX-221; 100 nM) and γ (AS-252424; 100 nM), to determine the contribution of specific isoforms to HL-1 [Ca2+]i regulation. Pharmacologic inhibition of each of the individual PI3K isoforms significantly decreased [Ca2+]i, and inhibited Ca2+ transients. Triciribine (1–20 μM), which inhibits AKT downstream of the PI3K pathway, also inhibited [Ca2+]i, and Ca2+ transients and ICa. We conclude that the PI3K/Akt pathway is required for normal maintenance of [Ca2+]i in HL-1 cardiomyocytes. Thus, myocardial PI3K/Akt-PKB signaling sustains [Ca2+]i required for excitation-contraction coupling in cardiomyoctyes.  相似文献   

18.
19.
Macrophage foam cells are a defining pathologic feature of atherosclerotic lesions. Recent studies have demonstrated that at high concentrations associated with hypercholesterolemia, native LDL induces macrophage lipid accumulation. LDL particles are taken up by macrophages as part of bulk fluid pinocytosis. However, the uptake and metabolism of cholesterol from native LDL during foam cell formation has not been clearly defined. Previous reports have suggested that selective cholesteryl ester (CE) uptake might contribute to cholesterol uptake from LDL independently of particle endocytosis. In this study we demonstrate that the majority of macrophage LDL-derived cholesterol is acquired by selective CE uptake in excess of LDL pinocytosis and degradation. Macrophage selective CE uptake does not saturate at high LDL concentrations and is not down-regulated during cholesterol accumulation. In contrast to CE uptake, macrophages exhibit little selective uptake of free cholesterol (FC) from LDL. Following selective uptake from LDL, CE is rapidly hydrolyzed by a novel chloroquine-sensitive pathway. FC released from LDL-derived CE hydrolysis is largely effluxed from cells but also is subject to ACAT-mediated reesterification. These results indicate that selective CE uptake plays a major role in macrophage metabolism of LDL.  相似文献   

20.
Recent studies have suggested that 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) increases macrophage phagocytosis through adenosine monophosphate-activated protein kinase (AMPK). However, little information is available on the effects of AICAR on the clearance of apoptotic cells by macrophages, known as efferocytosis, which is essential in maintaining tissue homeostasis and resolving inflammation. AICAR increased p38 MAPK activation and the phagocytosis of apoptotic cells by macrophages, which were inhibited by the p38 MAPK inhibitor, SB203580, the TGF-beta-activated kinase 1 (TAK1) inhibitor, (5Z)-7-oxozeaenol, and siRNA-mediated knock-down of p38α. AICAR increased phosphorylation of Akt, but the inhibition of PI3K/Akt activity using LY294002 did not affect the AICAR-induced changes in efferocytosis in macrophages. CGS15943, a non-selective adenosine receptor antagonist, did not affect AICAR-induced changes in efferocytosis, but dipyridamole, an adenosine transporter inhibitor, diminished the AICAR-mediated increases in efferocytosis. AICAR-induced p38 MAPK phosphorylation was not inhibited by the AMPK inhibitor, compound C, or siRNA-mediated knock-down of AMPKα1. Inhibition of AMPK using compound C or 5’-iodotubercidin did not completely block AICAR-mediated increases in efferocytosis. Furthermore, AICAR also increased the removal of apoptotic neutrophils or thymocytes in mouse lungs. These results reveal a novel mechanism by which AICAR increases macrophage-mediated phagocytosis of apoptotic cells and suggest that AICAR may be used to treat efferocytosis-related inflammatory conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号